Deep Learning (BEV033DLE) Lecture 8 Adaptive SGD Methods

Alexander Shekhovtsov

Czech Technical University in Prague

- ✦ Geometry of Neural Network Loss Surfaces
 - Local Minima and Saddle Points in nD
 - Parameter redundancy helps optimization
- ◆ Understanding Adaptive Methods
 - Proximal Problems, Convex vs non-convex, Stochastic optimization
 - Adam, RMSprop, Adargad
- ★ Examples of Changing the Space Metric
 - Change of Coordinates, Preconditioning, Equivalent reparameterizations, Constraints

Loss Landscape

- ♦ There are several reasons for local minima
 - Symmetries (Permutation invariances)
 - Fully connected layer with n hidden units:n! permutations
 - Convolutional layer with c channels:c! permutations
 - In a deep network many equivalent local minima, but all of them are equally good -- no need to avoid
 - Loss function is a **sum of many non-convex terms**:

Local Minima in High Dimensions

- local min in one dimension
- it is still possible to descend in other dimension
- but can be getting stuck

nD

Let $f(x + \Delta x) \approx f(x) + J\Delta x + \Delta x^{\mathsf{T}} H\Delta x$,

where H has eigenvalues $\lambda_1, \ldots \lambda_2$.

Important characteristic (index): α — the fraction of negative eigenvalues.

A point x is

A **Stationary** if the gradient at x is zero

A **Saddle**: if it is stationary and $0 < \alpha < 1$

A **Local minnimum**: if it is stationary and $\alpha = 0$.

- ♦ Insights from Theoretical Physics --- Gaussian Fields:
 - local minima are exponentially more rare than saddle points
 - they become likely at lower energies (loss values)

[Bray & Dean (2007) The statistics of critical points of Gaussian fields on large-dimensional spaces]

Local Minima in High Dimensions

Experimental Confirmations in Neural Networks

- 1 hidden layer
- good agreement for small alpha (as expected)

[Dauphin et. al. 2017]

[Pennington & Bahri (2017) Geometry of Neural Network Loss Surfaces via Random Matrix Theory] [Dauphin et. al. (2017) Identifying and attacking the saddle point problem in high-dimensional non-convex optimization]

High Dimensionality Helps Optimization

7

Achieve 0 training error with sufficiently large networks

Histogram of SGD trials

[Choromanska et al. (2015): The Loss Surfaces of Multilayer Networks]

♦ Summary:

- Local minima are rare and appear to be good enough (note, we just waved an NP-hard non-convex optimization problem)
- But we need (highly) overparametrized models to have this easy training
- We hope that overparametrized models will still generalize well
- Maybe, optimization should worry a bit about efficiency around saddle points

Adaptive Methods

- ◆ In deep models we have:
 - different kinds of parameters: weights, biases, normalization parameters
 - located in different layers
 - Some parameters may be more sensitive than other
 - Some directions in the parameter space may be more sensitive (e.g. due to high curvature)
- ◆ Gradient Step Depends on the Choice of Coordinates
 - It is not necessarily the best direction for a step
- ♦ Many adaptive methods have emerged:

RMSProp	VAdam	Adamax
Adagrad	PAdam	AmsGrad
AdaDelta	Nadam	Yogi
Adam	AdamW	
BAdam	AdamX	

Common Adaptive Methods

Adagrad:

Adam:

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\varepsilon}{\sqrt{t}} \frac{\tilde{g}_{t,i}}{\sqrt{\operatorname{Mean}\left(\tilde{g}_{1:t,i}^2\right)}}$$

$$\theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\tilde{g}_{t,i}}{\sqrt{\text{EWA}\left(\tilde{g}_{1:t,i}^2\right)}}$$

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\varepsilon}{\sqrt{t}} \frac{\tilde{g}_{t,i}}{\sqrt{\operatorname{Mean}\left(\tilde{g}_{1:t,i}^2\right)}} \qquad \theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\tilde{g}_{t,i}}{\sqrt{\operatorname{EWA}\left(\tilde{g}_{1:t,i}^2\right)}} \qquad \theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\operatorname{EWA}_{\beta_1}\left(\tilde{g}_{1:t,i}\right)}{\sqrt{\operatorname{EWA}_{\beta_2}\left(\tilde{g}_{1:t,i}^2\right)}}$$

