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Lecture check

@ Any questions regarding the lecture?

NOT SURE IF NO,QUESTIONS

OR IF YOURDIDN'T LISTEN

meme-generator.com
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Neural planning

@ What is that?
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Neural planning

o What is that?
@ That's just how | call it to be honest...

@ Combining Classical Planning aaaaaaaand Deep Learning
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Neural planning
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Neural planning

@ Classical planning is great because

it can be domain-independent

you have powerful heuristics

there's a lot of state of the art

you have optimized planner implementations
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Neural planning

@ Classical planning is great because

e it can be domain-independent

e you have powerful heuristics

o there's a lot of state of the art

e you have optimized planner implementations
@ ...but it's less great because
you need a model
you often have to hand-encode the model
different planner may need different representation
you need languages like PDDL
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Neural planning

Tw it
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Neural planning

@ Neural networks are great
e when you have a lot of data
e because they work on unstructured data
e because they don’t need a model!
@ ...but they're less great
e when you have a difficult task
e when you don’t have data
o because they don't learn algorithms
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Neural planning

@ What if... we used them both?
@ Classical planning: algorithms

@ Neural networks: replace parts of algorithms that require the costly
model

o Different approaches as well

e learn policy function
o learn PDDL from the graphic representation
e ...many more directions
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Neural planning - our work

State space + state-transition function

Expansion network that works with graphic representation

Heuristic function

Heuristic network that works with graphic representation
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Neural planning - domains
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Neural planning

Grid domains (so far...)

One-hot encoding of the entities on cells
Convolutional + recurrent neural networks
Scale-free architectures

[0, 1,0, 0] [1,0,0, 0]

[0,0,1,0] [0, 0,0, 1]
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Expansion network
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Expansion network

@ Convolutional neural network
@ 4-neighborhood movement possible
@ 3 x 3 convolutional window to see the surroundings of the agent

@ residual connection in the architecture to not loose initial information
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Heuristic network

3 architectures

°

@ CNN - convolutional neural network (most simple)

@ CNN_att - convolutional neural network using attention
°

RNN - reasoning recurrent network using MAC cell

Inspiration in landmarks, relaxations, abstractions...

Each architecture has intuition
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Heuristic network - loss function

@ We're learning monotonocity
@ Property of any good heuristic
@ sample + label pairs aren’t enough anymore

@ one instance with multiple agent placements
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Heuristic network - CNN
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Heuristic network - CNN_att

Attention block
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Heuristic network - CNN _att Sokoban attention masks
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Heuristic network - RNN
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Architecture comparison - 8 x 8

CNN RNN
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Architecture comparison - 16 x 16




QN
o
X
(9N
(99]
|
=
(]
(7]
=
T
o
S
(]
O
(0]
=
>
)
O
[
L=
<=
O
=
<



Architecture comparison - 64 x 64

CNN




We tested all architectures against Euclidean distance, htM=Ctt and
hFF heuristics

Results on par on small domains
Time advantage in large complex domains

Less informed values in large state-spaces

Slower expansion can slow down the search too much

Michaela Urbanovsk4 PUI Tutorial 6 26 /29



Future plans

More domains!
Bootstrapping
Different approaches entirely?

Explainability of the architectures
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Planning can be combined with other disciplines
Neural networks aren't almighty

Combination is the key!
If you're interested in this direction (or any other planning direction)
let us know!

e Thesis topics

o Possibly summer jobs

o Other cooperation :)
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2 CLASSES ABOUT APPLICATIONS
OF CLASSIGAL PLANNING
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https://docs.google.com/forms/d/e/1FAIpQLSfVChU8K6glawvee5_gR_dais7Bqc2hEpixBRh69nl1cy3cVw/viewform?usp=sf_link

