
GVG Test 3

Solution

May 22, 2021

Task 1. Let us have a mapping ϕ : R3 → R such that

ϕ

1
1
1

 = 1, ϕ

0
1
1

 = 2

Define

ϕ

1
0
0

 =

such that ϕ can be linear mapping. Justify.

Solution: For the linear mapping there must hold true

ϕ(x− y) = ϕ(x)− ϕ(y)

Thus,

ϕ

1
0
0

 = ϕ

1
1
1

−
0

1
1

 = ϕ

1
1
1

− ϕ
0

1
1

 = 1− 2 = −1.
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Task 2. Let us have a point ~uα = [0, 0]> in an image captured by camera with matrix

K =

2 0 0
0 2 0
0 0 1


Write the affine coordinates of point ~vα such that the rays of points u and v form a 45◦ angle.

Solution: Let’s denote the directions of the two rays by ~x1 and ~x2. By the task, ~x1β =
[
0 0 1

]>
and thus,

~x1γ = K−1~x1β =

 1
2 0 0
0 1

2 0
0 0 1

0
0
1

 =

0
0
1

 .
We know that √

2

2
= cos 45◦ = cos∠(~x1, ~x2) =

~x>1γ~x2γ

‖~x1γ‖ ‖~x2γ‖
=

[
0 0 1

]
~x2γ∥∥∥∥∥∥

0
0
1

∥∥∥∥∥∥ ‖~x2γ‖
=

~x
(3)
2γ

‖~x2γ‖

There are infinitely many possible ~x2γ which satisfy the above equation. One of them is, for example,

~x2γ =

1
0
1


1



To write the affine coordinates of ~v we need to transform ~x2γ to basis β:

~x2β = K~x2γ =

2 0 0
0 2 0
0 0 1

1
0
1

 =

2
0
1

 .
Hence

~vα =

[
2
0

]
.
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Task 3. Let us have two images with projection matrices and epipole

P1 =

1 0 0 0
0 0 1 1
0 1 0 0

 , P2 =

1 0 0 −x
0 1 0 −y
0 0 1 −z

 , ~eα =

[
1
1

]

in the first image. Find all camera centers ~C2δ of the second camera compatible with the given arrangement.

Solution: By definition, the epipole in the first image is the projection of the center of the second camera to
the first camera:

ζ1~e1β1
= P1

[
~C2δ

1

]
, ζ1 6= 0.

We can notice that the left 3× 3 block of P2 is the identity matrix and thus ~C2δ = −P:,4 =
[
x y z

]>
. After

substituting the known epipole and the unknowns for ~C2δ we obtain

ζ1

1
1
1

 = P1


x
y
z
1

 =

 x
z + 1
y

 , ζ1 6= 0.

Therefore, all the possible centers of the second camera are
 ζ1

ζ1
ζ1 − 1

 ∣∣∣ ζ1 ∈ R\{0}

 .

�

Task 4. Consider two cameras with projection matrices

P1 =

−1 0 0 1
0 −1 0 1
0 0 1 0

 P2 =

0 0 1 1
0 1 0 −1
1 0 0 1


Find point ~Xδ in space that projects into image points ~u1α1 = [ 12 , 0]>, ~u2α2 = [3, 0]>.

Solution: We have the following equations:

ζ1~x1β = P1

[
~Xδ

1

]
, ζ2~x2β = P2

[
~Xδ

1

]
By the task, ~x1β =

[
1
2 0 1

]>
and ~x2β =

[
3 0 1

]>
. Substituting all the known values to the above equations

and denoting ~Xδ =
[
x y z

]>
we get

ζ1

 1
2
0
1

 =

−1 0 0 1
0 −1 0 1
0 0 1 0



x
y
z
1

 , ζ2

3
0
1

 =

0 0 1 1
0 1 0 −1
1 0 0 1



x
y
z
1


2



which is equivalent to

ζ1

 1
2
0
1

 =

−x+ 1
−y + 1
z

 , ζ2

3
0
1

 =

z + 1
y − 1
x+ 1


Expressing x, y, z from both matricial equations we get

x = −1

2
ζ1 + 1, y = 1, z = ζ1,

x = ζ2 − 1, y = 1, z = 3ζ2 − 1.

