Relaxation heuristics

Michaela Urbanovská

PUI Tutorial
Week 3

Lecture check

- Any questions regarding the lecture?

Feedback

- THANK YOU for filling the feedback form
- mutexes - will be in more lectures
- speeeeeed - always let me know (tell me, use chat)
- more STRIPS/FDR/PDDL examples - will do!

Obtaining heuristics

- Many different possible ways to obtain a heuristic in general
- General idea:

Obtaining heuristics

- Many different possible ways to obtain a heuristic in general
- General idea: solve a simplified version of the problem

Obtaining heuristics

- Many different possible ways to obtain a heuristic in general
- General idea: solve a simplified version of the problem
- relaxation

Obtaining heuristics

- Many different possible ways to obtain a heuristic in general
- General idea: solve a simplified version of the problem
- relaxation
- abstraction

Obtaining heuristics

- Many different possible ways to obtain a heuristic in general
- General idea: solve a simplified version of the problem
- relaxation
- abstraction
- This week: relaxation

Relaxation heuristic

- Relaxation is
- general design technique
- usually ignoring something
- simplifying the problem

Relaxation heuristic

- Relaxation is
- general design technique
- usually ignoring something
- simplifying the problem

Relaxation heuristic

- Example: 8-puzzle in STRIPS

Relaxation heuristic

- Example: 8-puzzle in STRIPS

- How would you formulate it?

Relaxation heuristic - 8-puzzle STRIPS

STRIPS $=\left\langle\mathrm{F}, \mathrm{O}, \mathrm{S}_{\mathrm{i}}, \mathrm{g}\right\rangle$

```
F = Facts
n1p1 - number 1 on position 1
n1p2 - number 1 on position 2
...
n8p9 - number 8 on position 9
free(p1) - position 1 is free
free(p9) - position 8 is free
next(p1,p2) - position 1 and 2 are adjacent
next(p8,p9) - position 8 and 9 are adjacent
O = Operators <pre, add, del>
move-n1-p1-p2 (move number 1 from position 1 to position 2)
- preconditions: {n1p1, free(p2)}
- add effects: {n1p2, free(p1)}
- delete effects: {n1p1}
Si(initial state) = {n1p2, n2p9,n3p7,n4p1,n5p3,n6p8,n7p6,n8p5}
g(goal state specification) = {n1p1,n2p2,n3p3,n4p4,n5p5,n6p6,n7p7,n8p8}
```


Relaxation heuristic

- What do we relax?

Relaxation heuristic

- What do we relax? Delete effects

Relaxation heuristic

- What do we relax? Delete effects
- Delete relaxation

Relaxed STRIPS planning task

Relaxation of a STRIPS planning task $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$ is the planning task $\Pi^{+}=\left\langle F, O^{+}, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$ which contains set of relaxed operators.

Relaxation heuristic

- What do we relax? Delete effects
- Delete relaxation

Relaxed STRIPS planning task

Relaxation of a STRIPS planning task $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$ is the planning task $\Pi^{+}=\left\langle F, O^{+}, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$ which contains set of relaxed operators.

Relaxation of operators

Relaxation of operator $o=\langle\operatorname{pre}(o), \operatorname{add}(o), \operatorname{del}(o)\rangle$ is operator $o^{+}=\langle\operatorname{pre}(o), \operatorname{add}(o), \emptyset\rangle$.

- Let's try it out! http://editor.planning.domains

Relaxation heuristic

- Operator move($n, p 1, p 2$)
- h^{*} - works with STRIPS definition Π
- h^{+}- works with relaxed STRIPS definition Π^{+}

h^{+}heuristic

The h^{+}heuristic computes length of the optimal relaxed plan π^{+}which is an optimal solution to the relaxed problem Π^{+}.

- Is h^{+}admissible?

Relaxation heuristic

- Operator move($n, p 1, p 2$)
- h^{*} - works with STRIPS definition Π
- h^{+}- works with relaxed STRIPS definition Π^{+}

h^{+}heuristic

The h^{+}heuristic computes length of the optimal relaxed plan π^{+}which is an optimal solution to the relaxed problem Π^{+}.

