
Bounded Wang Tiling

Marek Tyburec
Thursday 12:45-14:15

Physical and Material Engineering
marek.tyburec@fsv.cvut.cz

I. ASSIGNMENT

A. Problem Statement

Assuming a finite set of color codes C = {1, 2, . . . , nc} ⊂ N+, the (Wang) tile k is a quadruple of the color codes
(cnk, c

w
k , c

s
k, c

e
k), with cnk, c

w
k , c

s
k, c

e
k ∈ C standing for the color codes of the north, west, south, and east edge of the tile k,

respectively. Tiles are therefore graphically representable by non-rotatable squares, as shown in Fig. 1. Without loss of generality,
we further consider these squares to be unit.

(cnk, c
w
k , c

s
k, c

e
k) ⇔

cnk
cwk

csk

cek

Fig. 1: Graphical representation of a Wang tile k.

A tile set T represents a finite collection of nt tiles.

Tiling TA of a bounded domain A = H ×W , where H ⊂ N+ denotes the set of height coordinates and W ⊂ N+ the set
of width coordinates, constitutes an arrangement of copies of the tiles from the tile set T , such that the tiles are placed at the
integer lattice points of A, they are contiguous, do not overlap, and cover the entire domain. More formally, tiling is a mapping
M : A → T assigning a single tile k ∈ T to every (i, j) ∈ A coordinate.

A valid tiling (Wang tiling) of A, denoted by TA
v , is a tiling in which the color codes at the shared edges of all pairs of

adjoining tiles equal. Therefore, the mapping Mv : A → T satisfies, in addition to the requirements for M , both

csMv(i,j)
= cnMv(i+1,j), ∀i ∈ H \ {nh},∀j ∈ W, (1)

and
ceMv(i,j)

= cwMv(i,j+1), ∀i ∈ H,∀j ∈ W \ {nw}, (2)

provided that the axes are orientated accordingly to Fig. 2. If Mv exists, we say that the domain A admits a valid T -tiling, or
that it is tileable by T .

W

H

1 2 3 4 nw

1

2

3

nh

cnp
cwp

csp

cep

cnq
cwq

csq

ceq

cnr
cwr

csr

cer

Fig. 2: Color matching among tiles p, q, r ∈ T .

The maximum cover TA
v,max cov is a valid tiling of Bmax cov := {Bmax cov ⊆ A,∀B ⊆ A : |Bmax cov| ≥ |B|}.

In this text we present an approach to find T A
v , or, if infeasible, the maximum cover TA

v,max cov.

B. Problem Categorization

Wang tiling has been extensively studied in the infinite settings, i.e., when A is the infinite plane. In such settings, the problem
is called the domino problem, and was proven to be undecidable by reduction of the Turing machine halting problem [6], which
also proved undecidability of the ∀∃∀ problem of predicate calculus [20]. Moreover, this implies non-existance of a general finite
algorithm for production of infinite valid tilings, and existence of aperiodic tile sets that do not allow any simply-connected
rectangular valid tilings with equally colored opposite sides [1, 4].

Far less attention has been paid to the finite version of the domino problem, bounded tiling, searching a fixed-sized valid
tiling generated by an arbitrary tile set. The problem is only known to be NP-complete in general, we refer to [12] and [13,
Theorem 7.2.1], and indeed decidable. Here, we also focus on the NP-hard maximum-cover optimization variant of the problem.

II. RELATED WORKS
To the author’s knowledge, there does not exist any research dealing with the solution of the bounded tiling problem in

general settings. Thus, the few methods that are provided implicitly in the literature serve only specific purposes: they either
allow for tiling with specific families of tile sets [2, 3, 9, 16], or tiling of infinite thin strips [5]. While it might be preferable to
design a polynomial-time algorithm for each family of tile sets independently, there exist non-recursive tile sets not admitting
any such tiling algorithm [14].

More frequent in the literature is the closely related (tile) packing problem for edge-matching puzzles, in which all the tiles
from a tile set are placed exactly once, see [8, 11, 18], and [19] for an approach aiming at the famous Eternity II puzzle.

