Lecture 1: Matlab Environment, Basic Math Operators B0B17MTB - Matlab

Miloslav Čapek, Viktor Adler, Michal Mašek, and Vít Losenický
Department of Electromagnetic Field
Czech Technical University in Prague
Czech Republic
matlab@fel.cvut.cz

February 15, 2021
Summer semester 2020/21

Outline

1. MATLAB Environment
2. Scalars, Vectors, Matrices
3. Basic Math Operations
4. Excercises

The Matlab Environment

The Matlab Environment - Panels

1. Command Window

2. Workspace
3. Command History - not activated, to activate \rightarrow
4. Current Folder
5. Current Folder - Details
6. Current Working Directory
7. Status ("Busy" when Matlab is executing your code)
8. Search in documentation

Preferences

Documentation

\square
>> doc \% opens documentation window
>> help \% MATLAB help
>> demo \% tutorials

The Help Structure

- Command:
>> help sin
- Output:

```
sin Sine of argument in radians.
    sin(X) is the sine of the elements of X.
    See also asin, sind, sinpi.
    Reference page for sin
```


The Documentation Structure I.

- Command:
>> doc sin

1. Documentation page
2. Search field
3. Documentation contents
4. Bookmarks of this page

The Documentation Structure II.

- Check the origin of the function.
- Several functions with the same name may exist.
- Functions types by origin:
- Matlab core functions - most of them build-in, some are available for editing (not recommended!).
- Functions from installed toolboxes.
- User-created functions.
- Calling priority for functions will be discussed later.
- During this course, always open a function from core installation.

$\sin \mid$	
Functions	MATLAB
$f x \sin -$ Sine of argument in radians	
$f x \sin -$ Symbolic sine function	Symbolic Math Toolbox
$f x \sin -$ Sine of fixed-point values	Fixed-Point Designer
$f x \operatorname{sind}-$ Sine of argument in degrees	MATLAB
$f x \sinh$ - Hyperbolic sine of argument in radians	MATLAB
$" 136$ more	

Workspace Browser

- List of variables.
- Deleting/modification of existing variables.
- Saving/loading.
- Values, Class and Memory information.
- Other information can be added: size, min, max, ..
- All information can be obtained using Matlab functions that we learn later, e.g., min, max, max, length.
- Fast data plotting option (in ribbon).

Matlab Commands

- Matlab is cAsE sEnSiTiVe!
- Almost entirely, with certain exceptions (properties of graphics objects, ...).
- Pay attention to typos and variable names (see later).
- New versions of Matlab offer certain options.

```
>> AA = [lllll}
>> Aa
```

- Beware of different syntax in Mathematica.
- Following syntax is incorrect both in Matlab and Mathematica:

```
>> Sin(pi/2) % function names start with lower case
>> cos[pi/2] % function input is in parentheses ()
```

- Will be discussed in the next lectures.

Naming Conventions

- Names of variables can have max. 63 characters starting with letter (» namelengthmax)
- Letters and numbers are allowed, other symbols (colon ":", hyphen "-" and others) are not.
- Underscore is allowed in the variable name "_" (not at the beginning, though!).
- Lowercase letters in the names of scalars and variables ($a=17.59$;).
- Matrix names usually start with a capital letter ($\mathrm{A}=[\ldots]$; .
- Iteration variables, variables used in for cycles usually named m, n, k, etc.
- It is advisable to avoid i and j (complex unit).
- Chose the names to correspond to the purpose of the variable.
- Avoid, if possible, standalone letter " 1 " (to be confused with one " 1 ") and predefined variables in Matlab environment (see later).
- Choose names corresponding to the meaning of each particular variable.
- Avoid using names of existing functions or scripts (overloading can occur).
- The same conventions are valid for names of functions and scripts.

