Deep Learning (BEV033DLE)
Lecture 8
Adaptive SGD Methods

Alexander Shekhovtsov

Czech Technical University in Prague

4 Geometry of Neural Network Loss Surfaces
® [ocal Minima and Saddle Points in nD
e Parameter redundancy helps optimization
4 Understanding Adaptive Methods
e Proximal Problems, Convex vs non-convex, Stochastic optimization
e Adam, RMSprop, Adargad
4 Examples of Changing the Space Metric

e Change of Coordinates, Preconditioning, Equivalent reparameterizations, Constraints

Local Minima @

4 There are several reasons for local minima 3

e Symmetries (Permutation invariances)

- Fully connected layer with n hidden units:

n! permutations

- Convolutional layer with ¢ channels:

c! permutations

- In a deep network many equivalent local minima, 5 - A o
but all of them are equally good -- no need to avoid al P
e Loss function is a sum of many non-convex terms:] [
L©O) =D _yir f(i:0)) e e

-4 ’,_, 4"4
. X -6 -6
1 \ :

often convex non-linear

Local Minima in High Dimensions @ o

1D 2D

local max saddle point

local min

- local min in one dimension
- it is still possible to descend in other dimension

- but can be getting stuck

nD

Let f(x+ Ax)~ f(z)+ JAx+ Ax"HAxz,

where H has eigenvalues A\q,... \o.

Important characteristic (index): a — the fraction of negative eigenvalues.
A point x is

A Stationary if the gradient at x is zero

A Saddle: if it is stationary and 0 < a < 1

A Local minnimum: if it is stationary and o = 0.

Local Minima in High Dimensions @

5
4 Insights from Theoretical Physics --- Gaussian Fields:
¢ |ocal minima are exponentially more rare than saddle points
e they become likely at lower energies (loss values)
fraction of negative ¢ 5
13- eigenvalues o~ N2 E-E"\2
1.25 4 37 E*
124
115
1.1 4 /
1.05 //‘
0.95 -\ /
094 N\ /{/’/
085 - /
E* O //,/
6 c /
L E

average energy of st. point

[Bray & Dean (2007) The statistics of critical points of Gaussian fields on large-dimensional spaces]

Local Minima in High Dimensions @

4 Experimental Confirmations in Neural Networks 6
30 ,
" S | MNIST ¢
o ¢ _ #parameters Y20 AN
0.25/ H#samples O
5 10
0.20 ** 0=23 c .‘
: / 6 =172 I‘_i’ D ® ™ _
0.15/ f ¢ fi/i 0.00 0.12 0.25
:$;1f8 Index of critical point o
0.10 —$ =116
" =60 CIFAR-10 8
0.09 . 5 55 &°
[Pennington & Bahri 2017] s jg'ﬂ' ‘
0.05 0.10 0.15 0.20
e 1 hidden |ayer Index of critical point «
« good agreement for small alpha (as expected) [Dauphin et. al. 2017]

[Pennington & Bahri (2017) Geometry of Neural Network Loss Surfaces via Random Matrix Theory]
[Dauphin et. al. (2017) Identifying and attacking the saddle point problem in high-dimensional non-

convex optimization]

High Dimensionality Helps Optimization @

Achieve 0 training error
with sufficiently large networks Histogram of SGD trials
e e S
—Training
0.6\ —Test (at convergence) 60 -
0.5¢ \ nhidden
40- ' 25

§0_4, | § | 2
Wos Q .;gg

0.2 f 20- 500

0.1

l 1

4 8 16 32 64 128 256 512 1K 2K 4K . . .
Hidden Units 0.08 loss 0.09 o-10

[Neyshabur (2015)] [Choromanska et al. (2015):

The Loss Surfaces of Multilayer Networks]
4 Summary:

