[LP basics

February 19, 2021

1 ILP basics

Combinatorial Optimization course, FEE CTU in Prague. Created by Industrial Informatics De-
partment.

During the second lab of the course, we concentrate on the (I)LP modeling basics. The goal is
to go through several simple examples and try to implement them using the ILP formalism. In
this document, we show the basic syntax on a simple LP problem. Afterward, several NP-hard
problems are formally presented, for which the students should fill the ILP formulations.

1.1 Introduction: Linear programming
In the linear programming, we try to solve the following problem:
min{cTz | Az < b}, where c € R,z € R", A € R™*", b € R™
x

i.e., we want to minimize a linear objective function, subject to linear inequality constraints defininy
the feasible region (here, convex polytope).

1.1.1 Example

Take as an example the following problem:

min —z + 2y s.t. (1)
x?y
—4xr —9y < —18 (2)
3 27
e _y< 2
58 Y S 3)
S > 2 (4)
17 Y=

Rewritten to the matrix form, the same problem would look as follows:

http://industrialinformatics.fel.cvut.cz
http://industrialinformatics.fel.cvut.cz

[1]:

Z,Yy y
—4 -9 . —18
3 27
2, -1 M <| T (6)
-3 1 9

For this simple problem, we can visualize the individual constraints, the feasible region and even
the optima, which is z = %, y = 0.

y
0

Now, let us try to rewrite this problem using the Gurobi syntax. Then, we can call the solver and
see if the solution that we have found ‘graphically’ is, indeed, correct.

The model itself will consist of variables (including definition of their domains) and constraints.
Here, the implementation is pretty straightforward:

Gurobt model for the example problem
import gurobipy as g # tmport Gurobi

Input data —————————————————————-
The program above

model = g.Model() # create an empty model

- vartables

x = model.addVar(vtype=g.GRB.CONTINUOUS, name="x") # method addVar is used toy
—add variable

y = model.addVar(vtype=g.GRB.CONTINUQOUS, name="y")

- constraints

model .addConstr(-4*x - 9%y <= -18) # method addConstr is used to add constraint

model.addConstr(3/2*x - y <= 27/4)

model.addConstr(8/17*x - y >= -2)

- objective

model.setObjective(-x + 2%y, g.GRB.MINIMIZE)

model .optimize ()

Solution ————————————————————————
print("x:", x.X) # use [variable].X to get the optimal value
print("y:", y.X)

Using license file /home/benedond/Apps/gurobi/gurobi910/gurobi.lic

Academic license - for non-commercial use only - expires 2021-04-16

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (linux64)

Thread count: 2 physical cores, 4 logical processors, using up to 4 threads
Optimize a model with 3 rows, 2 columns and 6 nonzeros

Model fingerprint: 0xb2d66890

Coefficient statistics:

Matrix range [5e-01, 9e+00]
Objective range [1e+00, 2e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 2e+01]

Presolve removed 3 rows and 2 columns

Presolve time: 0.01s

Presolve: All rows and columns removed

Iteration Objective Primal Inf. Dual Inf. Time
0 -4.5000000e+00 0.000000e+00 0.000000e+00 Os

Solved in O iterations and 0.01 seconds
Optimal objective -4.500000000e+00

x: 4.5

y: 0.0

While executing the model, Gurobi solver prints some information:
e Thread count: 2 physical cores, 4 logical processors, using up to 4 threads

Some parts of the solver can work in parallel - which might be beneficial when solving complex
models.

e Optimize a model with 3 rows, 2 columns and 6 nonzeros

Here, we see that the matrix A contains 3 rows (constraints), 2 columns (variables) and 6 non-zero
coeflicients at total.