- All updates work per coordinate i independently
- $\tilde{g}_{1:t,i}$ denotes the sequence of all past gradients
- They are adaptive because each coordinate is rescaled differently
- Mostly differ by running averages used
- While they do work better for functions with valleys, explaining them as second order methods has quite some gaps
- This lecture:
 - consider some general useful optimization ideas
 - that (hopefully) will provide insights for this design as well

11

- Let's revisit how do we find the step Δx for SGD
 - Linearize: $f(x_0 + \Delta x) \approx f(x_0) + J\Delta x$
 - Trust this approximation only for $\|\Delta x\| \le \varepsilon$
 - Step proximal problem:

$$\min_{\|\Delta x\| \le \varepsilon} \left(f(x_0) + J\Delta x \right)$$

Equivalent to:

$$\max_{\lambda} \min_{\Delta x} \left(J \Delta x + \lambda (\|\Delta x\|^2 - \varepsilon^2) \right)$$

Step direction: $\Delta x = -\frac{1}{2\lambda}J^{\mathsf{T}}$

$$\|\Delta x^{\mathsf{T}}\|^2 = \varepsilon^2 \to \lambda = \frac{1}{2\varepsilon} \|J\|$$

Trust region step: $\Delta x = -\varepsilon \frac{J^{\mathsf{T}}}{\|J\|}$

- Generates two kinds of steps:
 - Proportional to gradient length (SGD)
 - Using only gradient direction (normalize)
- We can choose trust regions differently

Differences of Convex vs. Non-Convex

m

12

Why to step proportional to the gradient:

- No other stationary points than global minima
- The further we are from the optimum, the larger is the gradient: $\exists \mu > 0$
 - $\|\nabla f(x)\|^2 \ge \mu(f(x) f^*)$
 - $\bullet \|\nabla f(x)\| \ge \mu |x x^*|$
- Negative gradient points towards the optimum:
 - $\bullet \ \langle -\nabla f, x^* x \rangle \ge f f^* + \tilde{\mu} \|x x^*\|^2$
 - ullet Optimization need not be monotone in f

Why to normalize:

- Gradient carries no global information
 - Need bigger steps where gradient and curvature are low
 - Need smaller steps when gradient and curvature are high
- Makes sense to use trust region steps:
 - $\Delta x = -\frac{\nabla f}{\|\nabla f\|}$
 - If the trust region is ok, should guarantee a steady progress

13

- This time solve for step as:
 - $\min_{\|\Delta x_i\| \leq \varepsilon \ \forall i} (f(x_0) + J\Delta x)$ (In overparametrized models expect many parameters to have independent effect)
 - Equivalent to:

$$\max_{\lambda} \min_{\Delta x} \left(J \Delta x + \sum_{i} \lambda_{i} (\|\Delta x_{i}\|^{2} - \varepsilon^{2}) \right)$$
$$2\lambda_{i} \Delta x_{i} = -J_{i}$$

Step direction: $\Delta x_i = -\frac{1}{2\lambda_i}(\nabla f(x))_i$

Trust region step: $\Delta x_i = -\varepsilon \frac{(\nabla f(x))_i}{\|(\nabla f(x))_i\|}$

- $\nabla f(x)$
- Trust region steps: $\Delta x = -\frac{\nabla f(x)}{\|\nabla f(x)\|}$
- Problem: breaks in the stochastic setting
- Example

f(x) = (-3x) + (x) + (x+1), chose 1 summand at a time with equal probability

If we normalize stochastic gradients, will move in the wrong direction!

- → Want the steps to follow the descent direction on average
 - Cannot adjust the stochastic gradient "too much nonlinearly"

Solution: use running averages to approximate the expectation form:

$$\Delta x = -\varepsilon \frac{\mathbb{E}[\nabla f]}{\|\mathbb{E}[\nabla f]\|}$$

Also note that
$$\|\mathbb{E}[\nabla f]\| = \sqrt{(E[\nabla f])^2} \leq \sqrt{(E[(\nabla f)^2])}$$

- may be interpreted as a more robust setting
- Adagrad:

RMSProp:

$$\theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\tilde{g}_{t,i}}{\sqrt{\text{EWA}\left(\tilde{g}_{1:t,i}^2\right)}}$$

Adam:

