
DEEP LEARNING: ASSIGNMENTS WITH SOLUTIONS

Assignment 1 (Node statistics). Let us consider a neuron in a linear layer of a classifi-
cation network. Its output is given by

y =
n∑
i=1

wixi,

where x is the output of the preceding layer. Let us consider the statistics of x over
the training data and assume that the components xi are statistically independent and
identically distributed with zero mean and variance σ2. The weight components wi are
initialized i.i.d. with zero mean and variance σ̃2. Compute the mean and variance of y.
Solution. Since wi and xi are statistically independent, we obtain the mean of y by

E[y] =
n∑
i=1

E[wi]E[xi] = 0. (1)

To compute the variance of y, we use that V[XY ] = V[X]V[Y ] and V[X + Y ] =
V[X] + V[Y ] hold for any pair of statistically independent random variables X and Y .
We obtain

V[y] =
n∑
i=1

V[wi]V[xi] = nσ̃2σ2. (2)

Assignment 2 (Backpropagation).
Let x ∈ RN be a vector with components xi for i = 1, . . . N and consider a layer
performing the following computation:

yi = a(xi + xi+2) + b for i = 1 . . . N − 2. (3)

Given the gradient of the loss function in y, g := ∇yL ∈ RN−2, compute the gradient
of the loss in a, b and x.
Solution.

dL

db
=

N−2∑
i=1

dL

dyi

∂yi
∂b

=
N−2∑
i=1

∂L

∂yi
=

N−2∑
i=1

gi. (4)

dL

da
=

N−2∑
i=1

dL

dyi

∂yi
∂a

=
N−2∑
i=1

gi(xi + xi+2). (5)
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dL

dxj
=

N−2∑
i=1

gi
∂yi
∂xj

=
N−2∑
i=1

gia
(
[[j=i]] + [[j=i+2]]

)
=


agj if j ≤ 2,

a(gj + gj−2) if j = 2, . . . N − 2,

agj−2 if j ≥ N − 2.

(6)

Assignment 3 (SGD with Regularization).
Consider a regularized loss function L̃(θ) = L(θ)+ λ

2
‖θ‖2. Let θt be the current param-

eter estimate and gt be the gradient of L at θt.

a) Give an update step for an SGD-like algorithm that applies a variance reduction tech-
nique to stochastic gradients gt in order to obtain smoothed estimates g̃t.

b) Solve the following proximal step problem

θt+1 = argmin
θ

[〈
g̃t, θ − θt

〉
+
λ

2
‖θ‖2 + 1

2ε′
‖θ − θt‖2

]
. (7)

Solution. a) To reduce the variance of stochastic gradients gt we will use exponentially
weighted average with parameter q.

g̃t := g̃t−1(1− q) + gtq. (8)

Then we write standard SGD step using the gradient g̃t + λθt — the smoothed gradient
of L plus the gradient of regularization at θt:

θt+1 := θt − ε(g̃t + λθt). (9)

b)

θt+1 = argmin
θ

[〈
g̃t, θ − θt

〉
+
λ

2
‖θ‖2 + 1

2ε′
‖θ − θt‖2

]
. (10)

Solving for stationary point:

0 =
d

dθ
= g̃t + λθ +

1

ε′
(θ − θt). (11)

We find:

θt+1 =
θt − ε′g̃t

ε′λ+ 1
. (12)

Remark. We can check that by setting ε′ = ε
1−λε this solution matches the common

SGD step (9), i.e. for quadratic regularization linearizing it or considering explicitly in
the proximal problem is equivalent.
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Assignment 4 (Adversarial attack). Let us consider a neural network for classification
with predictive class log probabilities given by the vector f(x; θ) ∈ RK . An attacker
wants to find a perturbed image x̃ satisfying |x̃i − xi| < ε for all i such that it would
minimize the probability of predicting the correct label y.
Formulate the attacker’s task as an optimization problem using a linear approximation
of f in the box |x̃i − xi| < ε. Solve this problem.
Solution. The log probability of the correct label is fy(x; θ) and its linear approximation
in the neighbourhod of x is given by

fy(x̃; θ) ≈ fy(x; θ) + gT (x̃− x), (13)

where g denotes the gradient∇xfy(x; θ). The attackers task is

gT (x̃− x)→ min
x̃

(14)

s.t. |x̃i − xi| < ε ∀i. (15)

It decomposes into independent tasks for each x̃i with solution x̃∗i = −ε sign(gi).

