Temporal network example and extensions

Jan Mrkos

PUI Tutorial Week 11

Outline

- Quick recap of Simple Temporal Networks
- Simple Temporal Network example

Motivation

Many planners don't work with time explicitly, STNs and their extentions can be used to:

- check time consistency of a plan under time constraints,
- if consistent, determine temporal schedule,
- and manage real-time execution of a plan and new constraints.

Simple Temporal Networks ¹

Def: Simple Temporal Network

A Simple Temporal Network (STN) is a pair S = (T, C) where:

- T is a set of time-points, real valued variables
- C a set of constraints of the form:

$$Y - X \le \delta$$

for $X, Y \in \mathcal{T}$ and $\delta \in \mathbb{R}$

Jan Mrkos PUI Tutorial 11

¹Slides based mostly on AIMA, these slides and this example, definition by [Dechter et al., 1991]

Simple Temporal Networks $^{ m 1}$

Def: Simple Temporal Network

A Simple Temporal Network (STN) is a pair S = (T, C) where:

- T is a set of time-points, real valued variables
- C a set of constraints of the form:

$$Y - X \le \delta$$

for $X, Y \in \mathcal{T}$ and $\delta \in \mathbb{R}$

The question we ask is whether there exists an assignment to timepoints in T that satisfies C? (Is STN consistent?)

Jan Mrkos PUI Tutorial 11 4/11

 $^{^{1}}$ Slides based mostly on AIMA, these slides and this example, definition by [Dechter et al., 1991]

Simple Temporal Networks ¹

Def: Simple Temporal Network

A Simple Temporal Network (STN) is a pair S = (T, C) where:

- T is a set of time-points, real valued variables
- C a set of constraints of the form:

$$Y - X \le \delta$$

for $X, Y \in \mathcal{T}$ and $\delta \in \mathbb{R}$

The question we ask is whether there exists an assignment to timepoints in T that satisfies C? (Is STN consistent?)

We map STNs to graphs. How?

Jan Mrkos PUI Tutorial 11 4/11

 $^{^{1}}$ Slides based mostly on AIMA, these slides and this example, definition by [Dechter et al., 1991]

Simple Temporal Networks ¹

Def: Simple Temporal Network

A Simple Temporal Network (STN) is a pair S = (T, C) where:

- T is a set of time-points, real valued variables
- C a set of constraints of the form:

$$Y - X \le \delta$$

for $X, Y \in \mathcal{T}$ and $\delta \in \mathbb{R}$

The question we ask is whether there exists an assignment to timepoints in T that satisfies C? (Is STN consistent?)

We map STNs to graphs. How?

- \bullet Variables \rightarrow nodes
- ullet Constraints o edges

Jan Mrkos PUI Tutorial 11 4 / 11

¹Slides based mostly on AIMA, these slides and this example, definition by [Dechter et al., 1991]

I have a plan for getting to the PDV exam:

- Take a train from Kolín to Prague-Libeň
- Walk from Prague-Libeň to Vysočanská (Yellow B line)
- Take metro from Vysočanská to Karlovo náměstí

I have a plan for getting to the PDV exam:

- Take a train from Kolín to Prague-Libeň
- Walk from Prague-Libeň to Vysočanská (Yellow B line)
- Take metro from Vysočanská to Karlovo náměstí

Regardless whether there are other possible (better) plans, we want to check whether this one is consistent (i.e. feasible) under following constraints:

I have a plan for getting to the PDV exam:

- Take a train from Kolín to Prague-Libeň
- Walk from Prague-Libeň to Vysočanská (Yellow B line)
- Take metro from Vysočanská to Karlovo náměstí

Regardless whether there are other possible (better) plans, we want to check whether this one is consistent (i.e. feasible) under following constraints:

- You will get to the station in Kolin at 8:00
- Train ride takes at least 50 minutes
- Walking takes 10 to 20 minutes
- Ride on the metro takes at most 20 minutes
- You have to be at the PDV exam by 9:30

$$O$$
 -Train- X_1 - (walk) - X_2 -Metro- X_3

Given the constraints, we have S = (T, C): (We introduce a special reference variable (node), O = 0 as a starting point.)

