GVG Test 3

Solution

May 22, 2021

Task 1. Let us have a mapping $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that

$$
\varphi\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=1, \quad \varphi\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=2
$$

Define

$$
\varphi\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=
$$

such that φ can be linear mapping. Justify.
Solution: For the linear mapping there must hold true

$$
\varphi(\mathrm{x}-\mathrm{y})=\varphi(\mathrm{x})-\varphi(\mathrm{y})
$$

Thus,

$$
\varphi\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\varphi\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=\varphi\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)-\varphi\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=1-2=-1 .
$$

Task 2. Let us have a point $\vec{u}_{\alpha}=[0,0]^{\top}$ in an image captured by camera with matrix

$$
\mathrm{K}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Write the affine coordinates of point \vec{v}_{α} such that the rays of points u and v form a 45° angle.
Solution: Let's denote the directions of the two rays by \vec{x}_{1} and \vec{x}_{2}. By the task, $\vec{x}_{1 \beta}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\top}$ and thus,

$$
\vec{x}_{1 \gamma}=\mathrm{K}^{-1} \vec{x}_{1 \beta}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

We know that

$$
\frac{\sqrt{2}}{2}=\cos 45^{\circ}=\cos \angle\left(\vec{x}_{1}, \vec{x}_{2}\right)=\frac{\vec{x}_{1 \gamma}^{\top} \vec{x}_{2 \gamma}}{\left\|\vec{x}_{1 \gamma}\right\|\left\|\vec{x}_{2 \gamma}\right\|}=\frac{\left[\begin{array}{ll}
0 & 0 \\
1
\end{array}\right] \vec{x}_{2 \gamma}}{\left\|\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\|\left\|\vec{x}_{2 \gamma}\right\|}=\frac{\vec{x}_{2 \gamma}^{(3)}}{\left\|\vec{x}_{2 \gamma}\right\|}
$$

There are infinitely many possible $\vec{x}_{2 \gamma}$ which satisfy the above equation. One of them is, for example,

$$
\vec{x}_{2 \gamma}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

To write the affine coordinates of \vec{v} we need to transform $\vec{x}_{2 \gamma}$ to basis β :

$$
\vec{x}_{2 \beta}=\mathrm{K} \vec{x}_{2 \gamma}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] .
$$

Hence

$$
\vec{v}_{\alpha}=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

Task 3. Let us have two images with projection matrices and epipole

$$
\mathrm{P}_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right], \quad \mathrm{P}_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & -x \\
0 & 1 & 0 & -y \\
0 & 0 & 1 & -z
\end{array}\right], \quad \vec{e}_{\alpha}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

in the first image. Find all camera centers $\vec{C}_{2 \delta}$ of the second camera compatible with the given arrangement.
Solution: By definition, the epipole in the first image is the projection of the center of the second camera to the first camera:

$$
\zeta_{1} \vec{e}_{1 \beta_{1}}=\mathrm{P}_{1}\left[\begin{array}{c}
\vec{C}_{2 \delta} \\
1
\end{array}\right], \quad \zeta_{1} \neq 0
$$

We can notice that the left 3×3 block of P_{2} is the identity matrix and thus $\vec{C}_{2 \delta}=-\mathrm{P}_{:, 4}=\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}$. After substituting the known epipole and the unknowns for $\vec{C}_{2 \delta}$ we obtain

$$
\zeta_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\mathrm{P}_{1}\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
z+1 \\
y
\end{array}\right], \quad \zeta_{1} \neq 0
$$

Therefore, all the possible centers of the second camera are

$$
\left\{\left.\left[\begin{array}{c}
\zeta_{1} \\
\zeta_{1} \\
\zeta_{1}-1
\end{array}\right] \right\rvert\, \zeta_{1} \in \mathbb{R} \backslash\{0\}\right\}
$$

Task 4. Consider two cameras with projection matrices

$$
P_{1}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad P_{2}=\left[\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & -1 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

Find point \vec{X}_{δ} in space that projects into image points $\vec{u}_{1 \alpha_{1}}=\left[\frac{1}{2}, 0\right]^{\top}, \vec{u}_{2 \alpha_{2}}=[3,0]^{\top}$.
Solution: We have the following equations:

$$
\zeta_{1} \vec{x}_{1 \beta}=\mathrm{P}_{1}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right], \quad \zeta_{2} \vec{x}_{2 \beta}=\mathrm{P}_{2}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right]
$$