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\varepsilon}{\sqrt{t}} \frac{\tilde{g}_{t,i}}{\sqrt{\operatorname{Mean}\left(\tilde{g}_{1:t,i}^2\right)}} \qquad \theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\tilde{g}_{t,i}}{\sqrt{\operatorname{EWA}\left(\tilde{g}_{1:t,i}^2\right)}} \qquad \theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\operatorname{EWA}_{\beta_1}\left(\tilde{g}_{1:t,i}\right)}{\sqrt{\operatorname{EWA}_{\beta_2}\left(\tilde{g}_{1:t,i}^2\right)}}$$

• In Adagrad:

$$\frac{1}{\sqrt{t}}$$
 guarantees convergence

 Other methods would also need this in theory but are typically presented and used with constant ε

For sparse gradients, $t \operatorname{Mean}(\tilde{g}_{1:t,i}^2)$ could grow much slower than t and achieve a speed-up compared to SGD

• In Adam:

EWA with $\beta_1 = 0.9$ works as common momentum (20 batches averaging) EWA with $\beta_2 = 0.999$ (2000 batches averaging) makes the normalization smooth enough

More Examples of Changing the Metric

Gradient Depends on the Choice of Coordinates

- lacktriangle Consider the simple gradient descent for a function $f\colon \mathbb{R}^n o \mathbb{R}$:
 - $\bullet \ \min_{x \in \mathbb{R}^n} f(x)$
 - $\bullet \ x_{t+1} = x_t \alpha J_f^{\mathsf{T}}(x)$
- lacktriangle Make a substitution: x=Ay (change of coordinate) and write GD in y:
 - $\bullet \ \min_{y \in \mathbb{R}^n} f(Ay)$
 - $y_{t+1} = y_t \alpha A^\mathsf{T} J_f^\mathsf{T} (A y_t)$
- Substitute back $y = A^{-1}x$:
 - $A^{-1}x_{t+1} = A^{-1}x_t \alpha A^{\mathsf{T}}J_f^{\mathsf{T}}(x_t)$
 - Obtained **preconditioned** GD: $x_{t+1} = x_t \alpha(AA^T)J_f^T(x_t)$
 - $P = AA^{\mathsf{T}}$ positive semidefinite
 - $P\nabla f(x)$ is a descent direction

Similar for non-linear change of coordinates, e.g. normalization

Mahalanobis Metric

- Adjust the trust region for sensitivity in different parameters:
 - $\min_{\|\Delta x\|_{M} \le \varepsilon} (f(x_0) + J\Delta x)$ for given ε
 - $\|\Delta x\|_{M} = (\Delta x^{\mathsf{T}} M \Delta x)^{\frac{1}{2}}$ Mahalanobis distance

Equivalent to:

$$\max_{\lambda} \min_{\Delta x} \left(J \Delta x + \lambda (\|\Delta x\|_{M}^{2} - \varepsilon^{2}) \right)$$

Step direction: $\Delta x = -\frac{1}{2\lambda} M^{-1} \nabla f(x)$

- ◆ Intuitive way to understand preconditioning
 - ullet Can associate sensitivity with curvature ullet Second Order (Newton) Methods
 - Can associate sensitivity with some statistics of gradient oscillations, e.g. Adagrad: $M = \mathrm{Diag}\Big(\sqrt{\mathrm{Mean}(g_{1:t}^2)}\Big)$

- Mirror Descent (MD)
 - General step proximal problem:

$$\min_{x} \langle \nabla f(x_0), x - x_0 \rangle + \lambda D(x, x_0)$$

where D is Bregman divergence (technical details ommitted)

- We will consider algorithms using unnormalized steps (not solving for λ).
- Generalizes cases considered so far:

$$D = ||x - x_0||^2$$
 — (steepest) SGD

$$D = ||x - x_0||_M^2$$
 — preconditioned SGD

Implicit Regularization by SGD / SMD

- Consider step proximal problem: $\min_{x} \langle \nabla f(x_0), x x_0 \rangle + \lambda \|x x_0\|_p^p$
 - i.e., p-norm stochastic mirror descent
- lacktriangle Using different p leads to solutions with different properties

	SMD 1-norm	SMD 2-norm (SGD)	SMD 3-norm	SMD 10-norm
1-norm BD	141	9.19×10^{3}	4.1×10^{4}	2.34×10^{5}
2-norm BD	3.15×10^3	562	1.24×10^{3}	6.89×10^{3}
3-norm BD	4.31×10^{4}	107	53.5	1.85×10^{2}
10-norm BD	6.83×10^{13}	972	7.91×10^{-5}	2.72×10^{-8}

[Azizan et al. (2019) Stochastic Mirror Descent on Overparameterized Nonlinear Models: Convergence, Implicit Regularization, and Generalization]

Different sparsity and generalization

21

In ReLU networks we can rescale the weights without affecting the output:

 Can rescale inputs and outputs of each unit (channels in conv networks)

$$f(Ay) = f(y)$$
, but $J_f(Ay) \neq J_f(y)$

Can lead to completely different SGD behavior

Path-SGD considers metric invariant to equivalent transformations.

