Deep Learning (BEV033DLE) Lecture 11 Variational Autoencoders

Czech Technical University in Prague

Generative models in machine learning

- Variational autoencoders (VAE)
- Alternative approaches

Generative models

(m p 2/9

Generative models: Given training data $\mathcal{T} = \{x_j \mid j = 1, ..., \ell\}$ drawn i.i.d. from an unknown distribution $p_d(x)$, the goal is to learn a DNN model that allows to generate random instances of x similar to $x \sim p_d(x)$.

Approach this task by using *latent variable models*:

- igstarrow fix a latent noise space ${\mathcal Z}$ and a distribution p(z) on it,
- igstarrow design a neural network $d_ heta$ that maps $\mathcal Z$ to the feature space $\mathcal X$,
- learn its parameters θ so that the resulting distribution $p_{\theta}(x)$ "reproduces" the data distribution.

Generative models

Classical autoencoder networks

- e.g. with learning criterion $\mathbb{E}_{\mathcal{T}} \| x d_{\theta} \circ e_{\varphi}(x) \|^2$. However,
 - the distribution in the latent space is beyond our control,
 - \blacklozenge the model can not be used for sampling/generating x instances.

- latent space $\mathcal{Z} = \mathbb{R}^m$, prior distribution $p(z) : \mathcal{N}(0, \mathbb{I})$
- image space $\mathcal{X} = \mathbb{R}^n$, conditional distribution $p_{\theta}(x | z) \colon \mathcal{N}(\mu_{\theta}(z), \sigma^2 \mathbb{I})$ The mapping $\mathcal{Z} \ni z \mapsto \mu_{\theta} \in \mathcal{X}$ is modelled in terms of a (deep, convolutional) decoder network $d_{\theta} \colon \mathcal{Z} \to \mathcal{X}$.

Learning goal: maximise data log-likelihood

$$L(\theta; \mathcal{T}) = \mathbb{E}_{\mathcal{T}} \log p_{\theta}(x) = \mathbb{E}_{\mathcal{T}} \log \int_{\mathcal{Z}} dz \, p_{\theta}(x \,|\, z) p(z)$$

Computing $L(\theta)$ or $\nabla_{\theta}L(\theta)$ is not tractable! It would require to integrate the decoder mapping $d_{\theta}(z)$ over the latent space \mathcal{Z} :

Use ELBO, i.e. a lower bound of the data log-likelihood

$$L(\theta) \ge L_B(\theta) = \mathbb{E}_{\mathcal{T}} \mathbb{E}_{q(z \mid x)} \left[\log p_{\theta}(x \mid z) - \log \frac{q(z \mid x)}{p(z)} \right]$$

May be we can apply the *EM algorithm* directly?

E-step fix θ_t , set $q_t(z | x) = p_{\theta_t}(z | x)$

M-step fix $q_t(z \mid x)$, maximise $\mathbb{E}_{\mathcal{T}} \mathbb{E}_{q_t(z \mid x)} \log p_{\theta}(x \mid z) \to \max_{\theta}$

No, computing $p_{\theta_t}(z | x)$ would require to "invert" the decoder network.

Way out: choose a class of *amortized inference* models $q_{\varphi}(z | x) : \mathcal{N}(\mu_{\varphi}(x), \operatorname{diag}(\sigma_{\varphi}^2(x)))$.

The mapping $x \mapsto \mu_{\varphi}(x), \sigma_{\varphi}(x)$ is modelled in terms of a (deep, convolutional) encoder network $e_{\varphi} \colon \mathcal{X} \to (\mathcal{Z}, \mathcal{Z})$.

