
Deep Learning (BEV033DLE)
Lecture 13 Recurrent Neural Networks

Czech Technical University in Prague

� Recurrent models

� Special cases and recurrent back propagation

� Error back propagation through time

� Gated recurrent units, GRU and LSTM networks

2/11
Recurrent networks

Recurrent models in a nutshell

� input sequence x= (x1, . . . ,xt, . . . ,xT), xt ∈ Rn. Similarly: output sequence y with
elements yt and sequence h of (hidden) states with elements ht ∈ Rd. Often all three
sequences have the same length.

� recurrent (dynamic) system with outputs

ht = f(xt,ht−1,w)

yt = g(ht,v)

where w and v are parameters. The model defines sequence mappings h= Fw(x) and
y =Gv(h).

� loss function `(y,y′); often locally additive
∑
t `(yt,y

′
t)

Training goal: given training data T =
{

(xj,yj) | j = 1, . . . ,m
}
, learn the model parameters

w, v by solving
1

m

∑
x,y∈T

`
(
y,(Gv ◦Fw)(x)

)
→min

w,v

http://cmp.felk.cvut.cz

3/11
Recurrent networks

Incarnations of recurrent models and related tasks
� Deep neural network for classification with additional feedback connections. x - input,
constant not depending on time. y - output of the network, network head, e.g.
logsoftmax, h -states of all hidden layers. The loss function depends only on the last
output yT .

� “infinite state automata”: the output space is sufficient for keeping the history, thus h
and y can be identified, i.e. yt = f(xt,yt−1,w).
Example: landcover type monitoring for a geo-location: x - sequence of spectral
satellite measurements, y - sequence of states (e.g. coniferous forest, broadleaf forest,
clearcut, bark beetle degradation etc.)

� general sequence segmentation: hidden states ht are needed for keeping track of longer
past and are latent.
Examples: speech recognition, x - audio signal, y -sequence of words. NLP translation:

http://cmp.felk.cvut.cz

4/11
Learning RNNs special cases: infinite state automata

Learning RNNs is particularly simple in the case that

� h and y can be identified, i.e. yt = f(xt,yt−1,w) and

� the loss is locally additive
∑
t `(yt,y

′
t)

We can split the sequences (x,y) from training data into triplets (yt−1,xt,yt) and train f
from

1

m

∑
x,y∈T

∑
t

`
(
yt,fw(xt,yt−1)

)
→min

w

Neither forward nor backward propagation through the sequence are needed.

If the hidden states ht do not coincide with outputs yt and are latent, then learning becomes
considerably more complicated.

http://cmp.felk.cvut.cz

5/11
Learning RNNs special cases: Recurrent backpropagation

Recurrent backpropagation: (Almeida, 1987), (Pineda, 1987)

Learning approach for classifier/regression networks with feedback connections.

Denote: network input x, network output yt and ht denoting outputs of all hidden layers.

ht = f(x,ht−1,w) and yt = g(ht,v)

Assumption: the network configuration ht converges to a fixpoint h∗ if we clamp its input
to x. Computing ∇v` poses no problem. What about ∇w`?

We have (implicit function theorem)

∂h∗

∂w
=
[
I−Jf(h∗)

]−1 ∂f

∂w
,

where Jf(h∗) = ∂f(x,w,h∗)
∂h is the Jacobian of f w.r.t. h.

Now, let us consider the gradient of the loss w.r.t. w.

∂w`= ∂y` ∂h∗g
[
I−Jf(h∗)

]−1
∂wf(x,w,h∗)

Applying this directly would require to compute
[
I−Jf(h∗)

]−1!

http://cmp.felk.cvut.cz

6/11
Learning RNNs special cases: Recurrent backpropagation

Now, introduce the (column) vector z

z =
[
I−Jf(h∗)

]−1 (
∂y` ∂h∗g

)T
Multiplying both sides by

[
I−Jf(h∗)

]
, we get

z = Jf(h∗)Tz+
(
∂y` ∂h∗g

)T
.

