Ambiguity in the reconstruction from 2 calibrated views

$$
\begin{aligned}
& \zeta_{1} \mathrm{~K}_{1}^{-1} \vec{x}_{1 \beta_{1}}=\underbrace{\left[\begin{array}{ll}
\mathrm{R}_{1} & -\mathrm{R}_{1} \vec{C}_{1 \delta}
\end{array}\right]}_{\mathrm{P}_{1 \gamma_{1}}}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right] \\
& \zeta_{2} \mathrm{~K}_{2}^{-1} \vec{x}_{2 \beta_{2}}=\underbrace{\left[\begin{array}{ll}
\mathrm{R}_{2} & -\mathrm{R}_{2} \vec{C}_{2 \delta}
\end{array}\right]}_{\mathrm{P}_{2 \gamma_{2}}}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right]
\end{aligned}
$$

The solution set S is infinite since

$$
\left(\mathrm{P}_{1 \gamma_{1}}, \mathrm{P}_{2 \gamma_{2}},\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right]\right) \in S \Rightarrow\left(\mathrm{P}_{1 \gamma_{1}} \mathrm{H}^{-1}, \mathrm{P}_{2 \gamma_{2}} \mathrm{H}^{-1}, \mathrm{H}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right]\right) \in S
$$

for

$$
H=\left[\begin{array}{ll}
\mathrm{R} & \mathrm{c} \\
0^{\top} & \lambda
\end{array}\right]
$$

Ambiguity in the reconstruction from 2 calibrated views

Ambiguity in the reconstruction from 2 calibrated views

Our aim is to find just 1 solution. We start from the unknown solution

$$
\left(\mathrm{R}_{1}, \vec{C}_{1 \delta}, \mathrm{R}_{2}, \vec{C}_{2 \delta}, \vec{X}_{\delta}\right)
$$

and transform it by

$$
\mathrm{H}^{-1}=\left[\begin{array}{ll}
\mathrm{R}_{1}^{\top} & \vec{C}_{1 \delta} \\
0^{\top} & 1
\end{array}\right]
$$

to get a partially known solution

$$
\left(\mathrm{R}_{1}^{\prime}, \vec{C}_{1 \delta}^{\prime}, \mathrm{R}_{2}^{\prime}, \vec{C}_{2 \delta}^{\prime}, \vec{X}_{\delta}^{\prime}\right)=\left(\mathrm{I}, \overrightarrow{0}, \mathrm{R}_{2} \mathrm{R}_{1}^{\top}, \mathrm{R}_{1}\left(\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right), \mathrm{R}_{1} \vec{X}_{\delta}-\vec{C}_{1 \delta}\right)
$$

with the fundamental matrix

$$
\begin{gathered}
\mathrm{F}^{\prime}=\mathrm{K}_{2}^{-\top} \mathrm{R}_{2}^{\prime}\left[\vec{C}_{2 \delta}^{\prime}-\vec{C}_{1 \delta}^{\prime}\right]_{\times} \mathrm{R}_{1}^{\prime \top} \mathrm{K}_{1}^{-1}=\mathrm{K}_{2}^{-\top} \mathrm{R}_{2}^{\prime}\left[\vec{C}_{2 \delta}^{\prime}\right]_{\times} \mathrm{K}_{1}^{-1}= \\
=\mathrm{K}_{2}^{-\top} \mathrm{R}_{2} \mathrm{R}_{1}^{\top}\left[\mathrm{R}_{1}\left(\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right)\right]_{\times} \mathrm{K}_{1}^{-1}=\mathrm{K}_{2}^{-\top} \mathrm{R}_{2}\left[\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right]_{\times} \mathrm{R}_{1}^{\top} \mathrm{K}_{1}^{-1}=\mathrm{F}
\end{gathered}
$$

Ambiguity in the reconstruction from 2 calibrated views

Fundamental matrix computation

Key note: it is not possible to reveal the fundamental matrix as it is defined by

$$
\mathrm{F}=\mathrm{K}_{2}^{-\top} \mathrm{R}_{2}\left[\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right]_{\times} \mathrm{R}_{1}^{\top} \mathrm{K}_{1}^{-1}
$$

using only image correspondences. We can find only its scalar multiple $\tau \mathrm{F}$.

There are 2 reasons for that: algebraic and geometric.

Algebraic reason

The equations

$$
\vec{x}_{2 \beta_{2}} \mathrm{~F} \vec{x}_{1 \beta_{1}}=0, \quad \operatorname{det} \mathrm{~F}=0
$$

are homogeneous, i.e.

$$
\mathrm{F} \text { is a solution } \Rightarrow \tau \mathrm{F} \text { is a solution. }
$$

Equation

$$
\operatorname{det}\left(\alpha \mathbf{G}_{1}+\beta \mathbf{G}_{2}\right)=0
$$

gives the following picture of solutions:

Geometric reason

4 solutions ($\mathrm{R}, \vec{C}_{\delta}$) with $\left\|\vec{C}_{\delta}\right\|=1$ for a given E

Fig. 9.12. The four possible solutions for calibrated reconstruction from E. Between the left and right sides there is a baseline reversal. Between the top and bottom rows camera B rotates 180° about the baseline. Note, only in (a) is the reconstructed point in front of both cameras.

