GVG Exam 01
 Solution

May 29, 2021

Task 1. Consider the cameras with the camera projection matrices

$$
\mathrm{P}=\left[\begin{array}{llll}
a & 0 & 0 & a \\
0 & 2 & 0 & 1 \\
a & 0 & a & 1
\end{array}\right]
$$

Find all values of the parameter $a \in \mathbb{R}$ such that P projects point

$$
\vec{X}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

from the space onto the line $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$ in the image.
Solution: The equation of projection is

$$
\zeta \vec{x}_{\beta}=\mathrm{P}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right], \quad \zeta \neq 0
$$

The point \vec{x}_{β} belongs to the line $\vec{l}_{\bar{\beta}}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$ if and only if $\vec{l}_{\bar{\beta}}^{\top} \vec{x}_{\beta}=0$, i.e.

$$
\begin{gathered}
0=\vec{l} \frac{\vec{l}_{\beta}^{\top}}{x_{\beta}}=\vec{l}_{\frac{1}{\beta}}^{T} \zeta \vec{x}_{\beta}=\vec{l} \frac{\dagger}{\beta} \mathrm{P}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right] \\
{\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{cccc}
a & 0 & 0 & a \\
0 & 2 & 0 & 1 \\
a & 0 & a & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
1 \\
1
\end{array}\right]=0} \\
{\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
2 a \\
1 \\
2 a+1
\end{array}\right]=0} \\
4 a+2=0 \Rightarrow a=-\frac{1}{2}
\end{gathered}
$$

If we substitute $a=-\frac{1}{2}$ to P , then we see that the point X is projected to the ideal point $\left[\begin{array}{ccc}-1 & 1 & 0\end{array}\right]^{\top}$ of the line $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top}$.
Task 2. Consider a camera with $\omega=\mathrm{K}^{-\top} \mathrm{K}^{-1}$ matrix as follows

$$
\omega=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & o_{1} \\
1 & o_{1} & 3
\end{array}\right]
$$

with parameter $o_{1} \in \mathbb{R}$. Find the values of the parameter such that rays through image points

$$
\vec{x}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \vec{y}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

would contain the right angle.

Solution: The constraints on o_{1} are

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & o_{1} \\
1 & o_{1} & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=0} \\
{\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
o_{1}+1 \\
o_{1}+3
\end{array}\right]=0} \\
o_{1}+4=0 \Rightarrow o_{1}=-4
\end{gathered}
$$

Task 3. Consider lines $\vec{p}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\top}, \vec{q}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\top}$ and points $\vec{X}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{\top}, \vec{Y}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\top}$ in the real projective plane and their images $\vec{p}^{\prime}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\top}, \vec{q}^{\prime}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\top}$ and $\vec{X}^{\prime}=\left[\begin{array}{ll}0 & 1 \\ 1\end{array}\right]^{\top}, \vec{Y}^{\prime}=$ $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{\top}$ by an unknown homography. Find all matrices H of all homographies that can map the points and the lines as above.

Solution: We have the following equations

$$
\begin{gathered}
\mathrm{H}^{-\top} \vec{p}=\lambda_{1} \vec{p}^{\prime}, \quad \mathrm{H}^{-\top} \vec{q}=\lambda_{2} \vec{q}^{\prime} \quad \mathrm{H} \vec{X}=\lambda_{3} \vec{X}^{\prime} \quad \mathrm{H} \vec{Y}=\lambda_{4} \vec{Y}^{\prime}, \quad \lambda_{i} \neq 0 \\
\mathrm{H}^{\top} \vec{p}^{\prime}=\frac{1}{\lambda_{1}} \vec{p}, \quad \mathrm{H}^{\top} \vec{q}^{\prime}=\frac{1}{\lambda_{2}} \vec{q}, \quad \mathrm{H} \vec{X}=\lambda_{3} \vec{X}^{\prime} \quad \mathrm{H} \vec{Y}=\lambda_{4} \vec{Y}^{\prime}
\end{gathered}
$$

If we denote

$$
\mathrm{H}=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

then we obtain
$\left[\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & i\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\frac{1}{\lambda_{1}}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \quad\left[\begin{array}{llc}a & d & g \\ b & e & h \\ c & f & i\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\frac{1}{\lambda_{2}}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \quad\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\lambda_{3}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \quad\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=\lambda_{4}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
or,

$$
\begin{gathered}
a+d=b+e \neq 0, \quad c+f=0 \\
g=h=0, \quad i \neq 0 \\
a+c=0, \quad d+f=g+i \neq 0 \\
b+c=h+i \neq 0, \quad e+f=0
\end{gathered}
$$

Simplifying it (by replacing g and h with 0) we get

$$
\begin{gathered}
a+d=b+e \neq 0, \quad c+f=0, \\
i \neq 0, \\
a+c=0, \quad d+f=i, \\
b+c=i, \quad e+f=0
\end{gathered}
$$

Expressing a, b, c, d, e via f and i we get

$$
a=f, \quad b=f+i, \quad c=-f, \quad d=-f+i, \quad e=-f, \quad i \neq 0 .
$$

Thus, all possible homographies take the form

$$
\left\{\left.\left[\begin{array}{ccc}
f & f+i & -f \\
-f+i & -f & f \\
0 & 0 & i
\end{array}\right] \right\rvert\, f, i \in \mathbb{R}, i \neq 0\right\}
$$

Task 4. Assume line $\vec{p}=[1,1,-1]^{\top}$ and point $\vec{X}=[1,1,1]^{\top}$ in a real projective plane. Find a basis vector \vec{q} of a one-dimensional subspace of \mathbb{R}^{3} which represents the line q that is parallel to line \vec{p} and passes through point \vec{X}.

