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Lecture 5
Convolutional Neural Networks

Alexander Shekhovtsov
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4 Introduction, CNN for Classification
e Correlation filters, translation equivariance, convolution and cross-correlation
e Multi-channel, stride, 1x1
e pooling, receptive field
4 More CNNs
e dilation, transposed

4 Hierarchy of Parts, Visual Cortex



Classification CNN
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4+ We'll see what this is
4 Design principles

4 Everything about convolutions in more detail
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Response of the correlation filter




Template

Image Response of the correlation filter
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Translational equivariance idea: when the input shifts, the output shifts

e \Would be hard to achieve if the image was given as a general vector — we are
using 2D grid structure and require that all locations are treated equally
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Basics
¢ Convolution and Correlation (1D)
h
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Easily convertible, more convenient to consider cross-correlation in Deep Learning
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Source pixel

¢ Translation equivariance by design

New pixel value (destination pixel)

Convolution




Examples (Correlation) @

Input Kernel Output

Blur

Motion Blur

Edge detector




Properties @
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Properties

As a binary operation y = w*x 8
e Everything that applies to linear operators, eg. associativity: u* (w*x) = (uxw) *x
e Commutativity for convolutions: w*x = T * w:
D WkTiof = )i TjWi—j
e No commutativity for cross-correlation. But uxwxxz =wxu*zx
Examples:
e edge_filter(blur(image)) = blur(edge_filter(image)) = (blur(edge_filter))(image)
e filter(translation(image)) = translation(filter(image))
equivariance w.r.t. translation
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(%) Can you show equivariance of convolution to sub-pixel displacements?

When the image shifts, the output shifts
Great prior knowledge for learning

4 In fact, linearity + translation-equivariance = convolution



Backprop @

¢ New notation for the gradient:

— dL

o dy;, = T (previously denoted with V)

¢ Backprop of the cross-correlation y = wxx is convolution:
® Y= Zk WrLit+k = Zj Wj—idj
9y __ _ _ _
o dLCCj = ZZ 8zjdyz' — ZZ%<23/ ’U}j/_iiljj/) dyz — ZZ ’lUj_idLyi — (dy*w)j — (’LU *dy)]

¢ Backprop of convolution y = w * x is cross-correlation:
® Yi =) jWkTi— =) ;Wi ;T;
Ay _ _
® drj:= Zz’aTyjdyi =2 i wi—jdy; = (dy*w);



First Convolutional Layer @ o

4 Large filters are not very useful: 10

4 Think of viewpoint changes, object deformations, variations within a category

4 Small filters capture elementary features according natural images statistics

Gabor Filters: Computational model for V1 cells




Multi-Channel Convolution ®
4+ We just had: 11

e color input images -> convolution kernel needs to have 3 channels

e stack of filters -> channels of the output feature map

/ height height
I m uidth

channel channel

©® Multi-channel cross-correlation:
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© If J

input channel filter spatial dimensions output channel

¢ input is 3D tensor, weight is 4D tensor, output is 3D tensor

e Essentially: a cross-correlation on spatial dims and fully connected on channel dims



Classification CNN

Spatial size of the input image

l / channels feature maps
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@ convolution+ReLU

@ max pooling
fully connected+ReLLU

“~~1 softmax
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conv(3x3, 64—64)
Result of conv(K x K, 3—64) followed by RelLU

4 Eventually want to classify -> need to reduce spatial dimensions

12



Pooling

+ Following approaches are used to reduce the spatial resolution: 13

e max pooling
e average pooling

e subsampling -> convolution with stride 13 | 23

max | i
3 [ 13 [MazeliE1a / 17| 4

average 6 | 13

11 | 17 1 4

subsample

4 Somewhat robust to translations

4 Once spacial resolution has been decreased, we
can afford to increase the number of channels




Convolution with Stnide @

4 Full convolution + subsampling is equivalent to 14

calculating the result at the required locations only, stepping with a stride
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All variants and detail: [Dumoulin, Visin (2018): A guide to convolution arithmetic for deep learning]



Classification CNN @

15
Reduced spatial size can afford more channels
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@ convolution+ReLU

@ max pooling
fully connected+ReLLU

“~~ softmax
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conv(3x3, 64—128)

4 Combining convolutions and spatial pooling increases units receptive field



Receptive Field @

16

4 Receptive Filed = pixels in the input which contribute to the specific output

Input Image Conv 3x3 Conv 3x3

# MaxPool 2x2

4 Small convolutions are not sufficient to building up the receptive field. Example:
e Want to classify images of size 256x256
e Each 3x3 convolution increases the receptive filed by 2 pixels
e \Would take 128 convolutional layers