A. Substitution-Based Tiling Algorithm
Substitution is a map S : T 7→ T that assigns to each tile k ∈ T a tiling Tk. Arbitrary-sized tilings are then generated by

placing a single tile, and then repeating the substitution rule on all tiles that are already placed [16], so that the tiling “grows”
in each iteration. However, only substitution-based tile sets allow for a substitution rule that generates valid tilings.

B. Stochastic Tiling Algorithms
In computer graphics, it is essential to generate visually appealing (nonperiodic) patterns quickly, which is best achieved with

stochastic tile sets. For example, in the stochastic tiling algorithm [2] the tiling is generated row-wise, such that the neighbor
of any tile that has already been placed can always be selected from at least two tiles at random. This approach was further
extended to handle boundary conditions, and named the hash-based direct stochastic tiling algorithm [9].

C. Transducer-Based Tiling Algorithm
The transducer-based tiling algorithm comes from the knowledge that the 1D domino problem is decidable, and can be solved

in polynomial time, because the bi-infinite path is formed by an arbitrary cycle in the transducer graph of the tiling [5]. In order
to generate valid tilings of multiple rows, it is essential to compute the product of several transducers, i.e., enumerate all feasible
valid tilings of requested height and unit width, and then find a given-length path in the transducer graph of just established tile
set. Obviously, this approach works well for tiling of thin strips; however, it is impractical for any larger nearly-square domains.

III. PROBLEM SOLUTION
A. Design

1) Rectangular Valid Tiling: In this section, we focus on the fundamental problem of finding TA
v , or proving it does not exist.

From now, we restrict A to be rectangular in order to simplify notation. However, the presented approach is also applicable to
the general unrestricted case.

Let us first introduce ∀i ∈ H,∀j ∈ W,∀k ∈ T a binary decision variable xi,j,k ∈ {0, 1} denoting placement of the tile k at
the (i, j) coordinate, such that

xi,j,k =

{
0 if the tile k is not placed at (i, j),
1 if the tile k lies at (i, j). (3)

Consequently, the mapping M(i, j) is expressed as

M(i, j) =
∑
k∈T

kxi,j,k, s.t.
∑
k∈T

xi,j,k = 1, ∀i ∈ H,∀j ∈ W. (4)

Similarly, the color codes of a tile placed at (i, j) are expressed in terms of the binary variables as

cnM(i,j) =
∑
k∈T

cnkxi,j,k, (5a)

cwM(i,j) =
∑
k∈T

cwk xi,j,k, (5b)

csM(i,j) =
∑
k∈T

cskxi,j,k, (5c)

ceM(i,j) =
∑
k∈T

cekxi,j,k. (5d)

Inserting (5) into (1) and (2) leads to the horizontal and vertical adjacency constraints expressed in terms of the decision variables
only, hence ∑

k∈T

cskxi,j,k −
∑
k∈T

cnkxi+1,j,k = 0, ∀i ∈ H \ {nh},∀j ∈ W, (6a)

∑
k∈T

cekxi,j,k −
∑
k∈T

cwk xi,j+1,k = 0, ∀i ∈ H,∀j ∈ W \ {nw}. (6b)

Combining (3), (4), and (6) then provides us with a complete binary linear programming representation of Mv.
Unfortunately, the adjacency constraints (6) appear to be weak due to their dependence on the actual values of the color

codes, and on their order. Thus, we split (6) based on the color codes to provide a tighter representation of the feasible design
space and to avoid listing of the actual values, i.e.,∑

k∈T

xi,j,k[csk = `]−
∑
k∈T

xi+1,j,k[cnk = `] = 0, ∀i ∈ H \ {nh},∀j ∈ W,∀` ∈ C, (7a)∑
k∈T

xi,j,k[cek = `]−
∑
k∈T

xi,j+1,k[cwk = `] = 0, ∀i ∈ H,∀j ∈ W\,∀` ∈ C{nw}, (7b)

where the Iverson notation
∑

k∈T xi,j,k [csk = `] expresses that xi,j,k is added to the sum if and only if csk = `.
The constraint (7a) requires that the number of tiles at (i, j) with the south edge colored by ` equals to the number of tiles

at (i + 1, j) with the north edge marked by the same `, for all ` ∈ C. Because there are either no tiles with the shared edge
colored by `, or a single tile at each of the coordinates, with their common edge labeled by `.

