Lecture 3: Indexing, Relational and Logical Operators B0B17MTB, BE0B17MTB - Matlab

Miloslav Čapek, Viktor Adler, Michal Mašek, and Vít Losenický

Department of Electromagnetic Field
Czech Technical University in Prague
Czech Republic
matlab@fel.cvut.cz
March 1 (CZ) and 3 (EN), 2021
Summer semester 2020/21

Outline

1. Indexing
2. Relational Operators
3. Logical Operators
4. Excercises

Indexing in Matlab

- Now we know all the stuff necessary to deal with indexing in Matlab.
- Mastering indexing is crucial for efficient work with Matlab.
- Up to now, we have been working with entire matrices, quite often we need, however, to access individual elements of arrays.
- Two ways of accessing matrices/vectors are distinguished.
- Access using round brackets "()".
- Matrix indexing: refers to position of elements in a matrix.
- Access using square brackets "[]".
- Matrix concatenation: refers to element's order in a matrix.

Indexing in Matlab I.

- Let's consider following triplet of matrices.
- Execute individual commands and find out their meaning.
- Start from inner part of the commands.
- Note the meaning of the pointer end.

$$
\mathbf{N}_{1}=\left[\begin{array}{c}
-5 \\
0 \\
5
\end{array}\right] \quad \mathbf{N}_{2}=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 6 & 8 & 10 \\
2 & 3 & 5 & 7 & 11
\end{array}\right] \quad \mathbf{N}_{3}=\left[\begin{array}{cccc}
11 & 12 & 13 & 14 \\
22 & 24 & 26 & 28 \\
33 & 36 & 39 & 42 \\
44 & 48 & 52 & 56
\end{array}\right]
$$

$$
\text { N1 }=(-5: 5: 5)^{\prime} ; \quad \mathrm{N} 2=[1: 5 ; 2: 2: 10 ; \operatorname{primes}(11)] ; \quad \mathrm{N} 3=(1: 4)^{\prime} \star(11: 14) ;
$$

N1 $(1: 3)$
N1 $\left(\left[\begin{array}{ll}1 & 2\end{array}\right]\right)$
N1 $(1: 2)$
N1 $\left(\left[\begin{array}{ll}1 & 3\end{array}\right]\right)$
N1 $\left(\left[\begin{array}{ll}1 & 3\end{array}\right] . .^{\prime}\right)$
N1 $\left(\left[\begin{array}{ll}1 & 3\end{array}\right) .^{\prime}\right.$
N1 $\left(\left[\begin{array}{ll}1 ; & 3\end{array}\right)\right.$
N1 $\left(\left[\begin{array}{ll}1 & 3\end{array}\right], 1\right)$

```
```

N2 (1, 3)

```
```

N2 (1, 3)
N2 (3, 1)
N2 (3, 1)
N2 (1, end)
N2 (1, end)
N2 (end, end)
N2 (end, end)
N2 (1, :)
N2 (1, :)
N2 (1, :).'
N2 (1, :).'
N2 (:, 2)
N2 (:, 2)
N2 (:, 3:end)

```
```

N2 (:, 3:end)

```
```

```
N3(2:3, [1 1 1]) % like repmat
```

N3(2:3, [1 1 1]) % like repmat
N3 (2:3, ones (1,3))
N3 (2:3, ones (1,3))
N3 (2:3, ones(3,1))
N3 (2:3, ones(3,1))
N3([N2(2,1:2)/2 4], [2 3])
N3([N2(2,1:2)/2 4], [2 3])
N3([1 end], [1:4 1:2:end])
N3([1 end], [1:4 1:2:end])
N3(:, :, 2) = magic(4)
N3(:, :, 2) = magic(4)
N3([1 3], 3:4, 3) = ...
N3([1 3], 3:4, 3) = ...
[1/2 -1/2; pi*ones(1, 2)]

```
    [1/2 -1/2; pi*ones(1, 2)]
```


Indexing in Matlab II.

- Remember the meaning of end and the application of colon operator ":".
- Try to:
- Flip the elements of the vector \mathbf{N}_{1} without use of fliplr/flipud functions.

- Select only the even columns of \mathbf{N}_{2}.
- Select only the odd rows of \mathbf{N}_{3}.

