
Adversarial DNN and ILP

March 22, 2021

1 Adversarial examples for a DNN via Integer Linear Program-
ming

Combinatorial Optimization course, FEE CTU in Prague. Created by Industrial Informatics De-
partment.

In this assigment you will learn that ILP can be used as a powerful tool for formal verification of
complex systems. The application shown here concern of finding adverdarial examples that could
fool a DNN trained with Tensorflow that perform handwritten digits recogtion.

[1]: import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import gurobipy as g
import scipy
%matplotlib inline

1.1 MNIST dataset

Let us download MNIST dataset - a favourite benchmark for handwritten digit recognition.

[3]: mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

Lets see how our the data look like:

[4]: f, axarr = plt.subplots(2, 3)
plt.gray()
axarr[0, 0].imshow(x_train[0, :])
axarr[0, 0].set_title('class:'+str(y_train[0]))
axarr[0, 1].imshow(x_train[1, :])
axarr[0, 1].set_title('class:'+str(y_train[1]))
axarr[0, 2].imshow(x_train[2, :])
axarr[0, 2].set_title('class:'+str(y_train[2]))
axarr[1, 0].imshow(x_train[3, :])

1

http://industrialinformatics.fel.cvut.cz
http://industrialinformatics.fel.cvut.cz

axarr[1, 0].set_title('class:'+str(y_train[3]))
axarr[1, 1].imshow(x_train[4, :])
axarr[1, 1].set_title('class:'+str(y_train[4]))
axarr[1, 2].imshow(x_train[5, :])
axarr[1, 2].set_title('class:'+str(y_train[5]))
f.tight_layout()
plt.show()

1.2 Building a DNN

Now, we build a very simple DNN using Keras API for Tensorflow. We will use four dense connected
layers. You may adjust sizes of the hidden layers for your experiments.

[5]: model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(48, activation='relu'),
tf.keras.layers.Dense(27, activation='relu'),
tf.keras.layers.Dense(10)

])

This the ReLU activation function fw,b(x) = max{wTx+ b, 0}

2

[41]: x = np.linspace(-10, 10, 100)
plt.plot(x, list(map(lambda t: max(t, 0), x)))

[41]: [<matplotlib.lines.Line2D at 0x14ea31e10>]

So we are using a dense fully connected network with ReLU activations. Next, we apply a standard
loss function for multi-label classication.

[6]: loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adam',

loss=loss_fn,
metrics=['accuracy'])

And next, we train the network. Notice that this is an optimization problem as well - optimizing
the given loss function over the train set.

[7]: model.fit(x_train, y_train, epochs=5)
probability_model = tf.keras.Sequential([

model,
tf.keras.layers.Softmax()

])

Train on 60000 samples
Epoch 1/5
60000/60000 [==============================] - 2s 32us/sample - loss: 0.3253 -
accuracy: 0.9070
Epoch 2/5

3

60000/60000 [==============================] - 2s 29us/sample - loss: 0.1527 -
accuracy: 0.9554
Epoch 3/5
60000/60000 [==============================] - 2s 29us/sample - loss: 0.1142 -
accuracy: 0.9660
Epoch 4/5
60000/60000 [==============================] - 2s 29us/sample - loss: 0.0938 -
accuracy: 0.9717
Epoch 5/5
60000/60000 [==============================] - 2s 28us/sample - loss: 0.0775 -
accuracy: 0.9756

Lets see how the training went:

[8]: model.evaluate(x_test, y_test, verbose=2)

10000/10000 - 0s - loss: 0.1082 - accuracy: 0.9698

[8]: [0.10822109760139137, 0.9698]

If you see accuracy above 0.9, then the training went well and we likely did not overfit the training
set.

1.3 Looking at the trained model

Next, we would like to test wheter the trained model works and intended. Lets ask our model on
few inputs as a sanity check:

[11]: preds = probability_model(x_test[0:4])
f, axarr = plt.subplots(ncols=4)
plt.gray()
for k in range(4):

axarr[k].imshow(x_test[k, :])
axarr[k].set_title('true: {}, pred: {}'.format(y_test[k], max(range(10),␣

↪→key=lambda idx: preds[k][idx])))
f.tight_layout()
plt.show()

4

Now it comes to the interesting part. Is our DNN model foolproof? To find out that, we would
like to have something like an “inverse” function to the network - which would map output to the
input. However, this is not provided by the trained model.

