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� Generative models in machine learning

� Variational autoencoders (VAE)

� Alternative approaches
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Generative models

Generative models: Given training data T = {xj | j = 1, . . . , `} drawn i.i.d. from an
unknown distribution pd(x), the goal is to learn a DNN model that allows to generate
random instances of x similar to x∼ pd(x).

Approach this task by using latent variable models:

� fix a latent noise space Z and a distribution p(z) on it,

� design a neural network dθ that maps Z to the feature space X ,

� learn its parameters θ so that the resulting distribution pθ(x) “reproduces” the data
distribution.
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Generative models

Classical autoencoder networks

latent spaceimage space image space

encoder decoder

e.g. with learning criterion ET ‖x−dθ ◦eϕ(x)‖2. However,

� the distribution in the latent space is beyond our control,

� the model can not be used for sampling/generating x instances.

http://cmp.felk.cvut.cz
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(Gaussian) Variational Autoencoders

� latent space Z = Rm, prior distribution p(z) : N (0,I)

� image space X = Rn, conditional distribution pθ(x |z) : N (µθ(z),σ
2I)

The mapping Z 3 z 7→ µθ ∈ X is modelled in terms of a (deep, convolutional)
decoder network dθ : Z →X .

� Learning goal: maximise data log-likelihood

L(θ;T ) = ET logpθ(x) = ET log
∫
Z
dz pθ(x |z)p(z)

Computing L(θ) or ∇θL(θ) is not tractable! It would require to integrate the
decoder mapping dθ(z) over the latent space Z:

latent space image space

decoder

http://cmp.felk.cvut.cz


5/9
(Gaussian) Variational Autoencoders

Use ELBO, i.e. a lower bound of the data log-likelihood

L(θ)> LB(θ) = ET Eq(z |x)
[
logpθ(x |z)− log

q(z |x)
p(z)

]
May be we can apply the EM algorithm directly?
E-step fix θt, set qt(z |x) = pθt(z |x)
M-step fix qt(z |x), maximise ET Eqt(z |x) logpθ(x |z)→maxθ

No, computing pθt(z |x) would require to “invert” the decoder network.

Way out: choose a class of amortized inference models qϕ(z |x) : N
(
µϕ(x),diag(σ

2
ϕ(x)

)
.

The mapping x 7→ µϕ(x),σϕ(x) is modelled in terms of a (deep, convolutional) encoder
network eϕ : X → (Z,Z).

The ELBO criterion reads now

LB(θ,ϕ) = ET
[
Eqϕ(z |x) logpθ(x |z)−DKL(qϕ(z |x) ‖ p(z))

]
Can we maximise it by gradient ascent?

http://cmp.felk.cvut.cz
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(Gaussian) Variational Autoencoders

LB(θ,ϕ) = ET
[
Eqϕ(z |x) logpθ(x |z)−DKL(qϕ(z |x) ‖ p(z))

]
� ET : SGD with mini-batches X
� DKL(qϕ(z |x) ‖ p(z)) : both Gaussians factorise and the KL-divergence decomposes
into a sum over components

∑m
i=1DKL(qϕ(zi |x) ‖ p(zi)). The KL-divergence of

univariate Gaussian distributions can be computed in closed form! X
� ∇θEqϕ(z |x) logpθ(x |z) : use SGD by sampling z ∼ qϕ(z |x). X
� ∇ϕEqϕ(z |x) logpθ(x |z) : this gradient is critical. We can not simply replace Eqϕ(z |x) by
a sample z ∼ qϕ(z |x), because it will depend on ϕ!

Consider ∇ϕEqϕ(z)f(z) : if we replace Eqϕ(z) by a finite sample S with elements
z ∼ qϕ(z), then ∇ϕ

∑
z∈S f(z) =?

Re-parametrisation trick: Simple solution for Gaussians:

Ez∼N (µ,σ2)[f(z)] = Ez∼N (0,1)

[
f(σz+µ)

]
Now, if µ and σ depend on ϕ:

∇ϕEz∼N (µϕ,σ2ϕ)
[f(z)] = Ez∼N (0,1)

[
∇ϕf(σϕz+µϕ)

]

http://cmp.felk.cvut.cz
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(Gaussian) Variational Autoencoders

Overall, the learning step for a (Gaussian) VAE is pretty simple:

Fetch a mini-batch x from training data

1. apply the encoder network eϕ(x) 7→ µϕ(x),σϕ(x) and compute qϕ(z |x)

2. compute the KL-divergence DKL(qϕ(z |x) ‖ p(z))

3. sample a batch z ∼ qϕ(z |x) with reparametrisation

4. apply the decoder network dθ(z) 7→ µθ(z) and compute logpθ(x |z)

5. combine the ELBO terms and let PyTorch compute the derivatives and make an SGD
step.

Strengths and weaknesses of VAEs

� concise model, simple objective (ELBO), can be optimised by SGD X

� local optima, posterior collapse: some latent components collapse to qϕ(zi |x) = p(zi),
i.e. they carry no information. 7

� amortized inference model qϕ(z |x) may have not enough expressive power to close the
gap between L(θ) and LB(θ,ϕ). 7

http://cmp.felk.cvut.cz
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(Gaussian) Variational Autoencoders

Advanced VAEs with strong encoders can generate very good images. A. Vahdat et al.,
NeurIPS 2020: A Deep Hierarchical VAE trained on CelebA data.

http://cmp.felk.cvut.cz
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Alternative Approaches

Keep latent space and p(z), consider deterministic decoders Dθ(z), which map
z ∈ Z 7→ x ∈ X . This mapping induces a probability distribution pθ(x) on X

Design a quantitative “measure” for the difference between the distributions pd(x) and pθ(x)
and try to minimise it.

Popular examples: Generative Adversarial Networks (GAN)

� GAN: uses a binary classifier network and trains it to distinguish natural images
(training data) from generated ones.

� WGAN: uses Wasserstein distance to measure the difference between pd(x) and pθ(x).

http://cmp.felk.cvut.cz
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