Variable Names

- Examples of valid variable names:

```
a, A, b, c, x1, x2, M_12, test1, matrix_A, fx, fX
```

- Examples of invalid variable names:

```
lvar % starts with a number (not possible in MATLAB)
matrix A % contains space
coef.a % possible only if coef is of type 'struct'
Test-1 % algebraic expressing: ans = Test - 1
f(y) % makes sense when using symbolic expressions
```

- Examples of valid numbers in Matlab,

$$
3,-66,+0.0015, .015,1 \mathrm{e} 2,1.6025 \mathrm{e}-10,05.1
$$

Functions who, whos

- Function who lists all variables in Matlab Workspace.
- Wide variety of options.
- Functions whos lists the variable names + dimension, size and data type of the variables or displays content of a file.
- Wide variety of options.

```
>> whos('-file', 'matlab.mat');
```

```
>> a = 15; b = true; c = 'test'; d = 1 + 5j;
>> who
>> whos
>> Ws = whos;
```


Workspace - Output Deletion

- To clean (erase) command window:

```
>> clc
```

- To clean one (or more) variable(s):

```
>> clear % whole Workspace is deleted
>> clear XX % variable XX is deleted
>> clear XX YY % variables XX and YY are deleted
>> clear z* % everything starting with 'z' is deleted
```

- clear has a number of other options (graphics, I/O)

Command History Window

- Command History window stores all commands from the Command Window.
- Command History is accessible though \uparrow or \downarrow.
- it is possible to filter out past commands by, e.g.:
» $\mathrm{A}=[+\uparrow$.
- It is possible to copy-and-paste entire Command History: SHIFT / CTRL / CTRL $+\mathrm{A} \rightarrow \mathrm{CTRL}+\mathrm{C}$.

Matrices in Matlab

- Matrix is a basic data structure in Matlab.
- There are following variables types depending on size:
- scalar: 1×1
- vector: $M \times 1$ or $1 \times N$
- matrix: $M \times N$
- array (multidimensional matrices):

$$
M \times N \times P \times Q \times R \times \ldots
$$

- Matrices can be complex.
- It can contain text as well (beware the length).
- M-by- N matrix:

Matrix Creation

- Following techniques are available:
- element-by-element entering (suitable for small matrices only),
- colon notation ":" to define elements of series,
- generation by built-in functions,
- generation of matrices in m-files,
- import and export from/to external files(.mat,.txt, .xls,...).

Matrix Construction Element-by-element I.

- Test following commands to construct matrices by element enumeration.
- Suitable for small matrices only.

>> a1 = -1

```
>> v1 = [lllll}-1 0 1] 
>> v2 = [-1; 0; 1]
```

```
>> M1 =[ [-1 0 1; -2 0 2]
>> M2 = [-1 -2; 0 0 ; 1 2]
>> M3 = [[[-1 -2]; [0 0 ] ] % inner brackets are redundant
```

$$
\begin{gathered}
a_{1}=a_{2}=-1 \\
\mathbf{v}_{1}=\left[\begin{array}{lll}
-1 & 0 & 1
\end{array}\right] \\
\mathbf{v}_{2}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] \\
\mathbf{M}_{1}=\left[\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2
\end{array}\right] \\
\mathbf{M}_{2}=\left[\begin{array}{rr}
-1 & -2 \\
0 & 0 \\
1 & 2
\end{array}\right] \\
\mathbf{M}_{3}=\left[\begin{array}{rr}
-1 & -2 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

Matrix Construction Element-by-element II.

- Construct following matrices:
- Matrix values are defined inside square brackets [],
- semicolon ";" separates individual rows of a matrix.

$$
\mathbf{A}=\left[\begin{array}{rr}
-1 & -1 \\
1 & -1
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Matrix Construction

- Semicolon placed at the end of a command suppresses display of the output in Command Window.

```
>> a = 1
>> b = 5;
```

- When there is more than one command on the same line, comma is used to separate each of the commands.

```
>> a = 1, b = 5
>> a = 1; b = 5;
```

- Note: it is possible to copy and paste code including "»"
- Row vs column vector:

```
>> c = [llll
>> d = [0; 0; 1]
```


Basic Math Operators I.

- Operator types:
- arithmetics:
- matrix,
- vector,
- relational,
- logical and other (to be mentioned later ...).
- Other operations using Matlab functions:
- complex conjugate,
$+\quad$ addition
- subtraction
* multiplication
^ power
.' transpose
- left matrix left matrix division
/ right matrix division
- sum, determinant, square root,
- and hundreds of other functions ...