Interestingly, we will show that such inverse can be realized with an ILP model. First, we will
construct an ILP model that can be used for inference task - mapping inputs to outputs using the
trained weights. Later on, we will use it for as the inverse function of the trained model.

[12]: weights = model.get_weights()

Lets explore the structure of your weight matrix:

[13]: len(weights)
print(weights[0].shape)
print(weights[1].shape)
print(weights[2].shape)
print(weights[3].shape)
print(weights[4].shape)
print(weights[5].shape)

(784, 48)
(48,)
(48, 27)
(27,)
(27, 10)
(10,)

We see that the structure contains always a matrix of weights coefficient and a vector of biases for
each layer.

[14]: W = [weights[0], weights[2], weights[4]]
b = [weights[1], weights[3], weights[5]]

1.4 ILP to perform the inference given the trained weights

Now, we will construct an ILP model that is able to perform the inference in the network with the
given trained weights W and biases b.

We use a variable fk,i that denotes the output of i-th neuron in layer k and yk,i which denotes the
input signal of the corresponding neuron. x variables serve as the input of the network.

[24]: ilp_model = g.Model()
x = ilp_model.addVars(W[0].shape[0], vtype=g.GRB.CONTINUOUS, lb=0, ub=1)
f = {}
y = {}
for k in range(3):

5

for i in range(W[k].shape[0]):
f[k, i] = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=0)
y[k, i] = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=-float('inf'))

for i in range(W[2].shape[1]):
f[3, i] = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=0)
y[3, i] = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=-float('inf'))

Now, we need to establish proper constraints according to the structure of the network:

[25]: for i in range(W[0].shape[0]):
ilp_model.addConstr(x[i] == f[0, i])

for k in range(1,4):
for i in range(W[k-1].shape[1]):

ilp_model.addConstr(g.quicksum(W[k-1][j, i]*f[k-1, j] for j in␣
↪→range(W[k-1].shape[0])) + b[k-1][i] == y[k, i])

ilp_model.addConstr(f[k, i] == g.max_(y[k, i], 0))

Now let us note a small remark. Here we have used max in the constraints, which is not a linear
operation! We could linearize it and convert it back to a proper ILP model, but for sake of clarity
let us keep like it is. Luckily, Gurobi can handle this one on its own. But please, do not use
this construct in different solvers or your theoretical tests! This is not a feature of ILP but this
particular solver.

1.5 Inference DNN / ILP

Lets try the inference task using our ILP model. Consider, e.g., the following input:

[26]: test_idx = 12
plt.gray()
plt.imshow(x_test[test_idx, :])

[26]: <matplotlib.image.AxesImage at 0x14f1ae590>

6

And let us use the trained DNN to classify it:

[27]: prediction = probability_model(x_test[test_idx:test_idx+1])
print('classified by the trained DNN as {} with probability p={}'.format(

max(range(10), key=lambda idx: prediction[0][idx]), max(prediction[0]))
)

classified by the trained DNN as 9 with probability p=0.999849796295166

Ok, now lets do the same with our implementation of DNN as an ILP model. We “feed” the input
to the network by imposing equality constaints on our xi variables:

[28]: x_input_flatten = x_test[test_idx, :].reshape(1, 28*28)
for i in range(W[0].shape[0]):

ilp_model.addConstr(x[i] == x_input_flatten[0][i])

ilp_model.optimize()

Gurobi Optimizer version 9.0.0 build v9.0.0rc2 (mac64)
Optimize a model with 1653 rows, 2522 columns and 41635 nonzeros
Model fingerprint: 0x6bc3f136
Model has 85 general constraints
Variable types: 2522 continuous, 0 integer (0 binary)
Coefficient statistics:

Matrix range [6e-06, 1e+00]
Objective range [0e+00, 0e+00]
Bounds range [1e+00, 1e+00]

7

RHS range [2e-04, 1e+00]
Presolve removed 1653 rows and 2522 columns
Presolve time: 0.01s
Presolve: All rows and columns removed

Explored 0 nodes (0 simplex iterations) in 0.02 seconds
Thread count was 1 (of 12 available processors)

Solution count 1: 0

Optimal solution found (tolerance 1.00e-04)
Best objective 0.000000000000e+00, best bound 0.000000000000e+00, gap 0.0000%

Lets see the activations of the output layer and, as a sanity check, the softmax over the output:

