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Assignment 1. Let X be a real valued random variable with expectation EX and finite
variance VX . The Chebyshev inequality asserts

P
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)
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.

Let Xi, i = 1, . . . ,m be independent, identically distributed random variables with
expectation EX and finite variance VX and let Y = 1

m

∑m
i=1Xi be their empirical

mean. Prove the inequality
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Assignment 2. Let Xi, i = 1, . . . ,m be independent random variables bounded by the
interval [a, b], i.e. a 6 Xi 6 b. Let X = 1

m

∑m
i=1Xi be their empirical mean. The

Hoeffding inequality asserts that

P
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)
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)
.

Let us now consider a predictor h : X → Y , and a loss `(y, y′). The risk of the predictor
is denoted by R(h) and its empirical risk on a test set T m =

{
(xj, yj)

∣∣ j = 1, . . . ,m
}

is denoted by RT m(h).

a) Prove that the generalisation error of h can be bounded in probability by

P
(
|R(h)−RT m(h)| > ε

)
< 2e

− 2mε2

(4`)2 , (1)

where4` = `max − `min.

b) Verify the value m given in Example 1. of Lecture 2. for the special case of a binary
classifier and the 0/1-loss.

c*) We want to utilise the Hoeffding inequality for choosing the best predictor from a
finite set of predictors H. Denoting the r.h.s. of (1) by δ, we interpret it as follows.
Among all possible test sets T m of size m there are at most δ ∗ 100 percent “bad” test
sets for a given predictor h. We call a test set T m bad for the predictor h if |R(h) −
RT m(h)| > ε. Conclude that the percentage of test sets, which are bad for at least one
h ∈ H can be bounded by

P
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)
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Assignment 3. Suppose that the decision boundary of a binary classifier for points
x ∈ Rn is given by a convex polyhedron. Show that the classifier can be implemented
by a network with one hidden layer and binary output units.

Show that decision boundaries given by arbitrary polyhedra can be implemented by
networks with two hidden layers and binary output units.

Assignment 4. Consider a neural network with outputs yk, k = 1, . . . , K representing
posterior class probabilities. The last layer of this network is a softmax layer with output

yk =
exk∑
` e

x`
,

where xk are the outputs of the last linear layer and represent class scores. When learn-
ing such a network by maximising the log conditional likelihood, we have to consider
log-probabilities

zk = log yk = xk − log
∑
`

ex`

We will analyse the nonlinear part of the r.h.s.

f(x) = log
∑
`

ex`

a) Prove that its gradient is given by∇f(x) = y, i.e. by the vector of class probabilities.
Conclude that the norm of the gradient is bounded by 1.

b*) Compute the second derivative of f and show that it can be expressed as

∇2f(x) = Diag(y)− yyT .
Prove that this matrix is positive semi-definite and conclude that f(x) is a convex func-
tion.

Assignment 5 (Backprop of scan). The inclusive cumulative sum or for brevity scan
operation is defined as follows: Given the input vector x ∈ Rn the output y ∈ Rn has
components:

yi =
∑
j≤i

xj.

Compute the backprop of scan, i.e. given a scalar function L(y) with known gradient
∇yL, compute the gradient of the composed function L ◦ scan.