Analogously to the vertical adjacency constraint, also the horizontal adjacency constraint (7b) enforces equality among the
number of tiles at (i, j) with the east edge colored by ` and the number of tiles at (i, j + 1) having the west edge colored by
identical `.

Finally, combining (3), and (7), while noticing that the
∑

i∈H
∑

j∈W
∑

k∈T xi,j,k naturally propagates from the domain
boundaries, so the number of constraints can be reduced, leads to the binary programming formulation

find x (8a)

s.t.
∑
k∈T

xi,j,k[csk = `]−
∑
k∈T

xi+1,j,k[cnk = `] = 0, ∀i ∈ H \ {nh},∀j ∈ W,∀` ∈ C, (8b)∑
k∈T

xi,j,k[cek = `]−
∑
k∈T

xi,j+1,k[cwk = `] = 0, ∀i ∈ H,∀j ∈ W \ {nw},∀` ∈ C, (8c)∑
k∈T

xi,j,k = 1, ∀i ∈ {1, nh},∀j ∈ W, (8d)∑
k∈T

xi,j,k = 1, ∀i ∈ H,∀j ∈ {1, nw}, (8e)

xi,j,k ∈ {0, 1}, ∀i ∈ H,∀j ∈ W,∀k ∈ T , (8f)

that provides a complete representation of the bounded tiling problem, i.e., all valid tilings solve the integer program, and
conversely, all feasible solutions to (8) represent valid tilings. Moreover, it can be seen that the problem consists of two totally
unimodular constraints—the rows (8c) and (8e), and columns (8b) and (8d) tilings—making, however, the resulting problem
NP-complete in combination.

2) Maximum Cover: An option to avoid the infeasibility of (8) rests in neglecting the requirement of (simple) connectedness.
Hence, in this section, we search the maximum cover of A, or equivalently a valid tiling of the (possibly disconnected) domain
Bmax cov ⊆ A.

For the maximum cover formulation, we assume that any two adjacent tiles satisfy the adjacency constraints of valid tilings,
but these are also satisfied by any of the tile-void, void-tile, or void-void combination; here, we denote (i, j) ∈ A without any
tile as a void.

Thus, each coordinate (i, j) is occupied either by a tile, or by a void, i.e.,∑
k∈T

xi,j,k ≤ 1, ∀i ∈ H,∀j ∈ W, (9)

and for any two adjacent coordinates (i, j) and (i + 1, j) there can not happen a situation in which the color codes at shared
edges of the adjacent tiles (if any) do not match,∑

k∈T

xi,j,k[cek = `] +
∑
k∈T

xi,j+1,k[cwk 6= `] ≤ 1, ∀i ∈ H,∀j ∈ W \ {nw},∀` ∈ C. (10)

The same principle is also valid in the case of any two horizontally adjacent coordinates (i, j) and (i, j + 1), hence∑
k∈T

xi,j,k[csk = `] +
∑
k∈T

xi+1,j,k[cnk 6= `] ≤ 1, ∀i ∈ H \ {nh},∀j ∈ W,∀` ∈ C. (11)

Finally, combining Eqs. (9), (10), (11) with the objective function to maximize |Bmax cov| provides us with the binary
optimization problem

max
x

∑
i∈H

∑
j∈W

∑
k∈T

xi,j,k (12a)

s.t.
∑
k∈T

xi,j,k[cek = `] +
∑
k∈T

xi,j+1,k[cwk 6= `] ≤ 1, ∀i ∈ H,∀j ∈ W \ {nw},∀` ∈ C, (12b)∑
k∈T

xi,j,k[csk = `] +
∑
k∈T

xi+1,j,k[cnk 6= `] ≤ 1, ∀i ∈ H \ {nh},∀j ∈ W,∀` ∈ C, (12c)∑
k∈T

xi,j,k ≤ 1, ∀i ∈ H,∀j ∈ W, (12d)

xi,j,k ∈ {0, 1}, ∀i ∈ H,∀j ∈ W,∀k ∈ T . (12e)

B. Description And Implementation of Heuristics
In this section, we develop and implement a simple O(|A||T |2) heuristics for the maximum cover formulation (12). In

order to develop the heuristics, let us return to the decision program (8). As it was already outlined, neglecting any of the
pair of constraints (8b), (8d), or (8c), (8e), leads to the totally unimodular constraint matrix, so that the problem is solvable
deterministically in a polynomial time. Visually, such relaxations result in valid tilings of (finite) stripes, i.e., rows or columns.
However, validity of the tilings is not guaranteed in the edges shared by the neighboring stripes. Starting with this observation,
we first focus on formulation of an efficient approach to generate valid tilings of the stripes.