[30]: result = [f[3, i].x for i in range(10)]
probs = np.exp(result)/sum(np.exp(result))
print('activations: ', result)
print('probabilities: ', probs)
pred_class_by_dnn = max(range(10), key=lambda idx: result[idx])
print('classified by ILP as {} with probability p={}'.format(

pred_class_by_dnn, max(prediction[0]))
)

activations: [0.0, 0.0, 0.0, 0.0, 0.1955208638335597, 0.0, 0.0,
0.709117566861935, 0.0, 10.323768245760787]
probabilities: [3.28320702e-05 3.28320702e-05 3.28320702e-05 3.28320702e-05
3.99219641e-05 3.28320702e-05 3.28320702e-05 6.67212408e-05
3.28320702e-05 9.99663532e-01]
classified by ILP as 9 with probability p=0.999849796295166

1.6 Fooling the network - find a small perturbation of the input data by ILP

The model seems to work as intended. Now is the time to use ILP model as an inverse function of
the model. We try to fool the network and find a small deviation of the input that will make the
network to do a mistake.

Let us find the smallest deviaton of a sample from the test set, that will cause the network to give
incorrect classification on that sample:

[31]: ilp_model = g.Model()
x = ilp_model.addVars(W[0].shape[0], vtype=g.GRB.CONTINUOUS, lb=0, ub=1)
delta = ilp_model.addVars(W[0].shape[0], vtype=g.GRB.CONTINUOUS, lb=-1, ub=1) ␣
↪→# our vector of deviations

input_diff = ilp_model.addVars(W[0].shape[0], vtype=g.GRB.CONTINUOUS, lb=-1,␣
↪→ub=1)

max_activation = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=0)
f = {}

8

y = {}
for k in range(3):

for i in range(W[k].shape[0]):
f[k, i] = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=0)
y[k, i] = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=-float('inf'))

for i in range(W[2].shape[1]):
f[3, i] = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=0)
y[3, i] = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=-float('inf'))

for i in range(W[0].shape[0]):
ilp_model.addConstr(x[i] + delta[i] == f[0, i])
ilp_model.addConstr(delta[i] <= input_diff[i])
ilp_model.addConstr(-delta[i] <= input_diff[i])

these constrains just ensure that the information is propagated with the␣
↪→given weights thru the network

for k in range(1,4):
for i in range(W[k-1].shape[1]):

ilp_model.addConstr(g.quicksum(W[k-1][j, i]*f[k-1, j] for j in␣
↪→range(W[k-1].shape[0])) + b[k-1][i] == y[k, i])

ilp_model.addConstr(f[k, i] == g.max_(y[k, i], 0)) # beware! this is␣
↪→not an ILP constraint. but can be translated into a one

x_input_flatten = x_test[test_idx, :].reshape(1, 28*28)
for i in range(W[0].shape[0]):

ilp_model.addConstr(x[i] == x_input_flatten[0][i])

force the incorrect classification by saing that the maximal-activation␣
↪→output cannot the one that is correct

ilp_model.addConstr(max_activation == g.max_(f[3, k] for k in range(10)))
ilp_model.addConstr(f[3, pred_class_by_dnn] <= 0.95*max_activation)

ilp_model.setObjective(g.quicksum(input_diff[i] for i in range(W[0].shape[0])),␣
↪→sense=g.GRB.MINIMIZE)

ilp_model.params.timelimit = 90
ilp_model.optimize()

Changed value of parameter timelimit to 60.0
Prev: inf Min: 0.0 Max: inf Default: inf

Gurobi Optimizer version 9.0.0 build v9.0.0rc2 (mac64)
Optimize a model with 3222 rows, 4091 columns and 45557 nonzeros
Model fingerprint: 0xf0728966
Model has 86 general constraints
Variable types: 4091 continuous, 0 integer (0 binary)
Coefficient statistics:

Matrix range [6e-06, 1e+00]

9

Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [2e-04, 1e+00]

Presolve removed 2438 rows and 2645 columns
Presolve time: 0.07s
Presolved: 784 rows, 1446 columns, 40784 nonzeros
Presolved model has 15 SOS constraint(s)
Variable types: 1101 continuous, 345 integer (345 binary)

Root relaxation: objective 0.000000e+00, 597 iterations, 0.02 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 0.00000 0 24 - 0.00000 - - 0s
0 0 0.00000 0 3 - 0.00000 - - 0s