4 Need pooling / strides / larger filters



Weight Kernel Sizes @

¢ With pooling we reduced the size of feature maps. What about filter kernels?
e First layer: (7x7,3—64) ~ 10% — can afford large filter size
e Second layer: (3 x 3, 64 — 64) ~ 3-10* — small filter size preferable
e Layers with more channels: (3 x 3, 256 — 256) ~ 5-10° — become expensive
® Need further efficient parametrization techniques
e Depth-wise separable convolutions:
spatial convolution same for all channels plus a general linear transform on the
channels (1x1 convolution)
e Something in between:
conv(K x K,5 — §) composed with conv(lx1,C — S), S<C
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1x1 Convolution @

¢ Kernel size 1x1: 18

Yo,i,j — SJ SJ SJ Wo,c,Ai,Aj Lc,i+Ai,j+Aj

c Ai=0Aj5=0
— : :w07c7070 xc7i7j
c

¢ For all 4,5 a linear transformation on channels with a matrix w, 0.0

channels

Example 3x3, 256—256,
vector of weights is too expensive, simplify:

per output channel Input: WxHx256

conv(1x1,256 — 64)

conv(3x3,64 — 64)

conv(1x1,64 — 256)

l

Output: W'xH'x256

¢ Useful to perform operations along channels dimension:
e Increase /decrease number of channels

e Normalization operations

e |In combination with purely spatial convolution = separable transform



Classification CNN @
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Could use efficient module here 1x1 convolution for input of size 1x1

is equivalent to fully connected

4 Second last layer has 4096*4096 =16M parameters!



More Convolutions in DL



Deconvolution @

21

Semantic Segmentation Architectures need unpooling / upsampling

Convolutional Encoder-Decoder

. Pooling Indices ‘

RGB Image B Conv + Batch Normalisation + RelU Segmentation
B Pooling  Upsampling Softmax

Input Output

We will look at up-sampling with “transposed” convolution (“deconvolution”)

Input image Ground-truth DeconvNet EDeconvNet EDeconvNet+CRF

[Noh et al. (2015) Learning Deconvolution Network for Semantic Segmentation]




Transposed Convolution @

4 Deconvolution = Transposed convolution = backprop of convolution 29

Convolution Deconvolution
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All variants and detail: [Dumoulin, Visin (2018): A guide to convolution arithmetic for deep learning]



Sparse Convolutions @

4 Want to increase receptive field size 23

e without decreasing spatial resolution and having too many layers
e (Can increase kernel size, but it was also costly

e (Can use a sparse mask for the kernel

Dilated convolutions Can even learn sparse locations —
deformable convolutions
Output
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Many More Examples and Smart Architectures @ o
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Object Detectlon il
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Stereo Depth Estimation
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In Other Courses

4 Computer Vision Methods (BE4AM33MPV, Spring)

® |ectures 1, 2: overview of vision architectures, examples

® |ecture 9: deep retrieval

4 Vision for Robotics (B3B33VIR, Fall)

® |ecture 6,8: (architectures)

® |ecture 7: self-supervision, weak supervision

e [ecture 9: Convolutions in 1D, 2D, 3D, graphs
® |ecture 10, 11: Deep reinforcement learning

® | ecture 12: Generative adversarial networks



https://cw.fel.cvut.cz/wiki/courses/mpv/start
https://cw.fel.cvut.cz/b201/courses/b3b33vir/start

Does the Analogy with Human Vision Extend Further?



Hierarch of Parts Phenomenon

4 In networks trained for different complex problems

® some intermediate layers activations correspond object parts

27



Hierarch of Parts Phenomenon @

4 In networks trained for different complex problems 28

® some intermediate layers activations correspond object parts

lamps in places net wheels in object net people in video net
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Computational Model of the Brain

is there an
animal?

4 Complex tasks build upon the how big is

this object?

capabilities of simpler tasks .
visual

routines

where is the
boundary of
the object?

") Complex units
(O simple units

29



Parallels with Visual Cortex CAm ¢
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4+ LGN: |
no orientation preference . | \

space-time separable

4 V1 packing in 2D problem:

e |ocation in the view (retinotopy)

® orientation

e ocular dominance

® motion

Ocular dominan

4 feedback connections ok

50000 neurons / mm?