® |ocal minima are rare and appear to be good enough
(note, we just waved an NP-hard non-convex optimization problem)

e But we need (highly) overparametrized models to have this easy training
e \We hope that overparametrized models will still generalize well

e Maybe, optimization should worry a bit about efficiency around saddle points

Adaptive Methods

Need for Adaptive Methods @

4 In deep models we have:
- different kinds of parameters: weights, biases, normalization parameters
- located in different layers
e Some parameters may be more sensitive than other

e Some directions in the parameter space may be more sensitive (e.g. due to high

curvature)
4 Gradient Step Depends on the Choice of Coordinates

e [t is not necessarily the best direction for a step

4 Many adaptive methods have emerged:

RMSProp VAdam Adamax
Adagrad PAdam AmsGrad
AdaDelta Nadam Yogi
Adam AdamW

BAdam AdamX

Common Adaptive Methods @

10
¢ Adagrad: ¢ RMSProp: ¢ Adam:
9t+1a73 — 975,?3 — = 9. 9t+1,z’ — et,i — & It Ht+1,i = 975,7; — € WA, (gl:t’i)
x/f\/lvlean (éit,z—) \/EWA (g%zt,i) \/EWAB2 (g%zt’i)

e All updates work per coordinate 7 independently
® g1+, denotes the sequence of all past gradients
e They are adaptive because each coordinate is rescaled differently

e Mostly differ by running averages used

4+ While they do work better for functions with valleys,
explaining them as second order methods has quite some gaps

4 This lecture:

e consider some general useful optimization ideas

e that (hopefully) will provide insights for this design as well

Proximal Problem and Trust Region @ 0

® Let's revisit how do we find the step Ax for SGD

e Linearize: f(xo+ Ax)~ f(xg)+JAx

. . T2]
e Trust this approximation only for ||Ax|| <e

e Step proximal problem:

min (f(xg) + JAz)

|Az||<e
Equivalent to:

max min (JA:E+)\(||AxH2—52))

A Az
Step direction: Az = —%J T ya PNy
\ Y 'i
|AzTP=¢® = A= o[l J] NGl S
Trust region step: Az = —5% S

+ Generates two kinds of steps: o |
e Proportional to gradient length (SGD) :;"" /

e Using only gradient direction (normalize) 75 1 N , R™

4 We can choose trust regions differently

Differences of Convex vs. Non-Convex @ o

Why to step proportional to the gradient:

Convex

\‘\/

® No other stationary points than global
minima

¢ The further we are from the optimum,
the larger is the gradient: du > 0
o |[Vf(@)* = pu(f(z)—f*)
o [Vf(@)| = ple—a™

® Negative gradient points towards the

optimum:

o« (“Vfar—a)>f— [+ fille—a|?

e Optimization need not be monotone in f

Why to normalize: 12

Non-Convex

accelerate here

be careful here

¢ Gradient carries no global information
e Need bigger steps where gradient and
curvature are low
e Need smaller steps when gradient and
curvature are high
® Makes sense to use trust region steps:
o Ax = —”g—fcu
e |f the trust region is ok, should guarantee

a steady progress

Box Trust Regions @

="

Trust region ||Z]|eo <€
> T

¢ This time solve for step as:

° JA
o Jmin (f(eo)+JAz)

(In overparametrized models expect many parameters to have independent effect)

e Equivalent to:

. , 12 =2
m}z\xannmn(JAx—in)\Z(HAmZH e))

2)\ZA$Z — —Jz'
Step direction: Az; = —%X(Vf(a:))

- . | (f(x))i
Trust region step: Az; = —e 0]

13

Non-Convex Stochastic @

® Trust region steps: Ax = —||§}C§g|| 14

¢ Problem: breaks in the stochastic setting

¢ Example
f(x) = (—3x)+ (x)+ (x+1), chose 1 summand at a time with equal probability
AN

will move in the wrong direction! Slope -3 Slope 1

\szl

If we normalize stochastic gradients,

4 Want the steps to follow the descent direction on average

e (Cannot adjust the stochastic gradient “too much nonlinearly”

Non-Convex Stochastic @

¢ Solution: use running averages to approximate the expectation form: 15
_ _ - E[V/f]
AT = —ETgv

Also note that ||[E[Vf]|| =/ (E[Vf])2 <V (E[(VS)?])