Solution: Let $\vec{q}=\left[\begin{array}{lll}a & b & c\end{array}\right]^{\top}$. The constraint that p is parallel to q can be expressed as that their intersection is a point at infinity, i.e.

$$
\vec{p} \times \vec{q}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \times\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
b+c \\
-a-c \\
b-a
\end{array}\right]=\left[\begin{array}{l}
\cdot \\
. \\
0
\end{array}\right] \Rightarrow \vec{q}=\left[\begin{array}{l}
a \\
a \\
c
\end{array}\right] .
$$

The constraint that q passes through X can be expressed as follows:

$$
\vec{p}^{\top} \vec{X}=\left[\begin{array}{lll}
a & a & c
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=2 a+c=0 \Rightarrow \vec{q}=\left[\begin{array}{c}
a \\
a \\
-2 a
\end{array}\right] .
$$

Thus, one of the possible homogeneous representatives of q is, for example,

$$
\vec{q}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

Task 5. Find all fundamental matrices which are compatible with images in two calibrated cameras ($\mathrm{K}=\mathrm{I}$) that translate in the space such that point $\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$ in the first image is in the correspondence with point $\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$ in the second image.

Solution: By the task, we know that the cameras are calibrated ($\mathrm{K}_{1}=\mathrm{K}_{2}=\mathrm{I}$) and that they make only translational movement, i.e. $R_{1}=R_{2}=R$. The fundamental matrix then takes the form

$$
\mathrm{F}=\mathrm{R}\left[\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right]_{\times} \mathrm{R}^{\top} .
$$

We may rewrite the above formula as follows:

$$
\begin{equation*}
\mathrm{F}=\mathrm{R}\left[\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right]_{\times} \mathrm{R}^{\top}=\underbrace{\mathrm{RR}^{\top}}_{\mathrm{I}}\left[\mathrm{R}\left(\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right)\right]_{\times}=\left[\mathrm{R}\left(\vec{C}_{2 \delta}-\vec{C}_{1 \delta}\right)\right]_{\times} \tag{1}
\end{equation*}
$$

We claim that all fundamental matrices of the form (1) can be parametrized as follows:

$$
\left\{\left.\left[\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3} \backslash\{\overrightarrow{0}\}\right\}
$$

Obviously, every matrix of the form (1) belongs to the above set, since F in (1) is described by the cross product matrix. Conversely, any matrix from the above set is realizable as the fundamental matrix from (1): we just take $\mathrm{R}=\mathrm{I}, \vec{C}_{1 \delta}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\top}$ and $\vec{C}_{2 \delta}=\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}$. The condition $\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top} \neq\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\top}$ is necessary to have $\operatorname{rank} \mathrm{F}=2$.

Task 6. Assume two cameras. The first camera has the camera projection matrix

$$
P_{1}=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

Epipole in the second camera equals

$$
\vec{e}_{2 \beta_{2}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Find all projection matrices P_{2}.

Solution: We first find the center of the first camera:

$$
\vec{C}_{1 \delta}=-\mathrm{P}_{:, 1: 3}^{-1} \mathrm{P}_{:, 4}=-\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]=-\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

By definition, the epipole in the second camera is the image of the center of the first camera in the second camera:

$$
\begin{aligned}
& \zeta \vec{e}_{2 \beta_{2}}=\mathrm{P}_{2}\left[\begin{array}{c}
\vec{C}_{1 \delta} \\
1
\end{array}\right], \quad \zeta \neq 0 \\
& \zeta\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\mathrm{P}_{2}\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right], \quad \zeta \neq 0 .
\end{aligned}
$$

If we denote

$$
\mathrm{P}_{2}=\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l
\end{array}\right]
$$

then the constraints on elements of P_{2} are the following:

$$
\zeta=c+d, \quad 0=g+h, \quad \zeta=k+l, \quad \zeta \neq 0
$$

or

$$
d=\zeta-c, \quad h=-g, \quad l=\zeta-k, \quad \zeta \neq 0
$$

Thus, all the matrices P_{2} have the form

$$
\mathrm{P}_{2}=\left[\begin{array}{cccc}
a & b & c & \zeta-c \\
e & f & g & -g \\
i & j & k & \zeta-k
\end{array}\right], \quad \zeta \neq 0
$$

where the left 3×3 block must be an invertible matrix.