By the task, $\vec{x}_{1 \beta}=\left[\begin{array}{ccc}\frac{1}{2} & 0 & 1\end{array}\right]^{\top}$ and $\vec{x}_{2 \beta}=\left[\begin{array}{lll}3 & 0 & 1\end{array}\right]^{\top}$. Substituting all the known values to the above equations and denoting $\vec{X}_{\delta}=\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}$ we get

$$
\zeta_{1}\left[\begin{array}{l}
\frac{1}{2} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right], \quad \zeta_{2}\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & -1 \\
1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

which is equivalent to

$$
\zeta_{1}\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-x+1 \\
-y+1 \\
z
\end{array}\right], \quad \zeta_{2}\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
z+1 \\
y-1 \\
x+1
\end{array}\right]
$$

Expressing x, y, z from both matricial equations we get

$$
\begin{aligned}
& x=-\frac{1}{2} \zeta_{1}+1, \quad y=1, \quad z=\zeta_{1} \\
& x=\zeta_{2}-1, \quad y=1, \quad z=3 \zeta_{2}-1
\end{aligned}
$$

Making the expressions for x, y, z equal we obtain

$$
\begin{gathered}
-\frac{1}{2} \zeta_{1}+1=\zeta_{2}-1, \quad \zeta_{1}=3 \zeta_{2}-1 \\
-\frac{1}{2}\left(3 \zeta_{2}-1\right)+1=\zeta_{2}-1 \Rightarrow \zeta_{2}=1 \Rightarrow \zeta_{1}=3 \cdot 1-1=2
\end{gathered}
$$

Thus,

$$
x=-\frac{1}{2} \cdot 2+1=0, \quad y=1, \quad z=2
$$

and

$$
\vec{X}_{\delta}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] .
$$

Task 5. Suppose we are given 2 calibrated cameras and the calibrated camera projection matrix of the first camera is

$$
\mathrm{P}_{1 \gamma_{1}}=\left[\begin{array}{ll}
\mathrm{R}_{1} & -\mathrm{R}_{1} \vec{C}_{1 \delta}
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Find all possible centers $\vec{C}_{2 \delta}$ of the second camera knowing that a multiple of the essential matrix which relates these cameras is

$$
\mathrm{G}=\tau \mathrm{E}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \tau \neq 0
$$

Solution: By definition, the essential matrix takes the form

$$
\mathrm{E}=\mathrm{R}_{2}\left[\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right]_{\times} \mathrm{R}_{1}^{\top}
$$

Hence

$$
\begin{aligned}
\mathrm{G}=\tau \mathrm{E} & =\tau \mathrm{R}_{2}\left[\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right]_{\times} \mathrm{R}_{1}^{\top} \\
\mathrm{GR}_{1} & =\tau \mathrm{R}_{2}\left[\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right]_{\times}
\end{aligned}
$$

Since $\vec{C}_{1 \delta}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\top}$, then after substituting everything we are given by the task we obtain

$$
\begin{align*}
& {\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\tau \mathrm{R}_{2}\left[\vec{C}_{2 \delta}\right]_{\times}} \\
& \underbrace{\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]}_{\mathrm{A}}=\tau \mathrm{R}_{2}\left[\vec{C}_{2 \delta}\right]_{\times} \tag{1}
\end{align*}
$$

We claim that all the solutions $\vec{C}_{2 \delta}$ can be obtained as the kernel of A (from which we must exclude $\vec{C}_{2 \delta}=$ $\vec{C}_{1 \delta}=0$), i.e. $S=\operatorname{kerA} \backslash\{0\}$, where S is the set of solutions for $\vec{C}_{2 \delta}$. We immediately see that $\vec{C}_{2 \delta}$ can't be the zero vector, because otherwise the right-hand side of Equation (1) would become zero, but the left-hand side is not. We also see that any solution $\vec{C}_{2 \delta}$ to the Equation (1) belongs to ker A, since

$$
\begin{equation*}
\mathrm{A}=\tau \mathrm{R}_{2}\left[\vec{C}_{2 \delta}\right]_{\times} \Rightarrow \mathrm{A} \vec{C}_{2 \delta}=\tau \mathrm{R}_{2}\left[\vec{C}_{2 \delta}\right]_{\times} \vec{C}_{2 \delta}=0 \tag{2}
\end{equation*}
$$

Finally, we need to show that any element from $\operatorname{ker} A \backslash\{0\}$ is a solution to Equation (1). By the task we know that Equation (1) (with unknowns $\tau, \mathrm{R}_{2}, \vec{C}_{2 \delta}$) has at least one solution $\left(\tau^{*}, \mathrm{R}_{2}^{*}, \vec{C}_{2 \delta}^{*}\right)$ (because when we say that G relates the 2 cameras, it automatically means, that such a second camera exists), i.e.

$$
\begin{equation*}
\mathrm{A}=\tau^{*} \mathrm{R}_{2}^{*}\left[\vec{C}_{2 \delta}^{*}\right]_{\times} \tag{3}
\end{equation*}
$$