— may be interpreted as a more robust setting

¢ Adagrad: ¢ RMSProp: ¢ Adam:

gt .i gt.i

EWA gl:t,'
Oti1,i="0t:—¢ ﬁl(Z)

EWA (g%t,z’) \/ EWAg, (g%:t,z’)

- 3 -
t9t+1,z' — 9t,z‘ — 9t+1,z‘ — t9t,z‘ —c
Vit
Mean(g%:t,i)

e In Adagrad:
\/iz guarantees convergence

e Other methods would also need this in theory but are typically presented and used
with constant ¢
For sparse gradients, tl\/lean(git,i) could grow much slower than ¢ and achieve a
speed-up compared to SGD

e In Adam:
EWA with 8; = 0.9 works as common momentum (20 batches averaging)
EWA with 55 =0.999 (2000 batches averaging) makes the normalization smooth

enough

More Examples of Changing the Metric

¢ Consider the simple gradient descent for a function f: R"” — R:

Gradient Depends on the Choice of Coordinates

e min f(x)

recR"

® I 1 =1T4— onJI(aj)

¢ Make a substitution: z = Ay (change of coordinate) and write GD in y:

e min f(Ay)

yeR"
Yt+1 = Yt — @ATJJI(A%)

¢ Substitute back y = A~ 'z

14_1$t{1:ﬁAfl$t—-af{EI;Cﬂﬂ

Obtained preconditioned GD: z; 1 = z; — a(AA")J } ()

P = AA" - positive semidefinite
PV f(x) — is a descent direction

L1 =Y1
i o

¢ Similar for non-linear change of coordinates, e.g. normalization

=x1

Y2

:yl

17

Mahalanobis Metric @

18

¢ Adjust the trust region for sensitivity in different parameters:

e min (f(zy)+ JAz) for given ¢
Az A <e

1
o |Az|y = (Az"MAz)2 — Mahalanobis distance

Equivalent to:

maxmin (JAx—|—)\(HAa:'H?W—52))

Step direction: Az =~y M ™'V f(z) e =— >

L
Adjusted trust region

x2 A

|zl <e

4 Intuitive way to understand preconditioning

e (an associate sensitivity with curvature — Second Order (Newton) Methods

e (Can associate sensitivity with some statistics of gradient oscillations,
e.g. Adagrad: M:Diag(\/l\/[ean(g%:t))

Mirror Descent

¢ Mirror Descent (MD)
e General step proximal problem:
mén(Vf(a:o),x — x9) + AD(x, x0)
where D is Bregman divergence (technical details ommitted)
e We will consider algorithms using unnormalized steps (not solving for).
e Generalizes cases considered so far:
D = ||x — xo||* — (steepest) SGD

D = ||x — x||3; — preconditioned SGD

19

Implicit Regularization by SGD / SMD

¢ Consider step proximal problem: min(V f(xg),x — xo) + Al|z — 20/} 20
XT
e i.e., p-norm stochastic mirror descent
® Using different p leads to solutions with different properties
. . wo 300000 1 l 1 :
Initial point mmm [1-norm
,',’,' \ 250000 B 12-norm
/,’ . \ B 13-norm
R | \ 200000 @ 110-norm
o I,’ ’,' \ 2150000
l,' N 100000
' Manifold of 50000
Woc wSMD—l10 optimal solutions
> (OJ.OO 0.01 0.02 0.03 0.04 0.05

Absolute Value of Weights

e Different sparsity and generalization

e lterates tend to argmin, c ||w —wyl|Z,

the closest point in the respective norm a §
§
" SMD I-norm SMD 2-norm (SGD) SMD 3-norm SMD 10-norm 3 p= 10
1-norm BD 141 9.19 x 10° 4.1 x 10* 2.34 x 10° = % o Y
2-norm BD 3.15 x 10° 562 1.24 x 103 6.89 x 10° = : $ p = 3
3-norm BD 4.31 x 10* 107 53.5 1.85 x 102 > 8 Gl
10-norm BD 6.83 x 10" 972 791 x107° 2.72x107° 7 92 D=)
[
- - . o p=1
[Azizan et al. (2019) Stochastic Mirror Descent on Overparameterized o
Nonlinear Models: Convergence, Implicit Regularization, and Generalization] 3
an 1 L - 1