Assuming a valid tiling of a single row, the problem is represented by the graph: the tiles in the tile set are placed in
layers, repeated exactly nw times. The layers (copies of the tile set) are connected by directed arcs from the layer j to j + 1,
∀j ∈ W \nw, such that the tiles are connected if and only if the east color of the tile at the j-th column matches the west color
of the tile at (j + 1)-th column. In this directed graph, all paths of the length nw − 1 clearly represent valid tilings of the row.
Further, we add a source vertex, and connect it to all the tiles in the first layer. Similarly, a terminal vertex is added, and all
tiles in the nw-th layer are connected to the terminal vertex.

Assigning zero costs to all the edges and recognizing that the graph is acyclic and single-sourced, due to the added source
vertex, a valid tiling of a row is found in O(|V|+ |E|) time using the DAG-shortest-path algorithm, where V denotes the set of
the graph vertices and E the set of the graph edges. In our case, we have

|V| = 2 + nw|T |, (13a)
|E| = 2|T |+ (nw − 1)kT , (13b)

where kT is a constant specific to the tile set T denoting the number of valid row-tilings when nh = 2. Consequently, we have
kT = |T |2 in the worst case, so that the overall asymptotic complexity to generate a valid tiling of a row reads as

O(|V|+ |E|) = O(2 + nw|T |+ 2|T |+ (nw − 1)|T |2) = O(nw|T |2). (14)

Interestingly, the running time (but not the asymptotic complexity) of the DAG-shortest-path algorithm can be improved by
recognizing that the topological order of the graph vertices is known from the graph construction method in advance.

Having outlined the initial idea, we now extend the approach to handle the cases when valid tilings of a row do not exist. In
such a case, it is sufficient to interconnect the incompatible tiles among the j-th and (j + 1)-th layers, ∀j ∈ W \nw, and assign
to them the cost 11. Because tilings obtained by this method may not be valid, the results need to be post-processed to generate
valid tilings of some subdomain. Here, we process edges and vertices in the shortest path, such that for each vertex representing
a tile the cost of the incoming edge is determined. If the cost equals to one, the void is placed; a tile corresponding to the vertex
is placed otherwise. Consequently, any shortest path of the total cost ct contains exactly ct color mismatches, and ct voids in the
post-processed row tiling. Because the shortest path algorithm explicitly minimizes the number of voids, the maximum cover of
the row is reached.

Let us now consider that the rows i− 1 and i + 1 are tiled (either by valid tilings or by voids), and we aim to generate the
maximum cover of the i-th row such that the minimum number of voids is used. Quite remarkably, such a modification only
requires us to modify some of the costs in the already created graph: for each tile k ∈ T in the j-th column we check whether
the south color code of the tile at (i− 1, j) is not compatible with cnk, and whether the north color code of the tile at (i+ 1, j) is
not compatible with csk, where compatibility refers to the tile-void, void-tile, void-void, or tile-tile with matching colors. If any
of the compatibility conditions is not satisfied, the edges incoming to the vertex that corresponds to the tile k at the j-th layer
are assigned the cost 1.

initialize a tiling of A with voids
for all rows do

generate maximum cover tiling of the row
end

Algorithm 1: Simple maximum-cover based heuristics.

Consequently, the heuristics to find the maximum cover is written in pseudo-code as and requires nh iterations in the inner
loop. Consequently, the overall asymptotic complexity equals O(|A||T |2).

Similarly to finding maximum cover of rows, one can search for the maximum cover of columns. Combining these two
methods, we end up with a slightly improved heuristics that runs in O(|A|2|T |2) time in the worst case.

initialize a tiling of A with voids
set maximum cover method to rows
set improvement to infinity
while positive improvement do

if maximum cover by rows then
for all rows containing at least one void do

generate maximum cover tiling of the row
end
set maximum cover method to columns

else
for all columns containing at least one void do

generate maximum cover tiling of the column
end
set maximum cover method to rows

end
set improvement to the difference in the number of voids in the this and the previous iteration

end
Algorithm 2: Improved maximum-cover based heuristics.

