Deep Learning (BEV033DLE) Lecture 2.

Czech Technical University in Prague

Neural networks are universal approximators

Testing networks & loss functions

Generalisation errors for neural classifiers & regressors

Neural networks as universal approximators

Neural networks are *universal approximators* if we do not restrict the network architecture

Boolean functions: Every boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$ can be written in conjunctive normal form, i.e. as a conjunction over disjunctive clauses.

Theorem 1. Every boolean function can be represented by a network with binary units and two layers.

Remark. Notice, that the number of neurons grows exponentially with n. Implementing e.g. the parity function will require $\mathcal{O}(2^n)$ neurons. It can be implemented much more efficiently by a deep network with $\mathcal{O}(\log n)$ neurons if we do not restrict its depth.

Real valued functions: consider real valued functions $f: [0,1]^n \to \mathbb{R}$ that are Lipshitz continuous

$$|f(x) - f(x')| \le \rho ||x - x'|| \quad \forall x, x' \in [0, 1]^n.$$

To approximate such function by a network:

- Partition : $[0,1]^n$ into sufficiently small boxes.
- Design a network that first decides which box the input vector belongs to and then predicts the average value of f at this box.

Neural networks as universal approximators

Theorem 2. (Cybenko, 1989) Every smooth function on $[0,1]^n$ can be approximated arbitrarily well by a network with sigmoid units and two layers. In other words, given a smooth function $f: [0,1]^n \to \mathbb{R}$ and an $\epsilon > 0$, there is a sum

$$G(x) = \sum_{j=1}^{N} \alpha_j \mathbf{S}(w_j^T x + b_j)$$

s.t.
$$|f(x) - G(x)| \leq \epsilon$$
 for all $x \in [0,1]^n$.

Remarks:

- There are also "dual" universal approximation theorems that restrict the width of the network (i.e. number of units per layer) and allow arbitrary network depth.
- We limit the expressive power once we fix a network architecture.

Validating & testing neural networks

Given a network, we want to validate its performance on a test set. How *large* shall we choose this set & what *precisely* shall we measure?

- The relation between measurements $x \in \mathcal{X}$ and hidden states $y \in \mathcal{Y}$ is given by a joint probability distribution p(x, y), which is *unknown*.
- The network $h: \mathcal{X} \to \mathcal{Y}$ predicts hidden states y, given measurements x.
- The loss $\ell(y, y')$ defines the cost incurred by a wrong prediction y' = h(x), if the true hidden state was y. Examples:
 - classification, y is categorical: 0/1 loss $\ell(y, y') = \llbracket y \neq y' \rrbracket$
 - classification, y is a sequence: Hamming distance $\ell(y, y') = \sum_i [y_i \neq y'_i]$
 - regression, $y \in \mathbb{R}^n$: L1 norm $\ell(y,y') = \|y-y'\|_1$

We want to estimate the risk, i.e. the expected loss

$$R(h) = \sum_{x,y} p(x,y)\ell(y,h(x)) \approx \frac{1}{m} \sum_{(x,y)\in\mathcal{T}^m} \ell(x,h(y)) = R_{\mathcal{T}^m}(h)$$

where $\mathcal{T}^m = \{(x^j, y^j) \mid j = 1, \dots, m\}$ is a test set of i.i.d. examples $x, y \sim p(x, y)$.

Validating & testing neural networks

Can we upper bound the deviation $|R_{\mathcal{T}^m}(h) - R(h)|$?

$$\mathcal{T}^m \sim p(x, y) \Rightarrow \mathbb{P}\Big(|R(h) - R_{\mathcal{T}^m}(h)| > \varepsilon\Big) < ??$$

• Chebyshev inequality: $\mathbb{P}\Big(|R(h) - R_{\mathcal{T}^m}(h)| > \varepsilon\Big) < \frac{\mathbb{V}[\ell(y,h(x))]}{m\varepsilon^2}$, converges slowly for $m \to \infty$.

• Hoeffding inequality:
$$\mathbb{P}\left(|R(h) - R_{\mathcal{T}^m}(h)| > \varepsilon\right) < 2e^{-\frac{2m\varepsilon^2}{(\bigtriangleup \ell)^2}}$$
, where $\bigtriangleup \ell = \ell_{max} - \ell_{min}$.

