Deep Learning (BEV033DLE)
Lecture 11 Variational Autoencoders

Czech Technical University in Prague

- Generative models in machine learning
- Variational autoencoders (VAE)
- Alternative approaches
Generative models

Generative models: Given training data $\mathcal{T} = \{x_j \mid j = 1, \ldots, \ell\}$ drawn i.i.d. from an unknown distribution $p_d(x)$, the goal is to learn a DNN model that allows to generate random instances of x similar to $x \sim p_d(x)$.

Approach this task by using latent variable models:

- fix a latent noise space \mathcal{Z} and a distribution $p(z)$ on it,
- design a neural network d_θ that maps \mathcal{Z} to the feature space \mathcal{X},
- learn its parameters θ so that the resulting distribution $p_\theta(x)$ “reproduces” the data distribution.
Generative models

Classical autoencoder networks

\[e_{\varphi}(x) \quad d_{\theta}(z) \]

\[\mathbb{E}_T \| x - d_{\theta} \circ e_{\varphi}(x) \|^2. \]

- the distribution in the latent space is beyond our control,
- the model can not be used for sampling/generating \(x \) instances.
(Gaussian) Variational Autoencoders

- latent space $\mathcal{Z} = \mathbb{R}^m$, prior distribution $p(z) : \mathcal{N}(0, I)$
- image space $\mathcal{X} = \mathbb{R}^n$, conditional distribution $p_\theta(x \mid z) : \mathcal{N}(\mu_\theta(z), \sigma^2 I)$

The mapping $\mathcal{Z} \ni z \mapsto \mu_\theta \in \mathcal{X}$ is modelled in terms of a (deep, convolutional) decoder network $d_\theta : \mathcal{Z} \rightarrow \mathcal{X}$.

- Learning goal: maximise data log-likelihood

$$L(\theta; \mathcal{T}) = \mathbb{E}_\mathcal{T} \log p_\theta(x) = \mathbb{E}_\mathcal{T} \log \int_{\mathcal{Z}} dz \ p_\theta(x \mid z) p(z)$$

Computing $L(\theta)$ or $\nabla_\theta L(\theta)$ is not tractable! It would require to integrate the decoder mapping $d_\theta(z)$ over the latent space \mathcal{Z}:
(Gaussian) Variational Autoencoders

Use ELBO, i.e. a lower bound of the data log-likelihood

\[
L(\theta) \geq L_B(\theta) = \mathbb{E}_T \mathbb{E}_{q(z|x)} \left[\log p_\theta(x|z) - \log \frac{q(z|x)}{p(z)} \right]
\]

May be we can apply the **EM algorithm** directly?

E-step fix \(\theta_t \), set \(q_t(z|x) = p_\theta_t(z|x) \)

M-step fix \(q_t(z|x) \), maximise \(\mathbb{E}_T \mathbb{E}_{q_t(z|x)} \log p_\theta(x|z) \rightarrow \max_\theta \)

No, computing \(p_\theta_t(z|x) \) would require to “invert” the decoder network.

Way out: choose a class of **amortized inference** models \(q_\phi(z|x) : \mathcal{N}(\mu_\phi(x), \text{diag} (\sigma_\phi^2(x))) \).

The mapping \(x \mapsto \mu_\phi(x), \sigma_\phi(x) \) is modelled in terms of a (deep, convolutional) **encoder network** \(e_\phi : \mathcal{X} \rightarrow (\mathcal{Z}, \bar{\mathcal{Z}}) \).

