
Deep Learning (SS2021)
Seminar 5

April 16, 2021

Assignment 1 (BN with Weight Decay)
In the lecture we discussed that combining Batch Normalisation with weight decay reg-
ularisation leads to an ill posed optimisation problem. Let us consider this in a simplified
scenario for a single neuron. Its output is given by y = wTx

‖w‖ , where x is the input. The

regularized loss function is given by L̃(w) = L(y(w)) + R(w), where R(w) = λ
2
‖w‖2

and λ > 0.

a) Compute the gradient of R(w) and show that a step towards decreasing it can be
interpreted as "weight decay". Suppose that w0 is optimal for the non-regularized loss
L. What will gradient descent on L̃ do if started at w0?

b) Consider a point w0 such that ‖w0‖ = 1. Assume that g = ∇wL(y) is non-zero.
Show that g is orthogonal to w and hence also to ∇wR(w). Draw these vectors and the
sphere ‖w‖ = 1.

c) Let ‖g‖ = a and ‖∇wR(w)‖ = λ at w0 and ‖w0‖ = 1. Consider a single step of
gradient descent with step length α. For which α > 0, the norm ‖w‖ will decrease?
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Assignment 2 (Trust Region Problem with Box Constraints, FGSM)
Let us consider a loss function L(θ) and denote its gradient at θt by gt = ∇θtL.

a) Solve the following trust region problem:

arg min
θ

[
L(θt) + 〈g, θ − θt〉

]
,

s.t. ‖θi − θti‖ ≤ ε ∀i

by using the technique of Lagrange multipliers.
Hint: Make a substitution of variables ∆θ = θ−θt. Square the constraints to make their
derivative simpler. Note that the Lagrange multipliers for inequality constraints must be
non-negative.

b) Show that the fast sign gradient attack solves a similar constrained optimization prob-
lem (formulate this problem).

Assignment 3 (Proximal Problem with Regularization)
Consider the problem of minimizing the training loss of a neural network with a weight
regularization λ‖θ‖2. Since the weight regularization is known and given in closed
form, we do not need to approximate it linearly by computing its gradient. Derive an
SGD like optimization algorithm for solving the composite proximal step problem

min
θ

[
〈g, θ − θt〉+ λ‖θ‖2 +

1

ε
‖θ − θt‖2

]
, (1)

where θt is the current parameter vector, g is the (stochastic) gradient at θt, λ is the
regularization strength and ε is the learning rate.

2


