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 human cognitive process involves ability to detect similarities 
between objects

 objects can be images, text documents, sound, etc…

 use deep learning to estimate pairwise similarity / distance

 applications
• information retrieval
• k-nearest-neighbor classification
• clustering
• data visualization

pairwise similarity



similarity / metric learning

 definition of good similarity measure (metric) is task dependent

 different semantic notion of similarity per task

• not well captured by hand-crafted representations and standard 
metrics

 solution: learn it from the data
task a 

task b 



representation and similarity learning

representation space



transfer learning

 pre-trained network is given, e.g. trained for classification with 

cross-entropy loss

 use internal activation vectors as representation

 use existing metrics to estimate pairwise similarity

• Euclidean distance, cosine similarity, …
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 pairwise labels of training examples

• relevant (positive, matching) pair

• non-relevant (negative, non-matching) pair

 available image-level class labels

• within (across) class pairs are positive (negative)

 manual annotation of pairs

• typically very costly

 instance-discrimination

• each image its own class

• positives obtained by augmentations

training data - labels

no class
labels

class labels 
available

self-supervision



metric learning: Mahalanobis distance

Mahalanobis distanceEuclidean distance

 learn a parametric distance function from the data
• input examples are vectors



 learn a parametric distance function from the data
• input examples are vectors

metric learning: Mahalanobis distance



contrastive loss

 two branch network; 2 networks that share weights

[Hadsell et al. 2006]



contrastive loss

 similar pair gradients

 dissimilar pair gradients

representation space



triplet loss

 three branch network; 3 networks that share weights

[Schroff et al. 2015]



triplet loss

 gradients



pairwise losses

contrastive triplet

[Sohn 2016]



mini-batches & hard negatives
 mini-batch construction [Roth et al., 2020]

• randomly sample n classes and b/n examples per class

• greedy approach to maximize covered space

– next example maximizes the distances to already included examples

• match training dataset statistics (distribution of pairwise distances)

– set of random mini-batches: pick to minimize distribution distance

 sampling of negatives matters

• random sampling: zero loss for most pairs/triplets

• hard negatives: negative pair, but nearby in the representation space

 online sampling

• within batch single hardest, semi-hard mining [Schroff et al. 2015], 
distance-weighted sampling [Wu et al. 2017]

 offline sampling

• nearest-neighbor search: guaranteed hard negatives in the batch

• hardness changes: repeat the process during training



histogram loss [Ustinova & Lempitsky, 2016]



smooth AP loss

 Average-Precision (AP) is a common retrieval metric

 AP is not differentiable

 optimize a smooth approximation instead [Brown et al. 2020]



smooth AP loss



similarity function learning

[Zagoruyko & Komodakis, 2015]



beyond binary supervision

distance ratio
representation space

distance ratio
label space[Kim et al.’19]



self-supervised representation learning

[Khosla et al. 2020]



applications

image classification
[Song’16]

local descriptors  [Mishkin’16]

visual search

visual localization



applications

video tracking [Tao’16]

data visualization

data exploration [Johnson et al.’17]