Prox. problem: $\arg\min_{w} \ \eta \left\langle \nabla L(w^{(t)}), w \right\rangle + \left(\sum_{v_{in}[i] \stackrel{e_1}{\to} v_1 \stackrel{e_2}{\to} v_2 \dots \stackrel{e_d}{\to} v_{out}[j]} \left(\prod_{k=1}^{d} w_{e_k} - \prod_{k=1}^{d} w_{e_k}^{(t)} \right) \right)^{p} \right)^{2/p}$

[Neyshabur et al. (2015) Path-SGD: Path-Normalized Optimization in Deep Neural Networks]

Constrained Optimization with Mirror Descent

- ◆ Let us use a proximal problem with an appropriate trust region
- Mirror Descent (MD)
 - Use step proximal problem: $\min_x \langle \nabla f(x_0), x x_0 \rangle + \lambda D(x, x_0)$ with a suitable divergence D (recall previous choices $D = ||x x_0||^2$, $D = ||x x_0||_M^2$)
 - Very elegant solutions in simple cases
- lacktriangle Example: constrained parameter x > 0

$$D(x,x_0) = x \log \frac{x}{x_0} - x + x_0$$
 (Generalized KL divergence)

Update:
$$\log x_{t+1} = \log x_t - \frac{1}{\lambda} \nabla_x f(x_t)$$

Note: gradient in x is added to $\log x$

Can implement as:

$$y_{t+1} = y_t - \frac{1}{\lambda} \nabla_x f(x_t)$$

$$x_{t+1} = e^{y_{t+1}}$$

Constrained Optimization with Mirror Descent

- ◆ Let us use a proximal problem with an appropriate trust region
- Mirror Descent (MD)
 - Use step proximal problem: $\min_x \langle \nabla f(x_0), x x_0 \rangle + \lambda D(x, x_0)$ with a suitable divergence D (recall previous choices $D = ||x x_0||^2$, $D = ||x x_0||_M^2$)
 - Very elegant solutions in simple cases
- Constraint $x \in (0,1)$

$$\begin{split} D(x,x_0) &= x \log \frac{x}{x_0} + (1-x) \log \frac{1-x}{1-x_0} \text{ (KL divergence)} \\ y_{t+1} &= y_t - \frac{1}{\lambda} \nabla_x f(x_t) \\ x_{t+1} &= \mathcal{S}(y_{t+1}) = \frac{1}{1+e^{-y_{t+1}}} \end{split}$$

$$D(x, x^0) = \sum_i x_i \log \frac{x_i}{x_i^0}$$
 (KL divergence)
$$y_{t+1} = y_t - \frac{1}{\lambda} \nabla_x f(x_t)$$

$$x_{t+1} = \operatorname{softmax}(y_t + 1)$$

• Can substitute and get update of x directly \rightarrow **exponentiated GD** (\star)

- Convergence in stochastic non-convex setting?
- ◆ At least we clearly see it averages gradients in the "mirror" space. Works in practice.

- ullet **Example**: Need a parameter that models variance σ^2 of some distribution inside NN
 - Must be $\sigma^2 > 0$
 - But do not know the scale, e.g. $\sigma^2 \in [10^{-4}, 10^4]$

Option 1: projected GD

Parametrize as $\sigma^2 = y$

Projecting to $y \ge 0$ may result in invalid variance

Cannot recover small σ^2 more accurately than the step size

May never make enough steps to find big σ^2

Option 2: Parametrize as $\sigma^2 = e^y$, $y \in \mathbb{R}$

May overflow for large y

Gradients grow unbounded

If stepped to small values of y accidentally, gradients vanish

Option 3: Parametrize as $\sigma^2 = \log(1 + e^y)$, $y \in \mathbb{R}$

Gradients bounded

May vanish if we step to $y \ll 0$

May never get to high range values

(All options work to some extend, in particular Option 3 is often used in literature)