Making the expressions for x, y, z equal we obtain

−1

2
ζ1 + 1 = ζ2 − 1, ζ1 = 3ζ2 − 1

−1

2
(3ζ2 − 1) + 1 = ζ2 − 1⇒ ζ2 = 1⇒ ζ1 = 3 · 1− 1 = 2

Thus,

x = −1

2
· 2 + 1 = 0, y = 1, z = 2,

and

~Xδ =

0
1
2

 .
�

Task 5. Suppose we are given 2 calibrated cameras and the calibrated camera projection matrix of the first
camera is

P1γ1 =
[
R1 −R1 ~C1δ

]
=

0 1 0 0
0 0 1 0
1 0 0 0


Find all possible centers ~C2δ of the second camera knowing that a multiple of the essential matrix which relates
these cameras is

G = τE =

 0 1 0
−1 0 1
0 1 0

 , τ 6= 0.

Solution: By definition, the essential matrix takes the form

E = R2
[
~C2δ − ~C1δ

]
× R
>
1

Hence
G = τE = τR2

[
~C2δ − ~C1δ

]
× R
>
1

GR1 = τR2
[
~C2δ − ~C1δ

]
×

Since ~C1δ =
[
0 0 0

]>
, then after substituting everything we are given by the task we obtain 0 1 0

−1 0 1
0 1 0

0 1 0
0 0 1
1 0 0

 = τR2
[
~C2δ

]
×

0 0 1
1 −1 0
0 0 1


︸ ︷︷ ︸

A

= τR2
[
~C2δ

]
× (1)

3



We claim that all the solutions ~C2δ can be obtained as the kernel of A (from which we must exclude ~C2δ =
~C1δ = 0), i.e. S = ker A\{0}, where S is the set of solutions for ~C2δ. We immediately see that ~C2δ can’t be the
zero vector, because otherwise the right-hand side of Equation (1) would become zero, but the left-hand side is

not. We also see that any solution ~C2δ to the Equation (1) belongs to ker A, since

A = τR2
[
~C2δ

]
× ⇒ A~C2δ = τR2

[
~C2δ

]
×
~C2δ = 0 (2)

Finally, we need to show that any element from ker A\{0} is a solution to Equation (1). By the task we know

that Equation (1) (with unknowns τ, R2, ~C2δ) has at least one solution (τ∗, R∗2,
~C∗2δ) (because when we say that

G relates the 2 cameras, it automatically means, that such a second camera exists), i.e.

A = τ∗R∗2
[
~C∗2δ
]
× (3)

By the argument from Equation (2) we know that ~C∗2δ ∈ ker A\{0}. Thus, any element from ker A\{0} can be

obtained as σ ~C∗2δ for a nonzero σ ∈ R. We set the new solution to be ( τ
∗

σ , R
∗
2, σ

~C∗2δ) and we check if it indeed
the solution to Equation (1):

A =
τ∗

σ
R∗2
[
σ ~C∗2δ

]
× =

τ∗

σ
R∗2σ

[
~C∗2δ
]
× = τ∗R∗2

[
~C∗2δ
]
×

which holds true due to Equation (3). We find the kernel of A:0 0 1
1 −1 0
0 0 1

xy
z

 =

0
0
0


Using Gaussian Elimination we can solve this system and obtain the set of solutions:

S = ker A\{0} =


tt

0

 ∣∣∣ t ∈ R\{0}

 .

�

Remark 1. We could use another strategy to solve this task. We could find the calibrated epipole in the first
camera:

G~e1γ1 = τE~e1γ1 = 0⇒ ~e1γ1 =

1
0
1

 .
Now, we know that

λ~e1γ1 = P1γ1

[
~C2δ

1

]
, λ 6= 0

from which we obtain the set of solutions to ~C2δ:
λλ

0

 ∣∣∣ λ ∈ R\{0}

 .

Remark 2. Notice that the kernel of G is not ~C2δ, but R1(~C2δ − ~C1δ), since

GR1(~C2δ − ~C1δ) = τR2
[
~C2δ − ~C1δ

]
× R
>
1 R1︸ ︷︷ ︸
I

(~C2δ − ~C1δ) = τR2
[
~C2δ − ~C1δ

]
× (~C2δ − ~C1δ) = 0.

It would be equal to ~C2δ if R1 was equal to I. This is actually what we did in slide 3/8 in [1]: we first transformed
the two cameras by

H−1 =

[
R>1

~C1δ

0> 1

]
After this transformation we get the set of new cameras (I, 0) and (R ′2,

~C ′2δ) = (R2R
>
1 , R1(~C2δ − ~C1δ)) and

G = τE = τR ′2
[
~C ′2δ
]
× ⇒ ker G = 〈~C ′2δ〉.

To get, however, ~C2δ from ~C ′2δ we need to do the following:

~C ′2δ = R1(~C2δ − ~C1δ))⇒ ~C2δ = R1 ~C
′
2δ + ~C1δ.
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