Deep Learning (BEV033DLE)
Lecture 13 Recurrent Neural Networks

Czech Technical University in Prague

® Recurrent models
® Special cases and recurrent back propagation
® Error back propagation through time

€ Gated recurrent units, GRU and LSTM networks
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Recurrent models in a nutshell

input sequence x = (x1,...,T¢,...,x7), T € R™. Similarly: output sequence y with
elements 7; and sequence h of (hidden) states with elements h; € R%. Often all three
sequences have the same length.

recurrent (dynamic) system with outputs

hi = f(w¢, hi—1,w)

Yt = g(htvv>
where w and v are parameters. The model defines sequence mappings h = F,,(z) and
y=Gy(h).
loss function £(y,y’); often locally additive > _, ¢(y+,y;)

Training goal: given training data 7 = {(27,47) | j =1,...,m}, learn the model parameters
w, v by solving

% Z {(y,(Gyo Fy)(z)) — min

w,v
x,yET
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Incarnations of recurrent models and related tasks

® Deep neural network for classification with additional feedback connections. x - input,
constant not depending on time. y - output of the network, network head, e.g.
logsoftmax, h -states of all hidden layers. The loss function depends only on the last
output yr.

¢ ‘“infinite state automata”: the output space is sufficient for keeping the history, thus h
and y can be identified, i.e. y: = f(xs,y:—1,w).
Example: landcover type monitoring for a geo-location: x - sequence of spectral

satellite measurements, y - sequence of states (e.g. coniferous forest, broadleaf forest,
clearcut, bark beetle degradation etc.)

¢ general sequence segmentation: hidden states h; are needed for keeping track of longer
past and are latent.

Examples: speech recognition, x - audio signal, y -sequence of words. NLP translation:

Er liebte zu essen .

He loved to eat
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Learning RNINs is particularly simple in the case that

® h and y can be identified, i.e. y; = f(x¢,y:—1,w) and
@ the loss is locally additive > _, £(v+,y;)

We can split the sequences (z,y) from training data into triplets (y:—1, ¢, y¢) and train f

from 1
m Z Zé(ytafw(xtayt—l)) —>m£n

x,yeT

Neither forward nor backward propagation through the sequence are needed.

If the hidden states h; do not coincide with outputs 4; and are latent, then learning becomes
considerably more complicated.
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Recurrent backpropagation: (Almeida, 1987), (Pineda, 1987)
Learning approach for classifier /regression networks with feedback connections.

Denote: network input x, network output y; and h; denoting outputs of all hidden layers.
ht — f(:C:ht—law) and Yt — g(htav)

Assumption: the network configuration h; converges to a fixpoint h* if we clamp its input
to x. Computing V¢ poses no problem. What about V,£7

We have (implicit function theorem)

oh*
ow

_1ﬁ
ow’

= I —Js(h")]

where J¢(h*) = 8f(:”’éf‘]f’h*) is the Jacobian of f w.r.t. h.

Now, let us consider the gradient of the loss w.r.t. w.
Ol = Dyl Bpeg [I = Tp(h)] ™" B f (z,w, 1)

Applying this directly would require to compute [I— Jf(h*)} 1
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Now, introduce the (column) vector z
w1 —1 T
Z = [I— Jf(h )] (&yf 8h*g)
Multiplying both sides by [I— Jf(h*)}, we get
z2=Jp(h*) 2+ (0,0 (9h*g)T.

This is a fixpoint equation for z and can be solved by fixpoint iteration. The resulting

algorithm for computing the derivative (% is:

¢ fix x, run the network until convergence — h*

¢ start from zy and iterate
« T
Z; = Jf(h )TZZ'_l -+ ((%E 8h*g)

until convergence.

¢ Return
% _ ZT 8f(a:,w,h*)

ow Oh
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Assumptions:
hi = f(x¢, hi—1,w)
Yt = g(htvv)

The mappings f and g are implemented by neural networks and are differentiable w.r.t. their
inputs and parameters. The loss function ¢(y,y’) is differentiable.

Example 1. Both mappings f and g are implemented by one layer networks

at — Wht + Uﬂft + b ht = tanh(at)
o =Vhs+ec y; = softmax(o;)
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Learning RNINs general case: backpropagation through time @
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Computing the gradients: Unroll the network in time and apply backpropagation

Let us consider the loss for a single example (z,y*) from the training data.

Computing the gradient w.r.t. v is easy (see Slide 4.). Let us consider the gradient w.r.t. w

g(yrayt yt Yt 5htg(ht, )awht

I
M-
&
IIM%

The first two terms are simple. For the last one we have the recurrent expression
8wht — awf(ilft, ht—hw) + 8ht_1f(wt7 ht—law) awht—l

This gives

Ouwhy = B f (21, hu—1,w +Z[ H Ony [y him1,0) | O f (i, hi,0)

=1 j7=1+1
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Problems:
¢ backpropagation through time is computationally expensive

¢ Exploding/vanishing gradients: consider for simplicity the linear recurrence hy = Why_;.
For 7 steps we get h, = W7hy. Suppose that we can write W = U 'AU, where A is
diagonal. We get
h, =U"'A"Uhy.

Eigenvalues with magnitude less than one will decay and eigenvalues with magnitude
greater than one will explode.

® We can not apply batch normalisation as simple remedy.

¢ We want the following model ability: events long in the past can trigger changes in
conjunction with current measurements.

¢ skip connections?, designate special nodes in h; for keeping record of events long in the
past?
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LSTM (Hochreiter, Schmidhuber, 1997), GRU (Cho et al., 2014), ...
Gated recurrent unit (simplified):

A cell consisting of a recurrent unit h; and a gate unit u; € [0, 1]

he =up—1he—1+ [1 — Ut—l]f(xta ht—law)
Ut — S(Zl?t,ht,’l})

The gate unit u; has sigmoid nonlinearity and “decides” whether to copy h; from h;_; or to
apply the recurrence with f.
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Gated recurrent unit (general):
® h is a state vector
¢ wu is a vector of “update” gates

® ris a vector of “reset” gates

The update equations are
ht = U1 ® ht—l + [1 — ut_l] © S (UZIZt_l + W’l“t_l ® ht—l)
where © denotes the element-wise product of vectors. The gate unit outputs are given by

Ut = S (U“aﬁt + Wuht)
Tt = S (Urxt + tht)

LSTM cells are somewhat more complicated — they have separate “forget” and “update”
gates.
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