IV. EXPERIMENTS
A. Benchmark Settings

The described methods were implemented in C++, and evaluated on a personal laptop Acer Aspire VN7-591G running the
Ubuntu 18.04 operating system, equipped with 8 GB of RAM and Intel® Core™ i5-4210H CPU clocked at 2.90 GHz. The source
code was compiled with the g++ compiler, version 4.8, and linked to the Gurobi 7.5 optimizer library.

Binary linear programs (8) and (12) were solved by the Gurobi solver, which was allowed to utilize all the cores and threads
available, two and four, respectively. In the case of the (improved) heuristics, Algorithm 2, the algorithm ran sequentially except
for a simple parallelism inside the DAG-shortest-path algorithm, supporting the non-deterministic behavior of the algorithm2.
Therefore, the heuristics is evaluated 100 times for each tested tile set, and the best, worst, and average results are shown.

For the benchmark instances, we have selected five well-known aperiodic tile sets, two stochastic tile sets, two periodic tile
sets, and two tile sets that do not allow for a valid tiling of the finite domain. For all the tile sets, we aimed at generating valid
tilings of the sizes 20× 20, 25× 25, and 30× 30, respectively. The running time of the Gurobi solver was limited by 300 s.

B. Results
The benchmark results are shown in Table I.

C. Discussion
The results shown in Table I imply that the decision program (8) surpasses the maximum cover formulation (12) when the

domain A is T -tileable and no time limit is imposed. Although the speed dominance may seem unexpected at the first sight, the
reason happens to be quite simple: the maximum cover formulation builds a larger decision tree and requires more constraints.
Limiting the Gurobi optimizer runtime, as was our case, (12) provides a partial cover of the domain-to-be-tiled at least, contrary
to the prematurely terminated (8).

A slightly more interesting results arise from the comparison of the maximum cover formulation (12) with the heuristics.
First, it shall be noted that the heuristics always generates valid tilings if (any of) the stochastic tile sets are used; in this case,
the heuristics finds a feasible solution to both (8) and (12) faster than the Gurobi optimizer. For aperiodic and periodic tile sets,
Gurobi required considerably longer time to reach the solutions of a similar quality, but usually surpassed the heuristics in the

1The asymptotic complexity of the algorithm remains; however, the bound value kT = |T |2 is now active for all tile sets.
2Non-deterministic behavior of the DAG-shortest-path algorithm was introduced by randomizing the order of the edges in the graph representation of the

problem.

Tile set Size Decision program (8) Maximum cover IP (12) Maximum cover heuristics
Time [s] Objective Time [s] Objective Avg. time [s] Min. obj. Avg. obj. Max. obj.

Aperiodic1
(11/4) [5]

20× 20 0.183 0 300.000 ∗396 0.190 359 367.86 378
25× 25 262.455 0 300.000 ∗596 0.386 559 572.60 588
30× 30 300.000 ∗infeasible 300.155 ∗841 0.621 810 821.41 838

Aperiodic2
(13/5) [22]

20× 20 0.177 0 300.097 ∗399 0.290 350 361.24 370
25× 25 300.103 ∗infeasible 300.145 ∗604 0.566 553 563.10 573
30× 30 300.140 ∗infeasible 300.202 ∗877 0.947 796 808.33 823

Aperiodic3
(14/6) [7]

20× 20 300.090 ∗infeasible 300.148 ∗398 0.290 359 370.20 381
25× 25 300.111 ∗infeasible 300.156 ∗602 0.479 565 577.34 596
30× 30 300.146 ∗infeasible 300.208 ∗869 0.893 808 829.62 845

Aperiodic4
(16/6) [4]

20× 20 0.191 0 70.203 400 0.262 353 366.29 381
25× 25 0.302 0 300.218 ∗546 0.458 546 571.56 595
30× 30 0.450 0 300.293 ∗785 0.810 802 823.83 866

Aperiodic5
(56/12) [17]

20× 20 1.029 0 300.660 ∗350 1.181 343 357.94 376
25× 25 0.859 0 300.869 ∗553 2.308 543 559.96 585
30× 30 1.245 0 301.182 ∗795 4.400 784 806.01 850

Stochastic1
(8/2) [2]