- Is h^{+}admissible? Yes, if it's optimal.

Relaxation heuristic

- Operator move($n, p 1, p 2$)
- h^{*} - works with STRIPS definition Π
- h^{+}- works with relaxed STRIPS definition Π^{+}

h^{+}heuristic

The h^{+}heuristic computes length of the optimal relaxed plan π^{+}which is an optimal solution to the relaxed problem Π^{+}.

- Is h^{+}admissible? Yes, if it's optimal.
- Computing h^{+}is still very hard though.

Relaxation heuristic

- Operator move($n, p 1, p 2$)
- h^{*} - works with STRIPS definition Π
- h^{+}- works with relaxed STRIPS definition Π^{+}

h^{+}heuristic

The h^{+}heuristic computes length of the optimal relaxed plan π^{+}which is an optimal solution to the relaxed problem Π^{+}.

- Is h^{+}admissible? Yes, if it's optimal.
- Computing h^{+}is still very hard though.
- We can compute an estimate of h^{+}.
- $h^{\text {add }}$
- $h^{\text {max }}$

$h^{\text {add }}$ heuristic

- STRIPS planning task $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$
- $h^{\text {add }}(s)$ gives estimate of the distance from s to a state that satisfies Sgoal
- $h^{\text {add }}(s)=\sum_{f \in s} \Delta_{0}(s, f)$, where
- $\Delta_{0}(s, o)=\sum_{f \in \operatorname{pre}(o)} \Delta_{0}(s, f), \forall o \in O$
- $\Delta_{0}(s, f)=$

$$
\begin{cases}0 & \text { if } f \in s, \\ \inf & \text { if } \forall o \in O: \\ \min \left\{c(o)+\Delta_{0}(s, o) \mid o \in O, f \in \operatorname{add}(o)\right\} & \text { otherwise }\end{cases}
$$

$h^{\max }$ heuristic

$h^{\text {max }}$ heuristic

- STRIPS planning task $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$
- $h^{\text {max }}(s)$ gives estimate of the distance from s to a state that satisfies $S_{\text {goal }}$
- $h^{\text {max }}(s)=\max _{f \in s_{\text {goal }}} \Delta_{1}(s, f)$, where
- $\Delta_{1}(s, o)=\max _{f \in p r e(o)} \Delta_{1}(s, f), \forall o \in O$
- $\Delta_{1}(s, f)=$

$$
\begin{cases}0 & \text { if } f \in s, \\ \inf & \text { if } \forall o \in O: f \notin \operatorname{add}(o), \\ \min \left\{c(o)+\Delta_{1}(s, o) \mid o \in O, f \in \operatorname{add}(o)\right\} & \text { otherwise } .\end{cases}
$$

Exercise $h^{\text {add }}, h^{\max }$

Compute $h^{\max }\left(s_{\text {init }}\right)$ for the following problem $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$:

$$
F=\{a, b, c, d, e, f, g\}
$$

$O=$| | pre | add | del | c |
| :---: | :---: | :---: | :---: | :---: |
| o_{1} | $\{\mathrm{a}\}$ | $\{\mathrm{c}, \mathrm{d}\}$ | $\{\mathrm{a}\}$ | 1 |
| o_{2} | $\{\mathrm{a}, \mathrm{b}\}$ | $\{\mathrm{e}\}$ | \emptyset | 1 |
| o_{3} | $\{\mathrm{~b}, \mathrm{e}\}$ | $\{\mathrm{d}, \mathrm{f}\}$ | $\{\mathrm{a}, \mathrm{e}\}$ | 1 |
| o_{4} | $\{\mathrm{~b}\}$ | $\{\mathrm{a}\}$ | \emptyset | 1 |
| O_{5} | $\{\mathrm{~d}, \mathrm{e}\}$ | $\{\mathrm{g}\}$ | $\{\mathrm{e}\}$ | 1 |