This is a fixpoint equation for z and can be solved by fixpoint iteration. The resulting
algorithm for computing the derivative ∂`

∂w is:
� fix x, run the network until convergence → h∗

� start from z0 and iterate

zi = Jf(h∗)Tzi−1 +
(
∂y` ∂h∗g

)T
until convergence.

� Return
∂`

∂w
= zT

∂f(x,w,h∗)

∂h

http://cmp.felk.cvut.cz

7/11
Learning RNNs general case: backpropagation through time

Assumptions:

ht = f(xt,ht−1,w)

yt = g(ht,v)

The mappings f and g are implemented by neural networks and are differentiable w.r.t. their
inputs and parameters. The loss function `(y,y′) is differentiable.
Example 1. Both mappings f and g are implemented by one layer networks

at =Wht+Uxt+ b ht = tanh(at)

ot = V ht+ c yt = softmax(ot)

http://cmp.felk.cvut.cz

8/11
Learning RNNs general case: backpropagation through time

Computing the gradients: Unroll the network in time and apply backpropagation

Let us consider the loss for a single example (x,y∗) from the training data.

Computing the gradient w.r.t. v is easy (see Slide 4.). Let us consider the gradient w.r.t. w

∂wL(y∗,y) =

T∑
t=1

∂w`(y
∗
t ,yt) =

T∑
t=1

∂yt`(y
∗
t ,yt)∂htg(ht,v)∂wht

The first two terms are simple. For the last one we have the recurrent expression

∂wht = ∂wf(xt,ht−1,w) +∂ht−1f(xt,ht−1,w)∂wht−1

This gives

∂wht = ∂wf(xt,ht−1,w) +

t−1∑
i=1

[t∏
j=i+1

∂hj−1
f(xj,hi−1,w)

]
∂wf(xi,hi−1,w)

http://cmp.felk.cvut.cz

9/11
Learning RNNs general case: backpropagation through time

Problems:

� backpropagation through time is computationally expensive

� Exploding/vanishing gradients: consider for simplicity the linear recurrence ht =Wht−1.
For τ steps we get hτ =W τh0. Suppose that we can write W = U−1ΛU , where Λ is
diagonal. We get

hτ = U−1ΛτUh0.

Eigenvalues with magnitude less than one will decay and eigenvalues with magnitude
greater than one will explode.

� We can not apply batch normalisation as simple remedy.

� We want the following model ability: events long in the past can trigger changes in
conjunction with current measurements.

� skip connections?, designate special nodes in ht for keeping record of events long in the
past?

http://cmp.felk.cvut.cz

10/11
RNNs with gated recurrent units

LSTM (Hochreiter, Schmidhuber, 1997), GRU (Cho et al., 2014), ...

Gated recurrent unit (simplified):

A cell consisting of a recurrent unit ht and a gate unit ut ∈ [0,1]

ht = ut−1ht−1 + [1−ut−1]f(xt,ht−1,w)

ut = S(xt,ht,v)

The gate unit ut has sigmoid nonlinearity and “decides” whether to copy ht from ht−1 or to
apply the recurrence with f .

http://cmp.felk.cvut.cz

11/11
RNNs with gated recurrent units

Gated recurrent unit (general):

� h is a state vector

� u is a vector of “update” gates

� r is a vector of “reset” gates

The update equations are

ht = ut−1�ht−1 + [1−ut−1]�S
(
Uxt−1 +Wrt−1�ht−1

)
where � denotes the element-wise product of vectors. The gate unit outputs are given by

ut = S
(
Uuxt+Wuht

)
rt = S

(
Urxt+W rht

)
LSTM cells are somewhat more complicated – they have separate “forget” and “update”
gates.

http://cmp.felk.cvut.cz

	First page
	cmporange Recurrent networks
	cmporange Recurrent networks
	cmporange Learning RNNs special cases: infinite state automata
	cmporange Learning RNNs special cases: Recurrent backpropagation
	cmporange Learning RNNs special cases: Recurrent backpropagation
	cmporange Learning RNNs general case: backpropagation through time
	cmporange Learning RNNs general case: backpropagation through time
	cmporange Learning RNNs general case: backpropagation through time
	cmporange RNNs with gated recurrent units
	cmporange RNNs with gated recurrent units
	Last page