20× 20 0.121 0 0.109 400 0.064 400 400.00 400
25× 25 0.157 0 0.153 625 0.094 625 625.00 625
30× 30 0.216 0 0.193 900 0.131 900 900.00 900

Stochastic2
(16/4) [10]

20× 20 0.184 0 0.182 400 0.109 400 400.00 400
25× 25 0.225 0 0.305 625 0.164 625 625.00 625
30× 30 0.342 0 0.449 900 0.240 900 900.00 900

Periodic1
(10/4) [21]

20× 20 0.150 0 68.063 400 0.194 344 354.59 376
25× 25 0.220 0 192.673 625 0.367 536 555.01 592
30× 30 0.348 0 300.162 ∗773 0.603 770 793.83 823

Periodic2
(30/17) [15]

20× 20 0.346 0 71.149 400 0.384 359 379.52 399
25× 25 0.576 0 300.561 ∗545 0.611 557 591.85 618
30× 30 0.871 0 300.828 ∗786 1.094 827 850.63 887

Finite1
(7/4)

20× 20 0.083 infeasible 300.082 ∗377 0.127 350 359.27 368
25× 25 0.107 infeasible 300.091 ∗585 0.233 552 560.13 572
30× 30 0.151 infeasible 300.108 ∗807 0.387 792 805.28 816

Finite2
(16/16)

20× 20 0.143 infeasible 300.173 ∗326 0.322 327 341.22 354
25× 25 0.208 infeasible 300.293 ∗493 0.663 517 529.21 540
30× 30 0.283 infeasible 300.299 ∗690 1.132 742 760.77 781

TABLE I: Benchmark results. Values marked by an asterisk denote a premature termination of the solver.

time limit of 300 s. Finally, for the tile sets that do not allow valid tiling of A, heuristics reached solutions of slightly better
quality than Gurobi did, and the computational demands of the heuristics were significantly lower.

Yet another patterns arise in the measured data: all the worst-case heuristic solutions obtained were greater than 0.85OPT 3,
where OPT refers to the optimal objective function value, and the speed and solution quality of the developed heuristics scaled
better to larger domain sizes than Gurobi did.

V. CONCLUSION
Focusing on the bounded Wang tiling problem, this research project formulated its NP-complete formulation, and its

optimization variant, the NP-hard maximum cover formulation. Aiming to speed-up the solution process, we have also developed
and implemented a DAG-shortest-path-based heuristics for the maximum cover formulation.

Performance of the formulations and heuristics was assessed on 11 distinct tile sets. Preliminary numerical results imply that
the decision formulation outperforms the optimization variant, and hint at the future potential of the heuristics.

REFERENCES
[1] Robert Berger. The undecidability of the domino problem. Number 66. American Mathematical Society (AMS), 1966. doi: 10.1090/

memo/0066. URL https://doi.org/10.1090/memo/0066.
[2] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. Wang tiles for image and texture generation. ACM Transactions

on Graphics, 22(3):287, jul 2003. doi: 10.1145/882262.882265. URL https://doi.org/10.1145/882262.882265.
[3] Alexandre Derouet-Jourdan, Shizuo Kaji, and Yoshihiro Mizoguchi. A linear algorithm for Brick Wang tiling. CoRR, abs/1603.04292,

2016. URL http://arxiv.org/abs/1603.04292.
[4] Branko Grünbaum and Geoffrey Colin Shephard. Tilings and patterns. Freeman, 1987.
[5] Emmanuel Jeandel and Michaël Rao. An aperiodic set of 11 Wang tiles, 2015. URL http://arxiv.org/abs/1506.06492.
[6] Andrew S Kahr, Edward F Moore, and Hao Wang. Entscheidungsproblem reduced to the ∀∃∀ case. Proceedings of the National Academy

of Sciences, 48(3):365–377, 1962.
[7] Jarkko Kari. A small aperiodic set of Wang tiles. Discrete Mathematics, 160(1-3):259–264, nov 1996. doi: 10.1016/0012-365x(95)00120-l.

URL https://doi.org/10.1016/0012-365x(95)00120-l.