- Select 2nd, 4th and 5th column of 2nd row of \mathbf{N}_{2}.

- Create matrix A of size 4×3 containing numbers 1 to 12 (row-wise, from left to right).

Indexing in Matlab III.

- Calculate cumulative sum \boldsymbol{S} of a vector \boldsymbol{x} consisting of integers from 1 to 20 .
- Search Matlab help to find the appropriate function (cumulative sum).
- Calculate cumulative sum \boldsymbol{L} of even element of the vector \boldsymbol{x}.
- What is the value of the last element of vector L ?

$$
\begin{aligned}
& \boldsymbol{x}=\left(\begin{array}{llll}
1 & 2 & \ldots & 20
\end{array}\right) \\
& \boldsymbol{S}=\left(\begin{array}{llll}
1 & 1+2 & \ldots & 1+2+\cdots+20
\end{array}\right)
\end{aligned}
$$

$$
\square \square \text { a }
$$

Indexing in Matlab IV.

- Which one of the following returns corner elements of a matrix $\mathbf{A}(10 \times 10)$?

```
A([1, 1], [end, end])
A({[1, 1], [1, end], [end, 1], [end, end]})
A([1, end], [1, end])
A(1:end, 1:end)
```


Deleting Elements of a Matrix

- Empty matrix is a crucial concept in deleting elements of a matrix.

T = [];

- We want to:
- Remove 2nd row of a matrix \mathbf{A}.

$$
\mathrm{A}(2,:)=[]
$$

- Remove 3rd column of a matrix \mathbf{A}.

$$
A(:, 3)=[]
$$

- Remove 1st, 2nd and 5 th column of a matrix \mathbf{A}.

$$
A\left(:, \quad\left[\begin{array}{lll}
1 & 2 & 5
\end{array}\right]\right)=[]
$$

Adding and Replacing Elements of a Matrix

- We want to replace:
- 3rd column of a matrix \mathbf{A} (of size $M \times N$) by a vector \boldsymbol{x} (length M).

$$
A(:, 3)=x
$$

- 2 nd, 4 th and 5 th row of a matrix \mathbf{A} by three rows of a matrix \mathbf{B} (number of columns of both \mathbf{A} and \mathbf{B} is the same).

```
A([2 4 5], :) = B(1:3, :)
```

- We want to swap
- 2 nd row of matrix \mathbf{A} and 5 th column of matrix \mathbf{B} (number of columns of \mathbf{A} is the same as number of rows of \mathbf{B}).

$$
\mathrm{A}(2,:)=\mathrm{B}(:, 5)
$$

- Remember that always the size of matrices have to match!

Deleting, Adding and Replacing Matrices

- Which of the following deletes the first and the last column of matrix $\mathbf{A}(6 \times 6)$?
- Create your own matrix and give it a try.

```
A[1, end] = 0
A(:, 1, end) = []
A(:, [1:end]) = []
A(:, [1 end]) = []
```

- Replace 2nd, 3rd and 5th row of matrix \mathbf{A} by first row of matrix \mathbf{B}.
- Assume the number of columns of matrices \mathbf{A} and \mathbf{B} is the same.
- Consider the case where \mathbf{B} has more columns than A.
- What happens if \mathbf{B} has less columns than A?

Matrix Creation, Element Replacement

- Create following 3D array:

$$
\mathbf{M}(:,:, 1)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \mathbf{M}(:,:, 2)=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), \quad \mathbf{M}(:,:, 3)=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

1	0	0	1	1	1	2	0	0
0	1	0	1	1	1	0	3	0
0	0	1	1	1	1	0	0	5

- Replace elements in the first two rows and columns of the first sheet of the array (i.e., the matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ with NaN elements).

Linear Indexing I.

- Elements of an array of arbitrary number of dimensions and arbitrary size can be referred using simple index.
- Indexing takes place along the main dimension (column-wise) then along the secondary dimension (row-wise) etc.

$$
A=\operatorname{magic}(3)
$$

$$
A=\begin{array}{|l|l|l|}
\hline 8 & 1 & 6 \\
\hline 3 & 5 & 7 \\
\hline 4 & 9 & 2 \\
\hline
\end{array}
$$

$$
\mathrm{A}(1: \text { end })
$$

A([1 $\left.\left.\begin{array}{l}1 \\
5\end{array}\right]\right)$

8	1	6
3	5	7
4	9	2

A([1 5], :)
Index in position 1
exceeds array bounds
(must not exceed 3).