Path-SGD ®

4 In ReLU networks we can rescale the weights without affecting the output: 21
e RelU units are I-homogenous: Q@\
for s > 0: ReLU(sx) = max(0,sx) = smax(0,x) @

e Can rescale inputs and outputs of each unit Q ‘@%_,

(channels in conv networks)
f(Ay) = f(y), but Jy(Ay) # Jr(y) <

4 Can lead to completely different SGD behavior

©
—0©

—0©
N
(4)]

Jm 4100 A~100 —Balanced
é é 2 —Unbalanced||
VQ | f 60 Y Q
Re:C\alng Update o 15
11 ~ 104 A~10? B
U u u éﬁ 8 1
A 100 ~100 0.5L
| ! :
0 100 200 300
Epoch
(a) Training on MNIST
4 Path-SGD considers metric invariant to equivalent transformations.
2/p
d p
Prox. problem: argrrgn 77<VL(w(t)),w>—|— Z (H We, — Hw(t))
k=1

vm[z’]gvlzvz...@)vout[ﬂ
[Neyshabur et al. (2015) Path-SGD: Path-Normalized Optimization in Deep Neural Networks]

Constrained Optimization with Mirror Descent

Let us use a proximal problem with an appropriate trust region

Mirror Descent (MD)

e Use step proximal problem: mg}n{Vf(a:o),a;—a:()) +AD(z,x)
with a suitable divergence D
(recall previous choices D = ||z — xo||?, D = ||x — zo||5,)

e Very elegant solutions in simple cases

Example: constrained parameter x > 0 2]
D(z,x0) = xlog ;- — 2+ xo (Generalized KL divergence)
Update: logzss1 = logay — +Va f ()

Note: gradient in x is added to logx

Can implement as:

Y1 =Yt — 5 Vaf(z¢)

$t+1 — eyt-i-l

22

Constrained Optimization with Mirror Descent

4 Let us use a proximal problem with an appropriate trust region

¢ Mirror Descent (MD)
e Use step proximal problem: mg}n{Vf(a:o),a;—a:()) +AD(z,x)
with a suitable divergence D
(recall previous choices D = ||z — xo||?, D = ||x — zo||5,)

e Very elegant solutions in simple cases

¢ Constraint x € (0,1)

1—x
1—x

D(x,zy) =xlog=—=+ (1 —x)log KL divergence
oy |

Vi1 = Yo — Vo f () —

Lt4+1 = S(yt—i—l) — 1+€}yt+1

23

Constrained Optimization with Mirror Descent @

¢ Constraint z; >0, >, x; =1 — simplex 24
D(x,2") =, %;log = (KL divergence)
Yer1 = Y — 5 Vaf (1)
T¢q = softmax(y; + 1)

e Can substitute and get update of x directly — exponentiated GD (x)

0

Quadratic fidelity "-‘8

iv A o "=
0.6
8
0

y 06 2 !
1"’ l\-
v 0.4
0 0.
0.2 ;
1 1
0
0 2 04 0.6 08 1 0
P3

KL fidelity

4 Convergence in stochastic non-convex setting?

4 At least we clearly see it averages gradients in the "mirror” space. Works in practice.

Why not Simpler ways to Handle Constraints? @

¢ Example: Need a parameter that models variance o of some distribution inside NN

e Must be 0 > ()

e But do not know the scale, e.g. 0% € [107%,10%]

Option 1: projected GD
Parametrize as 02 =y
Projecting to y > 0 may result in invalid variance
Cannot recover small 0> more accurately than the step size
May never make enough steps to find big o*

Option 2: Parametrize as 6 =¢¥, y € R
May overflow for large y __
Gradients grow unbounded s S
If stepped to small values of y accidentally, gradients vanish

Option 3: Parametrize as 0® = log(1+¢Y), y € R
Gradients bounded
May vanish if we step to y < 0

May never get to high range values

(All options work to some extend, in particular Option 3 is often used in literature)

25