H 0 0 31.2237781 0.00000 100% - 0s
0 2 0.00000 0 3 31.22378 0.00000 100% - 0s

H 34 39 21.5493158 0.00000 100% 58.2 0s
H 74 90 11.1170202 0.00000 100% 49.4 0s
H 369 426 8.3529232 0.00000 100% 28.0 1s
* 1099 790 67 6.5616292 0.00000 100% 24.3 1s
* 1100 790 67 6.5594184 0.00000 100% 24.3 1s
H 3626 1610 6.2628534 0.00000 100% 30.2 3s
H 3641 1507 5.7911367 0.00000 100% 30.3 3s
H 3684 1150 4.2916952 0.00000 100% 30.3 4s

4997 2033 0.00000 41 9 4.29170 0.00000 100% 30.6 5s
H11071 4610 4.2901080 0.00000 100% 37.2 9s
H11075 4608 4.2854273 0.00000 100% 37.2 9s
12244 5218 1.39046 59 9 4.28543 0.00000 100% 38.7 10s
18149 6754 0.93421 42 8 4.28543 0.00000 100% 42.9 15s
23670 8091 2.19879 57 10 4.28543 0.00000 100% 46.8 20s
29062 9355 0.06702 45 8 4.28543 0.00000 100% 49.4 25s
36802 11402 3.67757 54 12 4.28543 0.00000 100% 50.4 30s
40593 12273 1.56334 44 13 4.28543 0.00000 100% 51.4 35s
46098 13084 0.00000 48 8 4.28543 0.00000 100% 52.4 40s
51571 14185 cutoff 64 4.28543 0.00000 100% 53.4 45s
57343 15347 1.84918 58 9 4.28543 0.00000 100% 54.1 50s
62502 16233 cutoff 47 4.28543 0.00000 100% 55.1 55s
68061 17470 cutoff 55 4.28543 0.00000 100% 55.3 60s

Cutting planes:
Gomory: 1

Explored 68451 nodes (3784347 simplex iterations) in 60.01 seconds
Thread count was 12 (of 12 available processors)

Solution count 10: 4.28543 4.29011 4.2917 … 21.5493

10

Time limit reached
Best objective 4.285427339997e+00, best bound 0.000000000000e+00, gap 100.0000%

Let us see, which adjustments of input are claimed to alter the prediction of the trained DNN:

[33]: x_representation = np.array([delta[i].x for i in range(28*28)]).reshape(28, 28)
plt.gray()
plt.imshow(x_representation)

[33]: <matplotlib.image.AxesImage at 0x14f69c310>

This is quite suprising result! Only a few pixels are changed and the network is fooled. Let us test
it if it indeed the case:

[34]: x_fooled_sample = np.add(x_test[test_idx:test_idx+1], x_representation) # add␣
↪→the generated noise to the test example

plt.gray()
plt.imshow(x_fooled_sample[0])

prediction = probability_model(x_fooled_sample)
print('classified by the trained DNN as {} with probability p={}'.format(

max(range(10), key=lambda idx: prediction[0][idx]), max(prediction[0]))
)

classified by the trained DNN as 4 with probability p=0.5555132031440735

11

Indeed it is true! The network was fooled, but it says its confidence of the output is not that high.

1.7 Fooling the network even more!

So we can even more sophisticated attack - how about maximizing the probability of the wrong
class given that only a few pixels deviate? In this case would be the network fooled such that it
would think it is actually correct.

[35]: ilp_model = g.Model()
x = ilp_model.addVars(W[0].shape[0], vtype=g.GRB.CONTINUOUS, lb=0, ub=1)
delta = ilp_model.addVars(W[0].shape[0], vtype=g.GRB.CONTINUOUS, lb=-1, ub=1)
input_diff = ilp_model.addVars(W[0].shape[0], vtype=g.GRB.CONTINUOUS, lb=-1,␣
↪→ub=1)

max_activation = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=0)
f = {}
y = {}
for k in range(3):

for i in range(W[k].shape[0]):
f[k, i] = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=0)
y[k, i] = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=-float('inf'))

for i in range(W[2].shape[1]):
f[3, i] = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=0)
y[3, i] = ilp_model.addVar(vtype=g.GRB.CONTINUOUS, lb=-float('inf'))

for i in range(W[0].shape[0]):
ilp_model.addConstr(x[i] + delta[i] == f[0, i])