$s_{\text {init }}=\{a, b\} s_{\text {goal }}=\{f, g\}$

$h^{\text {max }}$ algorithm

```
Algorithm 1: Algorithm for computing \(\mathrm{h}^{\max }(s)\).
    Input: \(\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle\), state \(s\)
    Output: \(\mathrm{h}^{\text {max }}(s)\)
    for each \(f \in s\) do \(\Delta_{1}(s, f) \leftarrow 0\);
    for each \(f \in \mathcal{F} \backslash s\) do \(\Delta_{1}(s, f) \leftarrow \infty\);
    for each \(o \in \mathcal{O}\), pre \((o)=\emptyset\) do
        for each \(f \in \operatorname{add}(o)\) do \(\Delta_{1}(s, f) \leftarrow \min \left\{\Delta_{1}(s, f), \mathrm{c}(o)\right\} ;\)
    end
    for each \(o \in \mathcal{O}\) do \(U(o) \leftarrow|\operatorname{pre}(o)| ;\)
    \(C \leftarrow \emptyset ;\)
    while \(s_{\text {goal }} \nsubseteq C\) do
        \(k \leftarrow \arg \min _{f \in \mathcal{F} \backslash C} \Delta_{1}(s, f) ;\)
        \(C \leftarrow C \cup\{k\} ;\)
        for each \(o \in \mathcal{O}, k \in \operatorname{pre}(o)\) do
            \(U(o) \leftarrow U(o)-1\);
            if \(U(o)=0\) then
                for each \(f \in \operatorname{add}(o)\) do
                    \(\Delta_{1}(s, f) \leftarrow \min \left\{\Delta_{1}(s, f), \mathrm{c}(o)+\Delta_{1}(s, k)\right\} ;\)
                end
            end
        end
    end
    \(\mathrm{h}^{\max }(s)=\max _{f \in s_{\text {goal }}} \Delta_{1}(s, f) ;\)
```


Exercise $h^{\text {add }}, h^{\max }$

Compute $h^{\text {add }}\left(s_{\text {init }}\right)$ for the following problem $\Pi=\left\langle F, O, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$:

$$
F=\{a, b, c, d, e, f, g\}
$$

$O=$| | pre | add | del | c |
| :---: | :---: | :---: | :---: | :---: |
| o_{1} | $\{\mathrm{a}\}$ | $\{\mathrm{c}, \mathrm{d}\}$ | $\{\mathrm{a}\}$ | 1 |
| o_{2} | $\{\mathrm{a}, \mathrm{b}\}$ | $\{\mathrm{e}\}$ | \emptyset | 1 |
| o_{3} | $\{\mathrm{~b}, \mathrm{e}\}$ | $\{\mathrm{d}, \mathrm{f}\}$ | $\{\mathrm{a}, \mathrm{e}\}$ | 1 |
| o_{4} | $\{\mathrm{~b}\}$ | $\{\mathrm{a}\}$ | \emptyset | 1 |
| O_{5} | $\{\mathrm{~d}, \mathrm{e}\}$ | $\{\mathrm{g}\}$ | $\{\mathrm{e}\}$ | 1 |

$s_{\text {init }}=\{a, b\} s_{\text {goal }}=\{f, g\}$
What's the difference in the algorithm?

Heuristic properties

Heuristic dominance

Admissible heuristic h_{1} dominates an admissible heuristic h_{2} if for every state $s h_{1}(s) \geq h_{2}(s)$

- h^{+}is admissible, consistent
- $h^{\text {max }}$ is admissible, consistent
- $h^{\text {add }}$ is not admissible, nor consistent but can be very informative
- $h^{\text {max }} \leq h^{+} \leq h^{*}$

Recap

- Relaxation heuristics
- Delete relaxation
- $h^{+}, h^{\text {max }}$ and $h^{\text {add }}$ heuristics
- Implementation of $h^{\text {max }}$

The End

Feedback form link