The ELBO criterion reads now

\[
L_B(\theta, \phi) = \mathbb{E}_T \left[\mathbb{E}_{q_\phi(z|x)} \log p_\theta(x|z) - D_{KL}(q_\phi(z|x) \| p(z)) \right]
\]

Can we maximise it by gradient ascent?
(Gaussian) Variational Autoencoders

\[
L_B(\theta, \varphi) = \mathbb{E}_T \left[\mathbb{E}_{q_\varphi(z|\ x)} \log p_\theta(x|z) - D_{KL}(q_\varphi(z|x) \parallel p(z)) \right]
\]

- \(\mathbb{E}_T\): SGD with mini-batches ✓
- \(D_{KL}(q_\varphi(z|x) \parallel p(z))\): both Gaussians factorise and the KL-divergence decomposes into a sum over components \(\sum_{i=1}^{m} D_{KL}(q_\varphi(z_i|x) \parallel p(z_i))\). The KL-divergence of univariate Gaussian distributions can be computed in closed form! ✓
- \(\nabla_\theta \mathbb{E}_{q_\varphi(z|x)} \log p_\theta(x|z)\): use SGD by sampling \(z \sim q_\varphi(z|x)\). ✓
- \(\nabla_\varphi \mathbb{E}_{q_\varphi(z|x)} \log p_\theta(x|z)\): this gradient is critical. We can not simply replace \(\mathbb{E}_{q_\varphi(z|x)}\) by a sample \(z \sim q_\varphi(z|x)\), because it will depend on \(\varphi\)!
 Consider \(\nabla_\varphi \mathbb{E}_{q_\varphi(z)} f(z)\): if we replace \(\mathbb{E}_{q_\varphi(z)}\) by a finite sample \(S\) with elements \(z \sim q_\varphi(z)\), then \(\nabla_\varphi \sum_{z \in S} f(z) = ?\)

Re-parametrisation trick: Simple solution for Gaussians:

\[
\mathbb{E}_{z \sim \mathcal{N}(\mu, \sigma^2)}[f(z)] = \mathbb{E}_{z \sim \mathcal{N}(0, 1)}[f(\sigma z + \mu)]
\]

Now, if \(\mu\) and \(\sigma\) depend on \(\varphi\):

\[
\nabla_\varphi \mathbb{E}_{z \sim \mathcal{N}(\mu_\varphi, \sigma_\varphi^2)}[f(z)] = \mathbb{E}_{z \sim \mathcal{N}(0, 1)}[\nabla_\varphi f(\sigma_\varphi z + \mu_\varphi)]
\]
(Gaussian) Variational Autoencoders

Overall, the learning step for a (Gaussian) VAE is pretty simple:

Fetch a mini-batch \(x \) from training data

1. apply the encoder network \(e_\phi(x) \mapsto \mu_\phi(x), \sigma_\phi(x) \) and compute \(q_\phi(z \mid x) \)
2. compute the KL-divergence \(D_{KL}(q_\phi(z \mid x) \| p(z)) \)
3. sample a batch \(z \sim q_\phi(z \mid x) \) with reparametrisation
4. apply the decoder network \(d_\theta(z) \mapsto \mu_\theta(z) \) and compute \(\log p_\theta(x \mid z) \)
5. combine the ELBO terms and let PyTorch compute the derivatives and make an SGD step.

Strengths and weaknesses of VAEs

- concise model, simple objective (ELBO), can be optimised by SGD ✓
- local optima, posterior collapse: some latent components collapse to \(q_\phi(z_i \mid x) = p(z_i) \), i.e. they carry no information. ✗
- amortized inference model \(q_\phi(z \mid x) \) may have not enough expressive power to close the gap between \(L(\theta) \) and \(L_B(\theta, \phi) \). ✗
(Gaussian) Variational Autoencoders

Advanced VAEs with strong encoders can generate very good images. A. Vahdat et al., NeurIPS 2020: A Deep Hierarchical VAE trained on CelebA data.
Alternative Approaches

Keep latent space and $p(z)$, consider deterministic decoders $D_\theta(z)$, which map $z \in \mathcal{Z} \mapsto x \in \mathcal{X}$. This mapping induces a probability distribution $p_\theta(x)$ on \mathcal{X}.

Design a quantitative “measure” for the difference between the distributions $p_d(x)$ and $p_\theta(x)$ and try to minimise it.

Popular examples: Generative Adversarial Networks (GAN)

- GAN: uses a binary classifier network and trains it to distinguish natural images (training data) from generated ones.
- WGAN: uses Wasserstein distance to measure the difference between $p_d(x)$ and $p_\theta(x)$.