
Deep Learning (BEV033DLE)
Lecture 2.

Czech Technical University in Prague

� Neural networks are universal approximators

� Testing networks & loss functions

� Generalisation errors for neural classifiers & regressors

2/9
Neural networks as universal approximators

Neural networks are universal approximators if we do not restrict the network architecture

Boolean functions: Every boolean function f : {±1}n→{±1} can be written in
conjunctive normal form, i.e. as a conjunction over disjunctive clauses.

Theorem 1. Every boolean function can be represented by a network with binary units and
two layers.

Remark. Notice, that the number of neurons grows exponentially with n. Implementing
e.g. the parity function will require O(2n) neurons. It can be implemented much more
efficiently by a deep network with O(logn) neurons if we do not restrict its depth.

Real valued functions: consider real valued functions f : [0,1]n→ R that are Lipshitz
continuous

|f(x)−f(x′)|6 ρ‖x−x′‖ ∀x,x′ ∈ [0,1]n.

To approximate such function by a network:

� Partition : [0,1]n into sufficiently small boxes.

� Design a network that first decides which box the input vector belongs to and then
predicts the average value of f at this box.

http://cmp.felk.cvut.cz

3/9
Neural networks as universal approximators

Theorem 2. (Cybenko, 1989) Every smooth function on [0,1]n can be approximated
arbitrarily well by a network with sigmoid units and two layers. In other words, given a
smooth function f : [0,1]n→ R and an ε > 0, there is a sum

G(x) =

N∑
j=1

αj S(w
T
j x+ bj)

s.t. |f(x)−G(x)|6 ε for all x ∈ [0,1]n.

Remarks:

� There are also “dual” universal approximation theorems that restrict the width of the
network (i.e. number of units per layer) and allow arbitrary network depth.

� We limit the expressive power once we fix a network architecture.

http://cmp.felk.cvut.cz

4/9
Validating & testing neural networks

Given a network, we want to validate its performance on a test set. How large shall we
choose this set & what precisely shall we measure?

� The relation between measurements x ∈ X and hidden states y ∈ Y is given by a joint
probability distribution p(x,y), which is unknown.

� The network h : X →Y predicts hidden states y, given measurements x.

� The loss `(y,y′) defines the cost incurred by a wrong prediction y′ = h(x), if the true
hidden state was y. Examples:

• classification, y is categorical: 0/1 loss `(y,y′) = Jy 6= y′K

• classification, y is a sequence: Hamming distance `(y,y′) =
∑

iJyi 6= y′iK

• regression, y ∈ Rn: L1 norm `(y,y′) = ‖y−y′‖1

We want to estimate the risk, i.e. the expected loss

R(h) =
∑
x,y

p(x,y)`(y,h(x))≈ 1

m

∑
(x,y)∈T m

`(x,h(y)) =RT m(h)

where T m = {(xj,yj) | j = 1, . . . ,m} is a test set of i.i.d. examples x,y ∼ p(x,y).

http://cmp.felk.cvut.cz

5/9
Validating & testing neural networks

Can we upper bound the deviation |RT m(h)−R(h)|?

T m ∼ p(x,y) ⇒ P
(
|R(h)−RT m(h)|> ε

)
<??

� Chebyshev inequality: P
(
|R(h)−RT m(h)|> ε

)
< V[`(y,h(x))]

mε2
,

converges slowly for m→∞.

� Hoeffding inequality: P
(
|R(h)−RT m(h)|> ε

)
< 2e

− 2mε2

(4`)2 ,
where 4`= `max− `min.

