Michaela Urbanovská

PUI Tutorial Week 3

Lecture check

• Any questions regarding the lecture?

Feedback

- THANK YOU for filling the feedback form
- mutexes will be in more lectures
- speeeeed always let me know (tell me, use chat)
- more STRIPS/FDR/PDDL examples will do!

- Many different possible ways to obtain a heuristic in general
- General idea:

- Many different possible ways to obtain a heuristic in general
- General idea: solve a simplified version of the problem

- Many different possible ways to obtain a heuristic in general
- General idea: solve a simplified version of the problem
 - relaxation

- Many different possible ways to obtain a heuristic in general
- General idea: solve a simplified version of the problem
 - relaxation
 - abstraction

- Many different possible ways to obtain a heuristic in general
- General idea: solve a **simplified** version of the problem
 - relaxation
 - abstraction
- This week: relaxation

- Relaxation is
 - general design technique
 - usually ignoring something
 - simplifying the problem

- Relaxation is
 - general design technique
 - usually ignoring something
 - simplifying the problem

• Example: 8-puzzle in STRIPS

• Example: 8-puzzle in STRIPS

• How would you formulate it?

Relaxation heuristic - 8-puzzle STRIPS

STRIPS = $\langle F, O, S_i, g \rangle$

```
F = Facts
n1p1 - number 1 on position 1
n1p2 - number 1 on position 2
n8p9 - number 8 on position 9
free(p1) - position 1 is free
free(p9) - position 8 is free
next(p1,p2) - position 1 and 2 are adjacent
next(p8,p9) - position 8 and 9 are adjacent
move-n1-p1-p2 (move number 1 from position 1 to position 2)
      preconditions: {n1p1, free(p2)}
      add effects: {n1p2, free(p1)}
      delete effects: {n1p1}
```

 S_i (initial state) = {n1p2, n2p9,n3p7,n4p1,n5p3,n6p8,n7p6,n8p5} g (goal state specification) = {n1p1,n2p2,n3p3,n4p4,n5p5,n6p6,n7p7,n8p8}

• What do we relax?

• What do we relax? Delete effects

- What do we relax? Delete effects
- Delete relaxation

Relaxed STRIPS planning task

Relaxation of a STRIPS planning task $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$ is the planning task $\Pi^+ = \langle F, O^+, s_{init}, s_{goal}, c \rangle$ which contains set of relaxed operators.

Michaela Urbanovská PUI Tutorial 3 8 / 17

- What do we relax? Delete effects
- Delete relaxation

Relaxed STRIPS planning task

Relaxation of a STRIPS planning task $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$ is the planning task $\Pi^+ = \langle F, O^+, s_{init}, s_{goal}, c \rangle$ which contains set of relaxed operators.

Relaxation of operators

Relaxation of operator $o = \langle pre(o), add(o), del(o) \rangle$ is operator $o^+ = \langle pre(o), add(o), \emptyset \rangle$.

• Let's try it out! http://editor.planning.domains

Michaela Urbanovská PUI Tutorial 3 8 / 1

- Operator move(n, p1, p2)
 - h^* works with STRIPS definition Π
 - h^+ works with relaxed STRIPS definition Π^+

h⁺ heuristic

The h^+ heuristic computes length of the optimal relaxed plan π^+ which is an optimal solution to the relaxed problem Π^+ .

• Is h^+ admissible?

- Operator move(n, p1, p2)
 - h^* works with STRIPS definition Π
 - h^+ works with relaxed STRIPS definition Π^+

h⁺ heuristic

The h^+ heuristic computes length of the optimal relaxed plan π^+ which is an optimal solution to the relaxed problem Π^+ .

• Is h^+ admissible? Yes, if it's optimal.

- Operator move(n, p1, p2)
 - h^* works with STRIPS definition Π
 - h^+ works with relaxed STRIPS definition Π^+

h⁺ heuristic

The h^+ heuristic computes length of the optimal relaxed plan π^+ which is an optimal solution to the relaxed problem Π^+ .

- Is h^+ admissible? Yes, if it's optimal.
- Computing h^+ is still very hard though.

- Operator move(n, p1, p2)
 - h^* works with STRIPS definition Π
 - h^+ works with relaxed STRIPS definition Π^+

h⁺ heuristic

The h^+ heuristic computes length of the optimal relaxed plan π^+ which is an optimal solution to the relaxed problem Π^+ .