3We are able to prove that the approximation ratio is 0.67 at least.

https://doi.org/10.1090/memo/0066
https://doi.org/10.1145/882262.882265
http://arxiv.org/abs/1603.04292
http://arxiv.org/abs/1506.06492
https://doi.org/10.1016/0012-365x(95)00120-l

[8] S. Z. Kovalsky, D. Glasner, and R. Basri. A Global Approach for Solving Edge-Matching Puzzles. SIAM Journal on Imaging Sciences.
[9] Ares Lagae and Philip Dutré. A procedural object distribution function. ACM Transactions on Graphics, 24(4):1442–1461, oct 2005.

doi: 10.1145/1095878.1095888. URL https://doi.org/10.1145/1095878.1095888.
[10] Ares Lagae and Philip Dutré. An alternative for Wang tiles. ACM Transactions on Graphics, 25(4):1442–1459, oct 2006. doi: 10.1145/

1183287.1183296. URL https://doi.org/10.1145/1183287.1183296.
[11] Ares Lagae and Philip Dutré. The tile packing problem. Geombinatorics, 17(1):8–18, July 2007. URL http://www.uccs.edu/∼geombina/

2007.htm.
[12] Harry R Lewis. Complexity of solvable cases of the decision problem for the predicate calculus, page 35–47. IEEE, Oct 1978. doi:

10.1109/SFCS.1978.9.
[13] H.R. Lewis and C.H. Papimitriou. Elements of the Theory of Computation. Prentice-Hall Software Series. Pearson Education Canada,

1981. ISBN 9780132734172.
[14] Dale Myers. Nonrecursive tilings of the plane. II. Journal of Symbolic Logic, 39, 06 1974. doi: 10.2307/2272641.
[15] Tuomas Nurmi. From checkerboard to cloverfield: Using Wang tiles in seamless non-periodic patterns. Bridges Finland Conference

Proceedings, 2016.
[16] Nicolas Ollinger. Two-by-two substitution systems and the undecidability of the domino problem. Logic and Theory of Algorithms, pages

476–485, 2008.
[17] Raphael M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathematicae, 12(3):177–209, sep 1971.

doi: 10.1007/bf01418780. URL https://doi.org/10.1007/bf01418780.
[18] Chris Russell Rui Yu and Lourdes Agapito. Solving Jigsaw Puzzles with Linear Programming. In Edwin R. Hancock Richard C. Wilson

and William A. P. Smith, editors, Proceedings of the British Machine Vision Conference (BMVC), pages 139.1–139.12. BMVA Press,
September 2016. ISBN 1-901725-59-6. doi: 10.5244/C.30.139. URL https://dx.doi.org/10.5244/C.30.139.

[19] Fabio Salassa, Wim Vancroonenburg, Tony Wauters, Federico Della Croce, and Greet Vanden Berghe. MILP and Max-Clique based
heuristics for the Eternity II puzzle. 2017. URL https://arxiv.org/pdf/1709.00252.pdf.

[20] Hao Wang. Dominoes and the AEA case of the decision problem. Symposium on the Mathematical Theory of Automata, pages 23–55,
1962.

[21] Hao Wang. Notes on a class of tiling problems. Fundamenta Mathematicae, 82(4):295–305, 1975. URL http://eudml.org/doc/214668.
[22] Karel Čulı́k. An aperiodic set of 13 Wang tiles. Discrete Mathematics, 160(1-3):245–251, nov 1996. doi: 10.1016/s0012-365x(96)00118-5.

URL https://doi.org/10.1016/s0012-365x(96)00118-5.

https://doi.org/10.1145/1095878.1095888
https://doi.org/10.1145/1183287.1183296
http://www.uccs.edu/~geombina/2007.htm
http://www.uccs.edu/~geombina/2007.htm
https://doi.org/10.1007/bf01418780
https://dx.doi.org/10.5244/C.30.139
https://arxiv.org/pdf/1709.00252.pdf
http://eudml.org/doc/214668
https://doi.org/10.1016/s0012-365x(96)00118-5

	Assignment
	Problem Statement
	Problem Categorization

	Related works
	Substitution-Based Tiling Algorithm
	Stochastic Tiling Algorithms
	Transducer-Based Tiling Algorithm

	Problem solution
	Design
	Rectangular Valid Tiling
	Maximum Cover

	Description And Implementation of Heuristics

	Experiments
	Benchmark Settings
	Results
	Discussion

	Conclusion