Assignment 5 (KL divergence and cross entropy).
Assume that the training data are given by a generator p∗(y, x). We want to learn the
conditional distribution p(y |x; θ) in the form of a neural network parametrized by θ.
Prove that minimizing Ep∗(x)[DKL(p

∗(y |x) ‖ p(y |x; θ))] is equivalent to minimizing
the expected cross-entropy of p(y |x; θ) relative to p∗(y |x), where the expectation is
taken over p∗(x).
Solution. Let us expand the KL divergence for a give x:

DKL(p
∗(y |x) ‖ p(y |x; θ)) =

∫
y

p∗(y |x) log p∗(y |x)
p(y |x; θ)

(16)

=

∫
y

p∗(y |x)p∗(y |x)︸ ︷︷ ︸
does not depend on θ

−
∫
y

p∗(y |x) log p(y |x; θ)︸ ︷︷ ︸
cross-entropy

. (17)

Taking expectation in p∗(x) the first term still does not depend on θ and thus optimiza-
tion with or without it is equivalent.
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Assignment 6 (SGD with Regularization 2).
Consider a regularized loss function L̃(θ) = L(θ) + ρ(‖θ‖), where ρ : R+ → R+ is a
differentiable function. Let θt be the current parameter estimate and g be the gradient
of L at θt. Show that the solution of the composite proximal step problem

argmin
θ

[〈
g, θ − θt

〉
+ ρ(‖θ‖) + 1

2ε
‖θ − θt‖2

]
(18)

for a sufficiently small ε takes the form: θ = a
‖a‖ l, where a = θt − εg is the usual

non-regularized SGD update and and l is a root of the equation l + ερ′(l) = ‖a‖.
Solution. We solve for a critical point:

0 =
∂

∂θ
= g + ρ′(‖θ‖) θ

‖θ‖
+

1

ε
(θ − θt)

θ(
ερ′(‖θ‖)
‖θ‖

+ 1) = θt − εg. (19)

Since ( ερ
′(‖θ‖)
‖θ‖ + 1) is a scalar we conclude that θ will be proportional to θt − εg =: a.

Take the norm of the vectors on both sides in (19):

‖θ‖
(ερ′(‖θ‖)
‖θ‖

+ 1
)
= ‖a‖ (20)

ερ′(‖θ‖) + ‖θ‖ = ‖a‖.

Denoting l = ‖θ‖, we can express ερ′(‖θ‖)
‖θ‖ + 1 = ‖a‖

l
. The equation (20) holds for ε

sufficiently small so that the value of ερ′(‖θ‖)
‖θ‖ is positive, otherwise its absolute value

needs to be taken.

Assignment 7 (Shift of Prior). A neural network with softmax activation in the last layer
has been trained for classifying patterns by predicting the posterior class probabilities
p(y |x), y ∈ K. The relative class frequencies in the training set were p(y). When
applying the network, it turned out that the prior class probabilities for real data are
different and equal to p∗(y). Explain how to use the network as a predictor without
re-training it. We assume the 0/1 loss for prediction.
Solution. Let us denote the distribution of the training data by p(x, y). We have

p(x, y) = p(x | y)p(y) = p(y |x)p(x)

and the trained network estimates p(y |x). Let us denote the data distribution in the
application by pa(x, y). We have

pa(x, y) = p(x | y)p∗(y) = pa(y |x)pa(x),

4



i.e. p(x | y) remains unchanged and p(y) changes to p∗(y). Comparing the two equations
we get

pa(y |x) ∝
p∗(y)

p(y)
p(y |x).

Hence, the trained network can be used in the application just by reweighting its softmax
outputs by the factors p∗(y)

p(y)
and deciding for the class with the largest reweighted output.

Assignment 8 (K-means). Let us consider the standard k-means clustering problem for
data x ∈ Rn and K cluster centers yk ∈ Rn∑

x∈T m

min
k
‖x− yk‖2 → min

y
,

where y = (y1, . . . , yK) denotes the set of all cluster centers and T m denotes the training
set.

a) Propose a stochastic gradient descent method that operates in full online mode. I.e. it
receives one example per iteration (the mini-batch size is 1). Explain why it is necessary
to choose a decreasing learning rate.

b) What is the run-time complexity for a training epoch? Compare it with the run-time
complexity of the standard k-means algorithm.
Solution. a) Given a single training example x ∈ T m, we have the objective f(y) =
mink‖x− yk‖2 and its gradients w.r.t. the cluster centers are

∇ykf(y) =

{
2(yk − x) if k = argmink′‖x− yk′‖2,
0 otherwise.