The ELBO criterion reads now

$$L_B(\theta,\varphi) = \mathbb{E}_{\mathcal{T}} \Big[\mathbb{E}_{q_{\varphi}(z \mid x)} \log p_{\theta}(x \mid z) - D_{KL}(q_{\varphi}(z \mid x) \parallel p(z)) \Big]$$

Can we maximise it by gradient ascent?

$$L_B(\theta,\varphi) = \mathbb{E}_{\mathcal{T}} \Big[\mathbb{E}_{q_{\varphi}(z \mid x)} \log p_{\theta}(x \mid z) - D_{KL}(q_{\varphi}(z \mid x) \parallel p(z)) \Big]$$

- $\mathbb{E}_{\mathcal{T}}$: SGD with mini-batches \checkmark
- $D_{KL}(q_{\varphi}(z | x) || p(z))$: both Gaussians factorise and the KL-divergence decomposes into a sum over components $\sum_{i=1}^{m} D_{KL}(q_{\varphi}(z_i | x) || p(z_i))$. The KL-divergence of univariate Gaussian distributions can be computed in closed form! \checkmark
- $\nabla_{\theta} \mathbb{E}_{q_{\varphi}(z \mid x)} \log p_{\theta}(x \mid z)$: use SGD by sampling $z \sim q_{\varphi}(z \mid x)$. \checkmark
- $\nabla_{\varphi} \mathbb{E}_{q_{\varphi}(z \mid x)} \log p_{\theta}(x \mid z)$: this gradient is *critical*. We can not simply replace $\mathbb{E}_{q_{\varphi}(z \mid x)}$ by a sample $z \sim q_{\varphi}(z \mid x)$, because it will depend on φ !

Consider $\nabla_{\varphi} \mathbb{E}_{q_{\varphi}(z)} f(z)$: if we replace $\mathbb{E}_{q_{\varphi}(z)}$ by a finite sample S with elements $z \sim q_{\varphi}(z)$, then $\nabla_{\varphi} \sum_{z \in S} f(z) =$?

Re-parametrisation trick: Simple solution for Gaussians:

$$\mathbb{E}_{z \sim \mathcal{N}(\mu, \sigma^2)}[f(z)] = \mathbb{E}_{z \sim \mathcal{N}(0, 1)}\left[f(\sigma z + \mu)\right]$$

Now, if μ and σ depend on φ :

$$\nabla_{\varphi} \mathbb{E}_{z \sim \mathcal{N}(\mu_{\varphi}, \sigma_{\varphi}^2)}[f(z)] = \mathbb{E}_{z \sim \mathcal{N}(0, 1)} \Big[\nabla_{\varphi} f(\sigma_{\varphi} z + \mu_{\varphi}) \Big]$$

Overall, the learning step for a (Gaussian) VAE is pretty simple:

Fetch a mini-batch x from training data

- 1. apply the encoder network $e_{\varphi}(x) \mapsto \mu_{\varphi}(x), \sigma_{\varphi}(x)$ and compute $q_{\varphi}(z \,|\, x)$
- 2. compute the KL-divergence $D_{KL}(q_{\varphi}(z \,|\, x) \parallel p(z))$
- 3. sample a batch $z \sim q_{\varphi}(z \,|\, x)$ with reparametrisation
- 4. apply the decoder network $d_{\theta}(z) \mapsto \mu_{\theta}(z)$ and compute $\log p_{\theta}(x | z)$
- 5. combine the ELBO terms and let PyTorch compute the derivatives and make an SGD step.

Strengths and weaknesses of VAEs

- ullet concise model, simple objective (ELBO), can be optimised by SGD \checkmark
- local optima, *posterior collapse*: some latent components collapse to $q_{\varphi}(z_i | x) = p(z_i)$, i.e. they carry no information. **X**
- amortized inference model $q_{\varphi}(z | x)$ may have not enough expressive power to close the gap between $L(\theta)$ and $L_B(\theta, \varphi)$. X

Advanced VAEs with strong encoders can generate very good images. A. Vahdat et al., NeurIPS 2020: A Deep Hierarchical VAE trained on CelebA data.

Alternative Approaches

9/9 Keep latent space and p(z), consider *deterministic* decoders $D_{\theta}(z)$, which map $z \in \mathcal{Z} \mapsto x \in \mathcal{X}$. This mapping induces a probability distribution $p_{\theta}(x)$ on \mathcal{X}

Design a quantitative "measure" for the difference between the distributions $p_d(x)$ and $p_{\theta}(x)$ and try to minimise it.

Popular examples: Generative Adversarial Networks (GAN)

- GAN: uses a binary classifier network and trains it to distinguish natural images (training data) from generated ones.
- WGAN: uses Wasserstein distance to measure the difference between $p_d(x)$ and $p_{\theta}(x)$.