Presolve removed 3 rows and 2 columns

Presolve time: 0.01s

Presolve: All rows and columns removed

Iteration Objective Primal Inf. Dual Inf. Time
0 -4.5000000e+00 0.000000e+00 0.000000e+00 Os

Solved in O iterations and 0.01 seconds

This parts just says that Gurobi was able to find the solution during the “Presolve” phase.

e Optimal objective -4.500000000e+00
The value of the objective function $¢ {T} x § is -4.5.

1.2 Integer linear programming

Now we solve similar problem, but the domains of (some) variables are restricted to be integers.

min{cl 'z | Az <b},c e R,z € Z",A € R™*" b ¢ R™

o Note that solving the problem as LP and rounding the solution may not lead to optimal
solution (it might even lead to infeasible solution - see the previous example).

o Also note that optimizing over a subset will not give better solution (it may only worsen).
Therefore, the optimal objective of LP provides a bound for the optimal objective of ILP
(lower bound for the minimization).

Examine the following situation and compare the optimal objectives of LP and ILP variants of the
same problem:

maxy (7)
subject to (8)
—z+y<1 9)
22 + 3y < 12 (10)
32+ 2y < 12 (11)
>0 (12)

y=>0 (13)

[2]:

el

LPopt jc =(0:1})

2x +3y<=12

—
¥
L
F =Y

The area inside of the blue polygon represents the feasible region of the LP formulation, while the
red dots represent the feasible solutions of the ILP formulation.

Now, lets enjoy some fun while implementing the models for some well-known NP-
hard problems. The goal is to understand the problems and formalize them in Gurobi
language.

1.2.1 Problem 1: Two partition

Given multiset S of positive integers, we ask if it can be partitioned to two subsets Sp, S3, such
that sum of the numbers in S equals to the sum of the numbers in So, and each number is assigned
(either to S; or to S).

Example 1 Multiset S = {1,1,1,2,2,3} can be partitioned, e.g., to S1 = {2,3}, Sa = {1,1, 1, 2}.
Note that it is not a unique solution.

Example 2 Multiset S = {2,4} cannot be partitioned.

import gurobipy as g

Ezample input
s = [100, 50, 50, 50, 20, 20, 10]

TODO: <mplement the model and find the solution

[3]:

[4] :

[1:

1.2.2 Problem 2: Maximum independent set

Given graph G = (V, E), we are trying to find subset V* C V', such that V* is as large as possible
and for each pair of vertices u,v € V*, u # v, it holds that there is no edge e = {u,v} in the
original graph.

import gurobipy as g
Ezample input

n =5 # number of vertices
edges = [(0, 1), (2, 3), (0, 4), (3, 1), (3, 4)]1 # list of edges

TODO: <implement the model and find the solution

1.2.3 Problem 3: Minimum vertex cover

Given graph G = (V, E), we are looking for subset V* C V| such that V* is as small as possible
and each edge e = {u,v} is ‘covered’ by at least one vertex z € V*, i.e. Ve = {u,v} € E Jx € V*
such that t = v or z = v.

import gurobipy as g
Ezample input

n =5 # number of vertices
edges = [(0, 1), (2, 3), (0, 4), (3, 1), (3, 4)] # list of edges

TODO: implement the model and find the solution

1.2.4 Problem 4: SAT (boolean satisfiability problem)
Given formula ¢ (in CNF), we are looking for truth assignment (True / False) to each variable,
such that ¢ is satisfied (evaluates to True).

Example 1 Formula ¢ = (21 V 22) A (—x2 V x3) can be satisfied by x; := True, z3 := True,
o := False.

Example 2 Formula ¢ = (1) A (—z1) cannot be satisfied.
import gurobipy as g
Ezample input

SAT formula: (z0 or ~zl1) and (~z0 or zl or z2) <- encode directly into they,
—model

TODO: implement the model and find the solution

	ILP basics
	Introduction: Linear programming
	Example

	Integer linear programming
	Problem 1: Two partition
	Problem 2: Maximum independent set
	Problem 3: Minimum vertex cover
	Problem 4: SAT (boolean satisfiability problem)