- Is h^+ admissible? Yes, if it's optimal.
- Computing h^+ is still very hard though.
- We can compute an **estimate** of h^+ .
 - h^{add}
 - h^{max}

heuristic

- STRIPS planning task $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$
- $h^{add}(s)$ gives estimate of the distance from s to a state that satisfies Sgoal
- $h^{add}(s) = \sum_{f \in s} \Delta_0(s, f)$, where
 - $\Delta_0(s,o) = \sum_{f \in pre(o)} \Delta_0(s,f), \forall o \in O$
 - $\Delta_0(s,f) =$ if $f \in s$, if $\forall o \in O : f \notin add(o)$, $min\{c(o) + \Delta_0(s, o) | o \in O, f \in add(o)\}$ otherwise.

Michaela Urbanovská PUI Tutorial 3 10 / 17

h^{max} heuristic

- STRIPS planning task $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$
- $h^{max}(s)$ gives estimate of the distance from s to a state that satisfies s_{goal}
- $h^{max}(s) = max_{f \in s_{goal}} \Delta_1(s, f)$, where
 - $\Delta_1(s,o) = \max_{f \in pre(o)} \Delta_1(s,f), \forall o \in O$

$$\begin{array}{ll} \bullet \ \, \Delta_1(s,f) = \\ \begin{cases} 0 & \text{if } f \in s, \\ \inf & \text{if } \forall o \in O : f \notin \mathit{add}(o), \\ \mathit{min}\{c(o) + \Delta_1(s,o) | o \in O, f \in \mathit{add}(o)\} & \mathit{otherwise}. \end{cases} \end{array}$$

Compute $h^{max}(s_{init})$ for the following problem $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$:

$$F = \{a, b, c, d, e, f, g\}$$

		pre	add	del	С
<i>O</i> =	01	{a}	{c,d}	{a}	1
	02	$\{a,b\}$	{e}	Ø	1
	03	$\{b,\!e\}$	$\{d,f\}$	$\{a,e\}$	1
	04	$\{b\}$	{a}	Ø	1
	05	$\{d,e\}$	{g}	{e}	1

$$s_{init} = \{a, b\} \ s_{goal} = \{f, g\}$$

Algorithm 1: Algorithm for computing $h^{max}(s)$.

```
Input: \Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle, state s
    Output: h^{max}(s)
 1 for each f \in s do \Delta_1(s, f) \leftarrow 0;
 2 for each f \in \mathcal{F} \setminus s do \Delta_1(s, f) \leftarrow \infty;
 3 for each o \in \mathcal{O}, pre(o) = \emptyset do
      for each f \in add(o) do \Delta_1(s, f) \leftarrow \min\{\Delta_1(s, f), c(o)\};
 5 end
 6 for each o \in \mathcal{O} do U(o) \leftarrow |\operatorname{pre}(o)|;
 7 C \leftarrow \emptyset;
 s while s_{goal} \not\subseteq C do
         k \leftarrow \arg\min_{f \in \mathcal{F} \setminus C} \Delta_1(s, f);
       C \leftarrow C \cup \{k\};
10
         for each o \in \mathcal{O}, k \in pre(o) do
11
               U(o) \leftarrow U(o) - 1:
12
               if U(o) = 0 then
13
                     for each f \in add(o) do
14
                          \Delta_1(s, f) \leftarrow \min\{\Delta_1(s, f), c(o) + \Delta_1(s, k)\};
15
                     end
16
17
               end
          end
18
19 end
20 h^{\max}(s) = \max_{f \in s_{goal}} \Delta_1(s, f);
```

Compute $h^{add}(s_{init})$ for the following problem $\Pi = \langle F, O, s_{init}, s_{goal}, c \rangle$:

$$F = \{a, b, c, d, e, f, g\}$$

		pre	add	del	С
<i>O</i> =	o_1	{a}	{c,d}	{a}	1
	<i>o</i> ₂	$\{a,b\}$	{e}	Ø	1
	03	$\{b,\!e\}$	$\{d,f\}$	$\{a,e\}$	1
	04	$\{b\}$	{a}	Ø	1
	<i>0</i> 5	$\{d,e\}$	{g}	{e}	1

$$s_{init} = \{a, b\} \ s_{goal} = \{f, g\}$$

What's the difference in the algorithm?

Heuristic properties

Heuristic dominance

Admissible heuristic h_1 dominates an admissible heuristic h_2 if for every state s $h_1(s) \ge h_2(s)$

- h⁺ is admissible. consistent
- h^{max} is admissible, consistent
- ullet h^{add} is **not admissible**, **nor consistent** but can be very informative
- $h^{max} \le h^+ \le h^*$

Recap

- Relaxation heuristics
- Delete relaxation
- h^+ , h^{max} and h^{add} heuristics
- Implementation of h^{max}

The End

Feedback form link