We obtain the following SGD algorithm for the problem.
Given a training example x do
(1) find the closest cluster center k = argmink′‖x− yk′‖2,
(2) update yk → yk + α(t)(x− yk),
where α(t) is a decreasing learning rate. The algorithm will not converge to a local
minimum if the learning rate is constant. Instead, it will keep oszillating around it.

b) The run-time complexity of the SGD algorithm for one training epoch is O(nmK).
The standard k-means algorithm iteration consists of two steps (i) assignment and (ii)
update. The run-time complexity of the former dominates and is O(nmK).
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Assignment 9 (Backprop).
Let x ∈ Rn. Consider the following normalized linear layer:

yi =
wT
i x+ bi
‖wi‖

,

where wi ∈ Rn for i = 1 . . .m, bi ∈ R and ‖wi‖ is the Euclidean norm of vector wi.
Given the gradient of the loss function in y, g := ∇yL ∈ Rm, compute gradients of the
loss in w, b, x.
Solution. We will use general the total derivative rule

dL

dθ
=
∑
i

dL

dyi

∂yi
∂θ

=
∑
i

gi
∂yi
∂θ

. (21)

Since yi depends only on bi and not on bj for j 6= i for ∇bL we have

dL

dbi
= gi

∂yi
∂bi

=
gj
‖wj‖

. (22)

For∇xL we have

dL

dxj
=
∑
i

gi
∂yi
∂xj

=
∑
i

gi
wij
‖wi‖

. (23)

Since yi depends only on wi and not on wj for j 6= i for∇wL we have

dL

dwi
=
∑
i

gi
∂yi
∂wi

=
∑
i

gi

( x

‖wi‖
+ (wT

i x+ bi)
−wi
‖wi‖3

)
. (24)

Assignment 10 (VAE).
Consider a variational autoencoder with the decoder model being a normal distribution
p(x|z) = N (x;µ(z), σ2I), where x ∈ Rd and σ is a parameter. Show that the optimal
value of the variance σ2 for the evidence lower bound

ELBO = Epd(x)Eq(z|x)
[
log p(x|z)

]
−DKL(q(z|x) ‖ p(z))

with the current encoder q(z|x) is given by

σ2 =
1

d
Epd(x)Eq(z|x)

[
‖x− µ(z)‖2

]
.
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Solution. The density of the Normal distribution with diagonal covariance matrix is

p(x|z) =
( 1√

2πσ

)d
exp(−‖x− µ(z)‖

2

2σ2
). (25)

Respectively the log density is

log p(x|z) = log
( 1√

2πσ

)d
− ‖x− µ(z)‖

2

2σ2
= −d

2
d log(2π)− d log σ − ‖x− µ(z)‖

2

2σ2
.

(26)

Note that the log density is a convex function of σ. We find optimum by finding sta-
tionary points of ELBO in σ. The KL divergence term does not depend on σ and its
derivative is zero. Since the expectation densities do not depend on σ, the derivative can
be interchanged with expectation:

∂

∂σ
ELBO = Epd(x)Eq(z|x)

[ ∂
∂σ

log p(x|z)
]
. (27)

We then calculate
∂

∂σ
log p(x|z) = −d

σ
+
‖x− µ(z)‖2

σ3
. (28)

And solve

Epd(x)Eq(z|x)
[
− d

σ
+
‖x− µ(z)‖2

σ3

]
= 0. (29a)

d

σ
=

1

σ3
Epd(x)Eq(z|x)

[
‖x− µ(z)‖2

]
. (29b)

σ2 =
1

d
Epd(x)Eq(z|x)

[
‖x− µ(z)‖2

]
. (29c)

Remark. The solution takes the same form as the maximum likelihood estimate of vari-
ance from supervised data samples x, z. The difference is that here we do not know the
ground truth samples (x, z) and estimate them using the current encoder, i.e., draw them
from the distribution pd(x)q(z|x).

Assignment 11 (Mirror Descent).
Solve the proximal step problem:

min
x
〈∇f(x0), x− x0〉+ 1

ε
D(x, x0),

where x0 ∈ (0, 1) and

D(x, x0) =
∑
i

(xi log
xi
x0i

+ (1− xi) log
1− xi
1− x0i

).

Hint: The problem is convex and can be solved by stationary point conditions.
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Solution. The objective is a sum of terms where each summand i depends on xi only.
Therefore minimization decouples into independent minimizations over xi:

min
xi
〈gi, xi − x0i 〉+

1

ε
(xi log

xi
x0i

+ (1− xi) log
1− xi
1− x0i

),

where g = ∇f(x0). We solve for the critical point xi:

0 =
∂

∂xi
= gi +

1

ε
(log

xi
x0i
− log

1− xi
1− x0i

)

0 = −εgi + log
xi

1− xi
− log

x0i
1− x0i

log
xi

1− xi
= log

x0i
1− x0i

− εgi

xi = sigmoid
(
log

x0i
1− x0i

− εgi
)
.

Remark. Suppose we solve these proximal problems iteratively and xt is the current
iteration. Denote yt = logit(xt) = log xt

1−xt , then xt = sigmoid(yt) and on the next
iteration we do not need to calculate log xt

1−xt , we could just reuse yt. Then the iterates
can be simplified to

yt+1 = yt − εg,
xt+1 = sigmoid(yt+1).
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