Operator Precedence in Matlab

- According to the following table:
- see Matlab \rightarrow Language Fundamentals \rightarrow Operators and Elementary Operations \rightarrow Arithmetic

1	parentheses	()						
2	transpose, power	'	'	\wedge	. ${ }^{\wedge}$			
3	unary plus, unary minus, logical negation	+	-	\sim				
4	multiplication, division	*	-	/	\backslash	. $/$.1	
5	addition, subtraction	+	-					
6	colon operator	:						
7	relation operators	$<$	>	$<=$	>=	=	$\sim=$	
8	logical AND (element-wise)	\&						
9	logical OR (element wise)	\|						
10	logical AND (short-circuit)	\& \&						
11	logical OR (short-circuit)	\|						

Basic Math Operators II.

- Type in following commands:
- Zero can be omitted with a decimal number beginning with zero (not recommended).

```
>> a3 = -2/4
>> a4 = -0.5
>> a5 = -. 5
```

- What is the difference between a_{3}, a_{4} and a_{5} ?
- Beware the precedence of operators (we see in the next slides):

```
>> 3*5*6
>> a1 = 15
>> a2 = 10;
>> a2/a3
>> a2/a3*a4
>> a2/(a3*a4)
```

- Explain the difference between $a 2 / a 3 * a 4$ and $a 2 /(a 3 / a 4)$.
- Verify the rules of operator precedence from the previous slide.

Lengthy commands in Matlab

- It is suitable to structure command blocks for clarity:
- next line: SHIFT + ENTER

```
>> A = [1 1 1 1]; B = [l2 2 2]; % SHIFT + ENTER
C = [lllll
```

- Three dots notation:
- For continuation of the same command on the next line.
- Compare results:

```
>> A1 = [ 1 1 % ..
2 3]
```

```
>> A2 = [ l 1 1
2 3]
```


Basic Math Functions I.

- Math functions in Matlab are generally divided in three groups:
- Scalar:
- Function operates over individual elements of a matrix,
- e.g.: sin, sqrt, log, factorial.
- Vector:
- Function operates over individual rows/columns of a matrix,
- e.g.: sum, max.
- Matrix:
- Function operates over a whole matrix,
- e.g.: det, trace.

Basic Math Functions II.

- Using Matlab help, calculate the following expression: $a \sin ^{2}(\alpha)+a \cos ^{2}(\alpha)-a$
- Use numerical values your own choice.
- Verify following logarithmic identity: $\log _{10}(a)+\log _{10}(b)-\log _{10}(a b)=0$
- Find sum of all elements in individual rows of the following matrix:

$$
T=\left[\begin{array}{rrrr}
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
6 & 7 & 7 & 9 \\
0.2 & 0.3 & 0.4 & 0.5
\end{array}\right]
$$

Basic Math Functions III.

- Assume following vectors $\mathbf{u}=(1,2,3)$ and $\mathbf{v}=(3,2,1)$.
- Calculate:

$$
\begin{array}{lc}
\mathbf{u} \mathbf{v}^{\mathrm{T}} & \mathbf{v} \mathbf{u}^{\mathrm{T}} \\
\mathbf{v}^{\mathrm{T}} \mathbf{u} & \mathbf{u}^{\mathrm{T}} \mathbf{v} \\
\mathbf{u} \cdot \mathbf{v} & \mathbf{u} \times \mathbf{v}
\end{array}
$$

- Following functions are needed:

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \\
\mathbf{A}^{\mathrm{T}} & =\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]
\end{aligned}
$$

- transpose (.') of a matrix,
- dot scalar product,
- cross product.
- What is the result of the above mentioned operations?

Matrix Division in Matlab

- Two cases are distinguished:
- left division (\backslash - mldivide),
- right division (/ - mrdivide).
- Solution of a linear system of equations:
- \mathbf{A} is an invertible (regular) matrix,
- \mathbf{b} is a column (row) vector.

$$
\begin{aligned}
& \mathbf{A}=\mathbf{x}=\mathbf{b} \\
& \mathbf{A x}=\mathbf{b} \\
& \mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
\end{aligned}
$$

$\gg \mathrm{x}=\mathrm{b} / \mathrm{A}$

Basic Math Functions IV.