Example 1. Consider a classifier with 0/1 loss. What test set size m ensures that
RT m(h)−0.01<R(h)<RT m(h)+0.01 with probability 95%?
Answer: By using Hoeffding inequality, we get m≈ 2 ·104.
Example 2.We train a network and keep several checkpoints with best training accuracy.
Then we want to choose the best network from this set H by comparing their performance
on some validation set T m. How large shall we choose m?
Answer: use the Hoeffding inequality for a finite set of predictors

P
(
max
h∈H
|R(h)−RT m(h)|> ε

)
< 2|H|−

2mε2

(4`)2

http://cmp.felk.cvut.cz

6/9
Learning neural networks: generalisation & overfitting

Given an i.i.d. training set T m = {(xj,yj) | j = 1, . . . ,m}, we want to train a network
y = h(x,w) by minimising its empirical risk, i.e. expected loss on the training set

1

m

∑
(x,y)∈T m

`
(
y,h(x,w)

)
→min

w

Often we can not minimise this objective by gradient descent: e.g. classification with 0/1
loss. Let us make a virtue of necessity and consider a different learning criterion: the
negative log-likelihood.
� last layer of the network: class scores + softmax, its outputs hk(x,w) are interpreted as

conditional class probabilities hk(x,w) = pw(y = k |x)
� the learning criterion (NLL) reads

− 1

m

∑
(x,y)∈T m

logpw(y |x) =−
1

m

∑
(x,y)∈T m

loghy(x,w)→min
w

and is differentiable in w.

Advantage: we can estimate the prediction uncertainty.

http://cmp.felk.cvut.cz

7/9
Learning neural networks: generalisation & overfitting

Generalisation error (bounds) We fix a network architecture. This defines an infinite
network class H. We choose the network hm ∈H with the best performance on a training
set T m. For this we minimise the learning criterion by stochastic gradient descent (SGD).

Can we bound the generalisation error? We would expect the following behaviour for
training sets T m with fixed size m.

R
is
k

Training risk

Test risk

Capacity of H

sweet spot

under-fitting over-fitting

Generalisation bounds for suph∈H|R(h)−RT m(h)| provided by VC dimension estimates for
networks are not tight enough. Large networks with |E|> 106 parameters would require
billions of training examples.

Neural networks in typical applications are in an overparametrised regime outside of this plot!

http://cmp.felk.cvut.cz

8/9
Learning neural networks: generalisation & overfitting

Example 3 (Zhang et al., ICLR, 2018). Image classification
on CIFAR (10 classes, ∼ 5 · 104 training examples, tackled by
networks with ∼ 105 parameters. The networks learned by SGD
and additional regularisers (e.g. data augmentation, droupout,
etc.) Achieved accuracy > 95%, generalisation error < 5%. Such
networks can learn data with random labels.

Double descent phenomenon: Current ongoing research seems to indicate that SGD,
when used for training over-parametrised networks, is choosing smooth predictors with small
norm. This leads to unexpected behaviour:

R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”

interpolating regime

interpolation threshold

over-parameterized

“classical”

regime

Belkin et al., PNAS, 2019: network with a single hidden layer learned on MNIST

http://cmp.felk.cvut.cz

9/9
Learning neural networks: generalisation & overfitting

Kernel and rich regimes in overparametrised models:

Let us compare kernel SVMs with neural networks

� the body of the network performs a mapping of the inputs to some feature space, the
last network layer represents a linear classifier on this features,

� the “kernel mapping” is parametrised and thus learnable.

At the downside: It may happen that an overparametrised network will learn in a linearised
“kernel” regime (e.g. depending on its initialisation):

� The network weights w remain close to their initialisation w0 during learning ⇔ the
network output can be linearised h(x,w)≈ h(x,w0)+∇wh(x,w0)

T (w−w0).

� the network essentially learns a linear classifier for the kernel mapping
x 7→ φ(x) =∇wh(x,w0).

http://cmp.felk.cvut.cz

	First page
	cmporange Neural networks as universal approximators
	cmporange Neural networks as universal approximators
	cmporange Validating & testing neural networks
	cmporange Validating & testing neural networks
	cmporange Learning neural networks: generalisation & overfitting
	cmporange Learning neural networks: generalisation & overfitting
	cmporange Learning neural networks: generalisation & overfitting
	cmporange Learning neural networks: generalisation & overfitting
	Last page