12

ilp_model.addConstr(delta[i] <= input_diff[i])
ilp_model.addConstr(-delta[i] <= input_diff[i])

for k in range(1,4):
for i in range(W[k-1].shape[1]):

ilp_model.addConstr(g.quicksum(W[k-1][j, i]*f[k-1, j] for j in␣
↪→range(W[k-1].shape[0])) + b[k-1][i] == y[k, i])

ilp_model.addConstr(f[k, i] == g.max_(y[k, i], 0))

x_input_flatten = x_test[test_idx, :].reshape(1, 28*28)
for i in range(W[0].shape[0]):

ilp_model.addConstr(x[i] == x_input_flatten[0][i])

ilp_model.addConstr(max_activation == g.max_(f[3, k] for k in range(10)))
ilp_model.addConstr(f[3, pred_class_by_dnn] <= 0.95*max_activation)
ilp_model.addConstr(g.quicksum(input_diff[i] for i in range(W[0].shape[0])) <=␣
↪→6) # at most 6 pixels (in the sum of intensities) are deviated

ilp_model.setObjective(f[3, 7], sense=g.GRB.MAXIMIZE)
ilp_model.params.timelimit = 120
ilp_model.optimize()

Changed value of parameter timelimit to 120.0
Prev: inf Min: 0.0 Max: inf Default: inf

Gurobi Optimizer version 9.0.0 build v9.0.0rc2 (mac64)
Optimize a model with 3223 rows, 4091 columns and 46341 nonzeros
Model fingerprint: 0x615ddbc7
Model has 86 general constraints
Variable types: 4091 continuous, 0 integer (0 binary)
Coefficient statistics:

Matrix range [6e-06, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [2e-04, 6e+00]

Presolve removed 2568 rows and 2710 columns
Presolve time: 0.07s
Presolved: 655 rows, 1381 columns, 41308 nonzeros
Presolved model has 80 SOS constraint(s)
Variable types: 1101 continuous, 280 integer (280 binary)

Root relaxation: unbounded, 1009 iterations, 0.04 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 postponed 0 - - - - 0s

13

0 0 postponed 0 - - - - 0s
0 2 postponed 0 - - - - 0s

1176 635 postponed 32 - - - 87.7 6s
2215 940 postponed 31 - - - 80.8 10s

H 3013 1049 8.9290518 46.65972 423% 81.1 14s
3027 1058 39.60161 7 95 8.92905 39.60161 344% 80.7 15s
3131 1114 14.12333 19 59 8.92905 25.77040 189% 80.9 20s

Cutting planes:
Gomory: 32
Implied bound: 2
MIR: 23
Flow cover: 93
Relax-and-lift: 4

Explored 5245 nodes (315506 simplex iterations) in 24.00 seconds
Thread count was 12 (of 12 available processors)

Solution count 1: 8.92905

Optimal solution found (tolerance 1.00e-04)
Best objective 8.929051751660e+00, best bound 8.929051751660e+00, gap 0.0000%

[36]: x_representation = np.array([delta[i].x for i in range(28*28)]).reshape(28, 28)
x_fooled_sample = np.add(x_test[test_idx:test_idx+1], x_representation)
plt.gray()
plt.imshow(x_fooled_sample[0])

prediction = probability_model(x_fooled_sample)
print('classified by trained DNN as {} with probability p={}'.format(

max(range(10), key=lambda idx: prediction[0][idx]), max(prediction[0]))
)

classified by trained DNN as 7 with probability p=0.9950284361839294

14

Quite interesting as well - only these few pixels have fooled the trained DNN which thinks it gives
good results with high confidence. This demonstrate that solution of many ML model might be
very fragile, if they are not trained sofistically. Moreover, this lab assignment has demonstrated
the power of ILP as a tool for the formal verification of complex systems.

1.8 More ideas for you to play with

• How would you adjust the constraints to make the adversarial noise less visible to a naked
eye?

• We have generated the adversarial noise for a specific example in the test set. Try to apply
it to other. Is the network still fooled? Can you generate a noise that would be applicable to
more examples at once?

• Can you find what is the most “ideal” representation of number 8 according to the trained
network? Does the result suprises you? What does it say about the network?

• Are so-called “shallow” models susceptible as well (e.g., decision trees/random forests - you
might test with ILP as well)?

• Which other “systems” could be analyzed with ILP?
• How could you use ILP for training (finding good parameter values) robust networks? How

large networks could you realistically train with the current technology?
• What is the relation between the number of network parameters and robustness of the net-

work. Does the drop-out improve the resistence to such attacks?
• How would you validate the performance of a ML model better rather than the accuracy on

the test set?

[]:

15

	Adversarial examples for a DNN via Integer Linear Programming
	MNIST dataset
	Building a DNN
	Looking at the trained model
	ILP to perform the inference given the trained weights
	Inference DNN / ILP
	Fooling the network - find a small perturbation of the input data by ILP
	Fooling the network even more!
	More ideas for you to play with