Linear Indexing II.

- Consider following matrix: $\mathrm{M}=$ ones (7).
- We set all the red-highlighted elements to zero:

```
M(2:2:end) = 0;
imagesc(M);
```


Matrix Indexing Using Own Values

- Create matrix A

```
N = 4;
A = magic(N);
```

- First think about what will be the result of the following operation and only then carry it out
$\mathrm{B}=\mathrm{A}$ (A);
- Does the result correspond to what you expected?
- Can you explain why the result looks the way it looks?
- Notice the interesting mathematical properties of the matrices A and B.
- Are you able to estimate the evolution? $\mathrm{C}=\mathrm{B}(\mathrm{B})$
- Try similar process for $N=3$ or $N=5$.

Linear Indexing III. - ind2 sub, sub2ind

- ind2sub recalculates linear index to subscript corresponding to size and dimensions of the matrix
- Applicable to an array of arbitrary size and dimension.

1	4	7				
2	5	8				
3	6	9	\longrightarrow	1,1	1,2	1,3
:---	:---	:---				
2,1	2,2	2,3				
3,1	3,2	3,3				

```
ind = 3:6;
[rw, col] = ind2sub([3, 3], ind)
%rw =[[lllll}
% col = [lllllll
```

- sub2ind recalculates subscripts to linear index.
- Applicable to an array of arbitrary size and dimension.

1,1	1,2	1,3				
2,1	2,2	2,3				
3,1	3,2	3,3	\longrightarrow	1	4	7
:---	:---	:---				
2	5	8				
3	6	9				

```
ind2 = sub2ind([3, 3], rw, col)
```

ind2 = sub2ind([3, 3], rw, col)
% ind2 =[[$$
\begin{array}{llll}{3}&{4}&{5}\end{array}
$$]

```
% ind2 =[[\begin{array}{llll}{3}&{4}&{5}\end{array}]
```


Linear Indexing IV.

- For a two-dimensional array, find a formula to calculate linear index from position given by row (row) and col (column).
- Check with a matrix A of size 4×4, where
- row $=[2,4,1,2]$,
- col = [1, 2, 2, 8],
- and therefore
- ind $=[2,8,5,14]$.

```
A = zeros(4);
A(:) = (1:16)
```


Linear Indexing V.

- Consider following matrix:

$$
A=\operatorname{magic}(4) ;
$$

- Use linear indexing so that only the element with highest value in each row of \mathbf{A} was left (all other valueas set to 0); call the new matrix \mathbf{B}.

Relational Operators I.

- To find out, to compare, whether "something" is greater than, less than, equal to, etc.
- The result of the comparison is always either
- positive (true), logical one " 1 ",
- negative (false), logical zero "0".
- All relation operators are vector-wise.
- It is also possible to compare vector vs. vector, matrix vs. matrix, ...
- Often in combination with logical operators (see later)
- Multiple relational operators can be applied to complex expressions.

$$
\begin{array}{cc}
> & \text { greater than } \\
>= & \text { greater than or equal to } \\
< & \text { less than } \\
<= & \text { less than or equal to } \\
== & \text { equal to } \\
\sim= & \text { not equal to }
\end{array}
$$

Relational Operators II.

- Having the vector $\mathbf{G}=\left(\begin{array}{cccc}\frac{\pi}{2} & \pi & \frac{3 \pi}{2} & 2 \pi\end{array}\right)$, find elements of \boldsymbol{G} that are
- greater than π,
- less than or equal to π,
- not equal to π.
- Try similar operations for $\mathbf{H}=\mathbf{G}^{\mathrm{T}}$.
- Try to use relational operators in case of matrices and scalars as well.
- Find out whether $\mathbf{V} \geq \mathbf{U}$:
- $\mathbf{V}=\left(\begin{array}{llll}-\pi & \pi & 1 & 0\end{array}\right)$,
- $\mathbf{U}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$.

Relational Operators III.

- Find out the results of following relations.
- Try to interpret the results.
\square
$2<1 \sim=1$ \% ???

```
r = 1/2;
0<r<1% ???
```

```
(1 > A) <= true
```


Logical Operators I.