- Find the sum of diagonal elements (trace of a matrix) of the matrix \mathbf{T} with elements coming from normal distribution with mean equal to 10 and standard deviation equal to 4 .
- Find determinant of matrix \mathbf{U}.

```
>> T = 10 + 4*randn(7, 7);
```

```
>>U = [1 2 3; 0 2 0; ...
0 -2 -1];
```

$$
\mathbf{U}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 2 & 0 \\
0 & -2 & -1
\end{array}\right]
$$

- Solve the linear system of equations:

$$
\begin{array}{rlrl}
x_{1}+2 x_{2}+3 x_{3} & =6 & \mathbf{A x} & =\mathbf{b} \\
4 x_{1}+5 x_{2}+6 x_{3} & =15 & \mathbf{x} & =\mathbf{A}^{-1} \mathbf{b} \\
7 x_{1}+8 x_{2}+x_{3} & =16 &
\end{array}
$$

Predefined Values in Matlab

- Matlab contains several predefined values:
- eps - precision of single/double numbers (Determines the shortest distance between two single/double numbers).
- ans - answer - most recent answer.
- NaN - not a number (every expression containing NaN is NaN)
- NaN can be used advantageously in some cases.
- Inf - infinite number (variable Inf can be used in calculation:))
- Pay attention to Inf propagation throughout your code (use allowed operations only).
- i, j-complex unit.
- They are all basically functions (without input parameter).
- Check results of the following expressions:

```
>> t1 = 10/0 % t1 = Inf
>> t2 = 0/0 % t2 = NaN
>> t3 = t1*5 % t3 = Inf
>> t4 = t1 + t2 % t4 = NaN
```

- pi, intmin, intmax, realmin, realmax, ... (functions)

Format of Command Line Output

- Up to now we have been using basic setup.
- Matlab offers number of other formatting options
- Use format style.
- Output format does not change neither the computation accuracy nor the accuracy of stored results (eps, realmax, realmin, ...still apply).
style format description
short fixed 4 decimal points are displayed
long $\quad 15$ decimal points for double precision, 7 decimal points for single precision
shorte floating-point format (scientific notation)
longe -//-
bank two decimal points only (eur - cents)
rat Matlab attempts to display the results as a fraction
compact suppressed the display of blank lines
and others... note: omitting style parameter restores default setup

Format of Command Line Output

- Try following output format settings:
- Each format is suitable for different type of problems.

```
>> s = [-5 1/2 1/3 10*pi sqrt(2)];
>> format long; s
>> format rat; s
>> format bank; s
>> format hex; s
>> format +; s
>> format; s
```

- There exist other formats with slight differences.
- Check doc format
- Later, we will learn how to use formatted conversion into strings (commands sprintf and fprintf).

Complex Numbers I.

- More entry options in
- Frequently used functions:

Matlab.

```
>> C1 = 1 + 1j % prefered
>> C2 = 1 + 5i % prefered
>> C3 = 1 + 5*i % NO!
>> C4 = sqrt(-1)
>> C5 = complex(1, 2)
>> C6 = 1e1i
>> C7 = exp(1j*pi/4)
```

real, imag	real and imaginary part of a com- plex number
conj	complex conjugate abs
absolute value of a complex num-	
ber	
complex	angle in complex plane [rad] constructs complex number from real and imaginary components checks if the input is a complex
isreal	number (more on that later)
i,j	complex unit
cplxpair	sort complex numbers into com- plex conjugate pairs

Complex Numbers II.

