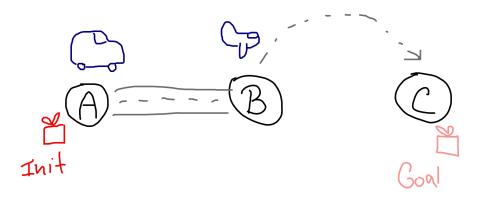

Michaela Urbanovská

PUI Tutorial Week 6 • Any questions regarding the lecture?

• What is that?

- What is that?
- That's just how I call it to be honest...
- Combining Classical Planning aaaaaaaand Deep Learning



• Classical planning is great because

- it can be domain-independent
- you have powerful heuristics
- there's a lot of state of the art
- you have optimized planner implementations

• Classical planning is great because

- it can be domain-independent
- you have powerful heuristics
- there's a lot of state of the art
- you have optimized planner implementations
- ...but it's less great because
 - you need a model
 - you often have to hand-encode the model
 - different planner may need different representation
 - you need languages like PDDL

- Neural networks are great
 - when you have a lot of data
 - because they work on unstructured data
 - because they don't need a model!
- ...but they're less great
 - when you have a difficult task
 - when you don't have data
 - because they don't learn algorithms

- What if... we used them both?
- Classical planning: algorithms
- Neural networks: replace parts of algorithms that require the costly model
- Different approaches as well
 - learn policy function
 - learn PDDL from the graphic representation
 - ...many more directions

- State space + state-transition function
- Expansion network that works with graphic representation
- Heuristic function
- Heuristic network that works with graphic representation

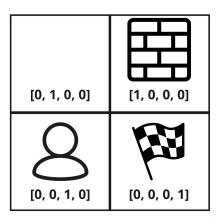
Neural planning - domains

E		盟田
		Ē
田		
	8	

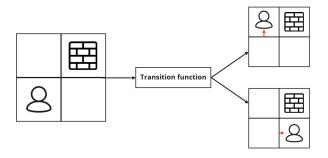
田 田 田 田		
- 673	E C C C C C C C C C C C C C C C C C C C	
	Ħ	E
8 🗄		

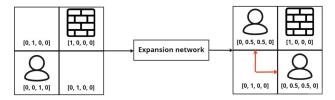
Single-agent maze

EE		囲後		8	8
田	臣		Ē	臣	
		開			FA
田					田
	愛聞				

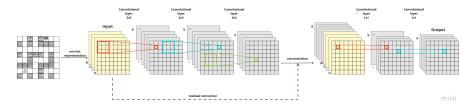

Multi-agent maze

Multi-goal maze

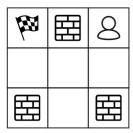

	臣	臣		臣	臣
		臣			
		臣			田
E					
田		田	8		田
12303月23月23日	100	田田			田
開					田
		臣	E	田	

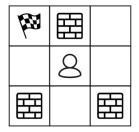

Sokoban

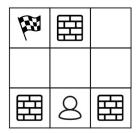
- Grid domains (so far...)
- One-hot encoding of the entities on cells
- Convolutional + recurrent neural networks
- Scale-free architectures



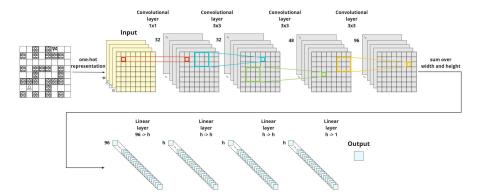
Expansion network

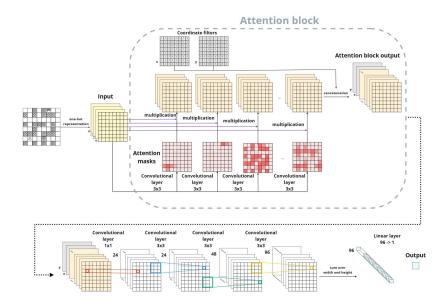

- Convolutional neural network
- 4-neighborhood movement possible
- $\bullet~3\times3$ convolutional window to see the surroundings of the agent
- residual connection in the architecture to not loose initial information

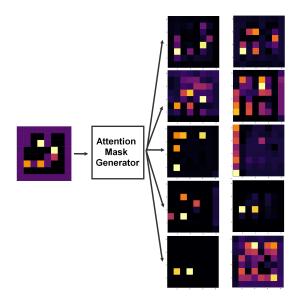


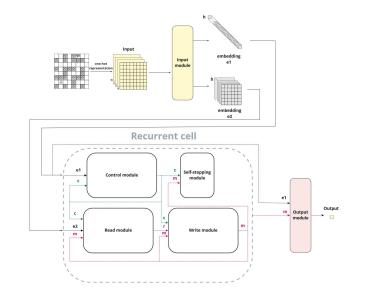

- 3 architectures
- CNN convolutional neural network (most simple)
- CNN_att convolutional neural network using attention
- RNN reasoning recurrent network using MAC cell
- Inspiration in landmarks, relaxations, abstractions...
- Each architecture has intuition

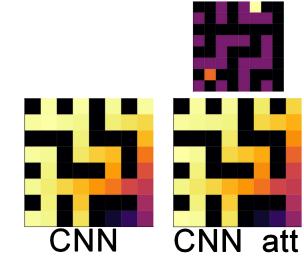
Heuristic network - loss function

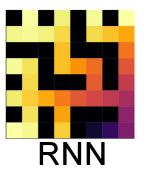

- We're learning monotonocity
- Property of any good heuristic
- sample + label pairs aren't enough anymore
- one instance with multiple agent placements



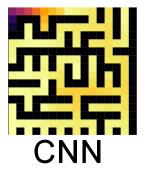

Heuristic network - CNN

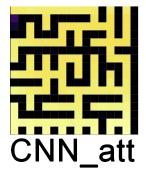

Heuristic network - CNN_att

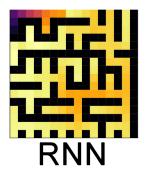

Heuristic network - CNN_att Sokoban attention masks



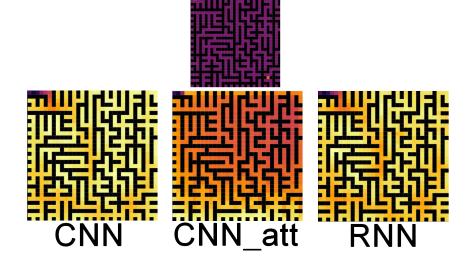
Heuristic network - RNN

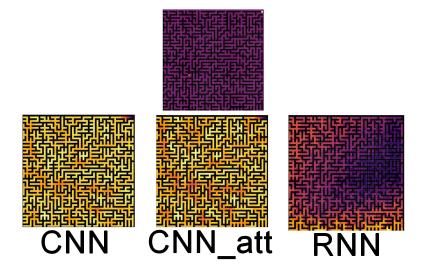

Architecture comparison - 8×8





Architecture comparison - 16×16





Architecture comparison - 32×32

Architecture comparison - 64×64

- We tested all architectures against Euclidean distance, h^{LM-Cut} and h^{FF} heuristics
- Results on par on small domains
- Time advantage in large complex domains
- Less informed values in large state-spaces
- Slower expansion can slow down the search too much

- More domains!
- Bootstrapping
- Different approaches entirely?
- Explainability of the architectures

- Planning can be combined with other disciplines
- Neural networks aren't almighty
- Combination is the key!
- If you're interested in this direction (or any other planning direction) let us know!
 - Thesis topics
 - Possibly summer jobs
 - Other cooperation :)

Feedback form link