- To to find out, whether particular condition is fulfilled.
- The result is always either
- positive (true), logical one " 1 ",
- negative (false), logical zero " 0 ".
- all, any is used to convert logical array into a scalar.
- Matlab interprets any numerical value except 0 as true.
- All logical operators are vector-wise.
- It is also possible to compare vector vs. vector, matrix vs. matrix, ...
- Function is* extends possibilities of logical expressions.
- We will see later

Logical Operators II.

- Assume a vector of 10 random numbers ranging from -10 to 10 .

$$
a=20 \star \operatorname{rand}(10,1)-10
$$

- Following command returns true for elements fulfilling the condition.

```
a<-5 % relation operator
```

- Following command returns values of those elements fulfilling the condition (logical indexing).

$$
a(a<-5)
$$

- Following command puts value of -5 to the position of elements fulfilling the condition.
$a(a<-5)=-5$
- Following command sets value of the elements in the range from -5 to 5 equal to zero (opposite to thresholding).

```
a(a>-5& a< 5) = 0
```

- Thresholding function (values below -5 set equal to -5 , values above 5 set equal to 5).

```
a(a<-5 | a> 5) =...
    sign(a(a<-5 | a>5))*5
```


Logical Operators III.

- Determine which of the elements of the vector $\mathbf{A}=\left[\begin{array}{llll}\frac{\pi}{2} & \pi & \frac{3 \pi}{2} & 2 \pi\end{array}\right]$ fulfill following condition.
- Which elements are equal to π or are equal to 2π.
- Pay attention to the type of the results (=logical values true/false).
- Which elements are greater than $\frac{\pi}{2}$ and at the same time are not equal to 2π.
- Group elements from the previous condition with vector \mathbf{A}.

Logical Operators IV.

- Create a row vector in the interval from 1 to 20 with step of 3 .
- Create the vector filled with elements from the previous vector that are:
- greater than 10
- and at the same time
- less than 16 .
- Use logical operators.

Logical Operators V.

- Create matrix $\mathbf{M}(\mathrm{M}=\operatorname{magic}(3))$ and answer following questions using functions all and any.
- In which of the columns all elements are greater than 2 ?

$$
\operatorname{any}\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\right)=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
$$

- In which of the rows there is at least one element greater than or equal to 8 ?

$$
\operatorname{all}\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\right)=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right],
$$

$$
\operatorname{any}\left(\operatorname{all}\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\right)\right)=\operatorname{any}\left(\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\right)=1
$$

Logical Operators VI.

- In the case we need to compare scalar values only then "short-circuited" evaluation can be used.
- Evaluation keeps on going until the point where it makes no sense to continue
- e.g., when evaluating

```
clear;
a = true;
b = false;
a && b && c && d
```

- However:

```
clear;
a = true;
b = true;
a && b && c && d
```

- There are no problems with undefined variables c and d, because the execution is terminated before evaluating those variables.
- This is terminated with error ... Unrecognized function or variable 'c'.

Logical Operators VII.

- Find out the result of the following operation and interpret it.
$\sim\left(\sim\left[\begin{array}{lllll}1 & 2 & 0 & -2 & 0\end{array}\right]\right)$
- Test whether variable b is not equal to zero and then test whether at the same time $a / b>3$.
- Following operation tests whether both conditions are fulfilled while avoiding division by zero!
- However: $1 / 0>3 \rightarrow$ Inf $>3 \rightarrow 1$

Exercises

Exercise I.

- Consider signal: $s(t)=\sqrt{2 \pi} \sin \left(2 \omega_{0} t\right)+n(\mu, \sigma), \omega_{0}=\pi$, where the mean and standard deviation of normal distribution n are: $\mu=0(\mathrm{mu}=0), \sigma=1$ (sigma $=1$).
- Create time dependence of the signal spanning over $N=5$ periods of the signal using $V=40$ samples per period.
- One period is $T=1: t \in[k T,(k+N) T], k \in \mathbb{Z}^{0}$ (choose k equal for instance to 0).
- The function $n(\mu, \sigma)$ has following Matlab syntax:

```
n = mu + sigma*randn(1, N*V); % noise
```


Exercise II.