$$\mathcal{T} = \{\textit{O}, \textit{X}_{1}, \textit{X}_{2}, \textit{X}_{3}\}, \text{where } \textit{O} \text{ maps to } 8\text{:}00$$

$$C = \begin{cases} O - X_1 \leq -50 & \mathrm{train} \\ X_2 - X_1 \leq 20 & \mathrm{walk} \\ X_1 - X_2 \leq -10 & \mathrm{walk} \\ X_3 - X_2 \leq 20 & \mathrm{metro} \\ X_3 - O \leq 90 & \mathrm{exam \; start} \end{cases}$$

$$C = \begin{cases} O - X_1 \leq -50 & \text{train} \\ X_2 - X_1 \leq 20 & \text{walk} \\ X_1 - X_2 \leq -10 & \text{walk} \\ X_3 - X_2 \leq 20 & \text{metro} \\ X_3 - O \leq 90 & \text{exam start} \end{cases}$$

$$C = \begin{cases} O - X_1 \leq -50 & \text{train} \\ X_2 - X_1 \leq 20 & \text{walk} \\ X_1 - X_2 \leq -10 & \text{walk} \\ X_3 - X_2 \leq 20 & \text{metro} \\ X_3 - O \leq 90 & \text{exam start} \\ X_2 - X_3 \leq 0 & \text{metro} \end{cases}$$

$$C = \begin{cases} O - X_1 \leq -50 & \text{train} \\ X_2 - X_1 \leq 20 & \text{walk} \\ X_1 - X_2 \leq -10 & \text{walk} \\ X_3 - X_2 \leq 20 & \text{metro} \\ X_3 - O \leq 90 & \text{exam start} \\ X_2 - X_3 \leq 0 & \text{metro} \end{cases}$$

Tip: Right-to-left arrows are (+) upper bounds, left-to-right are (-) lower bounds

Now, we can calculate shortest path lengths between all combinations of nodes:

D	0	X_1	<i>X</i> 2	<i>X</i> ₃
0	0	∞	∞	90
X_1	-50	0	20	∞
X_2	∞	-10	0	20
<i>X</i> ₃	∞	∞	0	0

Now, we can calculate shortest path lengths between all combinations of nodes:

D	0	X_1	<i>X</i> 2	<i>X</i> ₃
0	0	∞	∞	90
X_1	-50	0	20	∞
X_2	∞	-10	0	20
<i>X</i> ₃	∞	∞	0	0

(e.g. by using Floyd-Warshall in more complex cases)

Now, we can calculate shortest path lengths between all combinations of nodes:

D	0	X_1	<i>X</i> 2	<i>X</i> ₃
0	0	80	90	90
X_1	-50	0	20	40
X_2	-60	-10	0	20
<i>X</i> ₃	-60	-10	0	0

(e.g. by using Floyd-Warshall in more complex cases)

Questions:

• Q: Was the plan consistent?

Questions:

• Q: Was the plan consistent?

• A: Yes.

Questions:

• Q: Was the plan consistent?

A: Yes.

• Q: When would it be inconsistent?

Questions:

- Q: Was the plan consistent?
- A: Yes.
- Q: When would it be inconsistent?
- A: e.g. if I wanted to wake up at 9:00

Questions:

- Q: Was the plan consistent?
- A: Yes.
- Q: When would it be inconsistent?
- A: e.g. if I wanted to wake up at 9:00
- Q: How would we know it was infeasible?

Questions:

- Q: Was the plan consistent?
- A: Yes.
- Q: When would it be inconsistent?
- A: e.g. if I wanted to wake up at 9:00
- Q: How would we know it was infeasible?

Questions:

- Q: Was the plan consistent?
- A: Yes.
- Q: When would it be inconsistent?
- A: e.g. if I wanted to wake up at 9:00
- Q: How would we know it was infeasible?

Thm: Fundamental Theorem of STNs

STN consistent \iff Distance matrix has zeros on diagonal iff graph has no negative cycles

Jan Mrkos PUI Tutorial 11 9 / 11

- Solution is an assignment of values to timepoints (nodes) that satisfies given constraints.
- If such solution exists, it solution is consistent.
- Consistency can be checked by checking the distance matrix.

Thank you for participating in the tutorials :-)

Please fill out the feedback form \rightarrow

https://forms.gle/gQHP1uA3CLajtcdr8