By the argument from Equation (2) we know that $\vec{C}_{2 \delta}^{*} \in \operatorname{ker} \mathrm{~A} \backslash\{0\}$. Thus, any element from ker $\mathrm{A} \backslash\{0\}$ can be obtained as $\sigma \vec{C}_{2 \delta}^{*}$ for a nonzero $\sigma \in \mathbb{R}$. We set the new solution to be ($\frac{\tau^{*}}{\sigma}, \mathrm{R}_{2}^{*}, \sigma \vec{C}_{2 \delta}^{*}$) and we check if it indeed the solution to Equation (1):

$$
\mathrm{A}=\frac{\tau^{*}}{\sigma} \mathrm{R}_{2}^{*}\left[\sigma \vec{C}_{2 \delta}^{*}\right]_{\times}=\frac{\tau^{*}}{\sigma} \mathrm{R}_{2}^{*} \sigma\left[\vec{C}_{2 \delta}^{*}\right]_{\times}=\tau^{*} \mathrm{R}_{2}^{*}\left[\vec{C}_{2 \delta}^{*}\right]_{\times}
$$

which holds true due to Equation (3). We find the kernel of A:

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Using Gaussian Elimination we can solve this system and obtain the set of solutions:

$$
S=\operatorname{ker} \mathrm{A} \backslash\{0\}=\left\{\left.\left[\begin{array}{l}
t \\
t \\
0
\end{array}\right] \right\rvert\, t \in \mathbb{R} \backslash\{0\}\right\}
$$

Remark 1. We could use another strategy to solve this task. We could find the calibrated epipole in the first camera:

$$
\mathrm{G} \vec{e}_{1 \gamma_{1}}=\tau \mathrm{E} \vec{e}_{1 \gamma_{1}}=0 \Rightarrow \vec{e}_{1 \gamma_{1}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
$$

Now, we know that

$$
\lambda \vec{e}_{1 \gamma_{1}}=\mathrm{P}_{1 \gamma_{1}}\left[\begin{array}{c}
\vec{C}_{2 \delta} \\
1
\end{array}\right], \quad \lambda \neq 0
$$

from which we obtain the set of solutions to $\vec{C}_{2 \delta}$:

$$
\left\{\left.\left[\begin{array}{c}
\lambda \\
\lambda \\
0
\end{array}\right] \right\rvert\, \lambda \in \mathbb{R} \backslash\{0\}\right\}
$$

Remark 2. Notice that the kernel of G is not $\vec{C}_{2 \delta}$, but $\mathrm{R}_{1}\left(\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right)$, since

$$
\mathrm{GR}_{1}\left(\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right)=\tau \mathrm{R}_{2}\left[\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right] \times \underbrace{\mathrm{R}_{1}^{\top} \mathrm{R}_{1}}_{\mathrm{I}}\left(\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right)=\tau \mathrm{R}_{2}\left[\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right]_{\times}\left(\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right)=0 .
$$

It would be equal to $\vec{C}_{2 \delta}$ if R_{1} was equal to I . This is actually what we did in slide $3 / 8$ in [1]]: we first transformed the two cameras by

$$
\mathrm{H}^{-1}=\left[\begin{array}{cc}
\mathrm{R}_{1}^{\top} & \vec{C}_{1 \delta} \\
0^{\top} & 1
\end{array}\right]
$$

After this transformation we get the set of new cameras ($\mathrm{I}, 0)$ and $\left(\mathrm{R}_{2}^{\prime}, \vec{C}_{2 \delta}^{\prime}\right)=\left(\mathrm{R}_{2} \mathrm{R}_{1}^{\top}, \mathrm{R}_{1}\left(\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right)\right)$ and

$$
\mathrm{G}=\tau \mathrm{E}=\tau \mathrm{R}_{2}^{\prime}\left[\vec{C}_{2 \delta}^{\prime}\right]_{\times} \Rightarrow \operatorname{ker} \mathrm{G}=\left\langle\vec{C}_{2 \delta}^{\prime}\right\rangle
$$

To get, however, $\vec{C}_{2 \delta}$ from $\vec{C}_{2 \delta}^{\prime}$ we need to do the following:

$$
\left.\vec{C}_{2 \delta}^{\prime}=\mathrm{R}_{1}\left(\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right)\right) \Rightarrow \vec{C}_{2 \delta}=\mathrm{R}_{1} \vec{C}_{2 \delta}^{\prime}+\vec{C}_{1 \delta}
$$

References

[1] Gvg, lab 12, https://cw.fel.cvut.cz/b202/_media/courses/gvg/labs/gvg_lab12.pdf.