- Create complex number $z=1+1 \mathrm{j}$ and its complex conjugate $s=z^{*}$.
- Switch between Cartesian and polar form (find $|z|$ and φ).

$$
\begin{aligned}
& z=\operatorname{Re}\{z\}+\operatorname{Im}\{z\}=a+\mathrm{j} b \\
& z=|z| \mathrm{e}^{\mathrm{j} \varphi},|z|=\sqrt{a^{2}+b^{2}} \\
& z=|z|(\cos \varphi+\mathrm{j} \sin \varphi)
\end{aligned}
$$

- Verify Moivre's theorem:

$$
\begin{aligned}
& z^{n}=\left(|z| \mathrm{e}^{\mathrm{j} \varphi}\right)^{n} \\
& z^{n}=|z|^{n}(\cos (n \varphi)+\mathrm{j} \sin (n \varphi))
\end{aligned}
$$

Exercises

Exercise I.

- Following forces were localized at point \mathbf{P} in $x y$ plane:

$$
\begin{array}{ll}
\mathbf{F}_{1}=[2,2] & \mathbf{F}_{3}=[2,0] \\
\mathbf{F}_{2}=[1,-3] & \mathbf{F}_{4}=[2,-1.5]
\end{array}
$$

- What is the direction of the resultant force \mathbf{F} ?

- Normalize the resulting vector.

$$
\mathbf{n}_{\mathrm{F}}=\frac{\mathbf{F}}{|\mathbf{F}|}=\frac{\mathbf{F}}{\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}}
$$

Exercise II.

- Type-in following commands:

```
>> clear, clc;
>> w1 = [lllll}
>> w2 = [ -2 -3 -4]
>> w3 = [-2; -3; -4]
>> w4 = w1^2, w5 = w2 - w1
```

- Calculate the norm (magnitude) of vector w1.
- Try more options.
- How to modify the calculation in the case of a complex vector?
- Compare differences.
- What is the cause of error in calculation of w4 and w5?
- Try also:

```
>> w3*3, w1 - 3
>> w1 + [\begin{array}{llll}{5}&{5}\end{array}]
>> w6 = 5*w1 - [3 5 6] - w2
```


Exercise III.

- Calculate roots of the quadratic function:

$$
-2 x^{2}-5 x=3
$$

- First, rearrange the terms of the function.

$$
\begin{aligned}
& 2 x^{2}+5 x+3=0 \Rightarrow a=2, b=5, c=3 \\
& x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-5 \pm \sqrt{25-24}}{4} \\
& x_{1}=-1, x_{2}=-\frac{3}{2}
\end{aligned}
$$

- Matlab provides particular function for calculation of roots a function, try to search it out.

Exercise IV.

- Think over how many ways there are to calculate the length of hypotenuse when two legs of a triangle are given.
- Make use of various Matlab operators and functions.
- Consider also the case where the legs are complex numbers.

Exercise V.

- Create an arbitrary vector \mathbf{v} and rotate it around arbitrary angle α in $x z$ plane using rotation matrix \mathbf{R}.

$$
\begin{gathered}
\mathbf{v}^{\prime}=\mathbf{R} \mathbf{v} \\
\mathbf{R}=\left[\begin{array}{ccc}
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{array}\right]
\end{gathered}
$$

Exercise VI.

- Use the following code and round the resulting number to:

```
>> r = 1 + 10*rand(1)
```

- nearest integer,
- nearest integer greater than r,
- nearest integer lower than r,
- zero,
- zero with precision of 2 decimal digits.
- Find remainder after r is divided by 0.1.
- modulus vs. remainder after division

Exercise VII.

- Find out the magnitude of a complex vector (avoid indexing).
- Use abs and sqrt.

$$
\begin{gathered}
\mathbf{Z}=\left[\begin{array}{ll}
1+1 \mathrm{j} & \sqrt{2}
\end{array}\right] \\
\|\mathbf{Z}\|=?, \quad \mathbf{Z} \in \mathbb{C}^{2}
\end{gathered}
$$

- Alternatively, use following functions:
- norm
- dot (dot product)
- hypot (hypotenuse)

Questions?

B0B17MTB - Matlab
matlab@fel.cvut.cz

February 15, 2021
Summer semester 2020/21

This document has been created as a part of B0B17MTB course.
Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted only with the prior permission of the authors.
Acknowledgement: Filip Kozak, Pavel Valtr.