- Apply threshold function to generated signal from the previous exercise to limit its maximum and minimum value:
- The result is vector sp_t.
- Use function min and max with two input parameters (see Matlab help for details).
- Use the following code to check your
output:

$$
s_{p}(t)= \begin{cases}s_{\min } \Leftrightarrow s(t)<s_{\min } & s_{\min }=-\frac{9}{10} \\ s_{\max } \Leftrightarrow s(t)>s_{\max } & s_{\max }=\frac{\pi}{2} \\ s(t) \ldots \text { otherwise } & \end{cases}
$$

```
close all;
plot(t, s_t); hold on;
stem(t, sp_t, 'r');
```


Exercise III.

- Recall the signal from Exercise I.
- Try again to limit the signal by values $s_{\text {min }}$ and $s_{\text {max }}$.
- Use relational operators $(>/<)$ and logical indexing $(s(a>b)=c)$ instead of functions min and max.
- Solve the task item-by-item.


```
N = 5; V = 40;
t = linspace(0, N, N*V);
s_t = randn (1, N*V) +
sqrt(2*pi) *sin(2*pi*t);
```


Exercise IV.a

- Create a script to calculate compound interest ${ }^{1}$.
- The problem can be described as

$$
P=\frac{r A\left(1+\frac{r}{n}\right)^{n k}}{n\left(\left(1+\frac{r}{n}\right)^{n k}-1\right)}
$$

where P is regular repayment of debt A, paid n-times per year in the course of k years with interest rate r (decimal number).

- Create a new script and save it.
- At the beginning delete variables and clear Command window.
- Implement the formula first, then proceed with inputs (input) and outputs (disp).
- Try to vectorize the code, e.g., for various values of n, r or k.
- Check your results (for $A=1000, n=12, k=15, r=0.1$ is $P=10.7461$).

[^0]
Exercise IV.b

- Try to vectorize the code, both for r and k.
- Use scripts for future work with Matlab.
- Bear in mind, however, that parts of the code can be debugged using command line.

$$
P=\frac{r A\left(1+\frac{r}{n}\right)^{n k}}{n\left(\left(1+\frac{r}{n}\right)^{n k}-1\right)}
$$

Exercise IV.c

- Vectorized code for both r and k.
- The compatible size array feature used.
- surf created 3D surface plot.

Exercise V.a

- Generate vector containing following sequence.
- Note the x-axis (interval, number of samples).
- Split the problem into several parts to be solved separately.
- Several ways how to solve the problem.
- Use stem (x) instead of plot (x) for plotting.
- Try to generate the same signal beginning with zero ...

Exercise V.b

- Generate vector containing following sequence.
- One of possible solutions:

Exercise VI.

- Consider following matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 3 & 5\end{array}\right]$.
- Write an expression testing whether all elements of \mathbf{A} are positive and at the same time all elements of the first row are integers.

Exercise VII.a

- Reflection coefficient S_{11} of a one-port device of impedance Z is given by:

$$
S_{11}=10 \log _{10}\left(\left|\frac{Z-Z_{0}}{Z+Z_{0}}\right|^{2}\right)
$$

where $Z_{0}=50 \Omega$ and $Z=R+\mathrm{j} X$.

- Calculate and depict the dependence of S_{11} for $R=30 \Omega$ and X on the interval [1, 1000] with 100 evenly spaced points in logarithmic scale.
- Use the code below and correct errors in the code. Correct solution generates plot depicted on the next slide.

```
500 = Z0; % reference impedance
R == 30; % real part of the impedance
X = Logspace(0, 3, 1e2); % reactance vector
clear;
Z = i*(R + 1i*X); % impedance
S11 = 10* log(abs(Z-Z0)./(Z+Z0))^2); % reflection coeff. in dB
semilogx(S11, X) % plotting using log. x-axis
```


Exercise VII.b

Questions?

B0B17MTB, BE0B17MTB - Matlab matlab@fel.cvut.cz

March 1 (CZ) and 3 (EN), 2021
Summer semester 2020/21

This document has been created as a part of B0B17MTB course.
Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted only with the prior permission of the authors.
Acknowledgement: Filip Kozak, Pavel Valtr.

[^0]: ${ }^{1}$ Interest from the prior period is added to principal.