Example 1. Consider a classifier with 0/1 loss. What test set size m ensures that $R_{\mathcal{T}^m}(h) - 0.01 < R(h) < R_{\mathcal{T}^m}(h) + 0.01$ with probability 95%? Answer: By using Hoeffding inequality, we get $m \approx 2 \cdot 10^4$.

Example 2. We train a network and keep several checkpoints with best training accuracy. Then we want to choose the best network from this set \mathcal{H} by comparing their performance on some validation set \mathcal{T}^m . How large shall we choose m? Answer: use the Hoeffding inequality for a finite set of predictors

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R(h)-R_{\mathcal{T}^m}(h)|>\varepsilon\Big)<2|\mathcal{H}|^{-\frac{2m\varepsilon^2}{(\triangle\ell)^2}}$$

Given an i.i.d. training set $\mathcal{T}^m = \{(x^j, y^j) \mid j = 1, \dots, m\}$, we want to train a network y = h(x, w) by minimising its *empirical risk*, i.e. expected loss on the training set

$$\frac{1}{m} \sum_{(x,y)\in\mathcal{T}^m} \ell(y,h(x,w)) \to \min_w$$

Often we can not minimise this objective by gradient descent: e.g. classification with 0/1 loss. Let us make a virtue of necessity and consider a different *learning criterion*: the negative log-likelihood.

- last layer of the network: class scores + softmax, its outputs $h_k(x,w)$ are interpreted as conditional class probabilities $h_k(x,w) = p_w(y = k | x)$
- the learning criterion (NLL) reads

$$-\frac{1}{m}\sum_{(x,y)\in\mathcal{T}^m}\log p_w(y\,|\,x) = -\frac{1}{m}\sum_{(x,y)\in\mathcal{T}^m}\log h_y(x,w) \to \min_w$$

and is differentiable in w.

Advantage: we can estimate the prediction uncertainty.

Generalisation error (bounds) We fix a network architecture. This defines an infinite network class \mathcal{H} . We choose the network $h_m \in \mathcal{H}$ with the best performance on a training set \mathcal{T}^m . For this we minimise the learning criterion by *stochastic gradient descent* (SGD).

7/9

Can we bound the generalisation error? We would expect the following behaviour for training sets \mathcal{T}^m with fixed size m.

Generalisation bounds for $\sup_{h \in \mathcal{H}} |R(h) - R_{\mathcal{T}^m}(h)|$ provided by VC dimension estimates for networks are not tight enough. Large networks with $|E| > 10^6$ parameters would require billions of training examples.

Neural networks in typical applications are in an *overparametrised* regime outside of this plot!

Example 3 (Zhang et al., ICLR, 2018). Image classification on CIFAR (10 classes, $\sim 5 \cdot 10^4$ training examples, tackled by networks with $\sim 10^5$ parameters. The networks learned by SGD and additional regularisers (e.g. data augmentation, droupout, etc.) Achieved accuracy > 95%, generalisation error < 5%. Such networks can learn data with random labels.

Double descent phenomenon: Current ongoing research seems to indicate that SGD, when used for training over-parametrised networks, is choosing smooth predictors with small norm. This leads to unexpected behaviour:

Belkin et al., PNAS, 2019: network with a single hidden layer learned on MNIST

Kernel and rich regimes in overparametrised models:

Let us compare kernel SVMs with neural networks

- the body of the network performs a mapping of the inputs to some feature space, the last network layer represents a linear classifier on this features,
- the "kernel mapping" is parametrised and thus learnable.

At the downside: It may happen that an overparametrised network will learn in a linearised "kernel" regime (e.g. depending on its initialisation):

• The network weights w remain close to their initialisation w_0 during learning \Leftrightarrow the network output can be linearised $h(x,w) \approx h(x,w_0) + \nabla_w h(x,w_0)^T (w-w_0)$.

• the network essentially learns a linear classifier for the kernel mapping $x \mapsto \phi(x) = \nabla_w h(x, w_0).$