Temporal network example and extensions

Jan Mrkos

PUI Tutorial

Week 11

Outline

- Quick recap of Simple Temporal Networks
- Simple Temporal Network example

Motivation

Many planners don't work with time explicitly, STNs and their extentions can be used to:

- check time consistency of a plan under time constraints,
- if consistent, determine temporal schedule,
- and manage real-time execution of a plan and new constraints.

Simple Temporal Networks ${ }^{1}$

Def: Simple Temporal Network

A Simple Temporal Network (STN) is a pair $S=(T, C)$ where:

- T is a set of time-points, real valued variables
- C a set of constraints of the form:

$$
Y-X \leq \delta
$$

for $X, Y \in T$ and $\delta \in \mathbb{R}$
${ }^{1}$ Slides based mostly on AIMA, these slides and this example, definition by [Dechter et al., 1991]

Simple Temporal Networks ${ }^{1}$

Def: Simple Temporal Network

A Simple Temporal Network (STN) is a pair $S=(T, C)$ where:

- T is a set of time-points, real valued variables
- C a set of constraints of the form:

$$
Y-X \leq \delta
$$

for $X, Y \in T$ and $\delta \in \mathbb{R}$
The question we ask is whether there exists an assignment to timepoints in T that satisfies C? (Is STN consistent?)

[^0]
Simple Temporal Networks ${ }^{1}$

Def: Simple Temporal Network

A Simple Temporal Network (STN) is a pair $S=(T, C)$ where:

- T is a set of time-points, real valued variables
- C a set of constraints of the form:

$$
Y-X \leq \delta
$$

for $X, Y \in T$ and $\delta \in \mathbb{R}$
The question we ask is whether there exists an assignment to timepoints in T that satisfies C? (Is STN consistent?)
We map STNs to graphs. How?

[^1]
Simple Temporal Networks ${ }^{1}$

Def: Simple Temporal Network

A Simple Temporal Network (STN) is a pair $S=(T, C)$ where:

- T is a set of time-points, real valued variables
- C a set of constraints of the form:

$$
Y-X \leq \delta
$$

for $X, Y \in T$ and $\delta \in \mathbb{R}$
The question we ask is whether there exists an assignment to timepoints in T that satisfies C? (Is STN consistent?)
We map STNs to graphs. How?

- Variables \rightarrow nodes
- Constraints \rightarrow edges
${ }^{1}$ Slides based mostly on AIMA, these slides and this example, definition by [Dechter et al., 1991]

Example

I have a plan for getting to the PDV exam:

- Take a train from Kolín to Prague-Libeň
- Walk from Prague-Libeň to Vysočanská (Yellow - B line)
- Take metro from Vysočanská to Karlovo náměstí

Example

I have a plan for getting to the PDV exam:

- Take a train from Kolín to Prague-Libeň
- Walk from Prague-Libeň to Vysočanská (Yellow - B line)
- Take metro from Vysočanská to Karlovo náměstí

Regardless whether there are other possible (better) plans, we want to check whether this one is consistent (i.e. feasible) under following constraints:

Example

I have a plan for getting to the PDV exam:

- Take a train from Kolín to Prague-Libeň
- Walk from Prague-Libeň to Vysočanská (Yellow - B line)
- Take metro from Vysočanská to Karlovo náměstí

Regardless whether there are other possible (better) plans, we want to check whether this one is consistent (i.e. feasible) under following constraints:

- You will get to the station in Kolin at 8:00
- Train ride takes at least 50 minutes
- Walking takes 10 to 20 minutes
- Ride on the metro takes at most 20 minutes
- You have to be at the PDV exam by 9:30

Example

$$
O-\text { Train }-X_{1}-(\text { walk })-X_{2}-\text { Metro }-X_{3}
$$

Given the constraints, we have $S=(T, C)$:
(We introduce a special reference variable (node), $O=0$ as a starting point.)

$$
\begin{gathered}
T=\left\{O, X_{1}, X_{2}, X_{3}\right\}, \text { where } O \text { maps to 8:00 } \\
C= \begin{cases}O-X_{1} \leq-50 & \text { train } \\
X_{2}-X_{1} \leq 20 & \text { walk } \\
X_{1}-X_{2} \leq-10 & \text { walk } \\
X_{3}-X_{2} \leq 20 & \text { metro } \\
X_{3}-O \leq 90 & \text { exam start }\end{cases}
\end{gathered}
$$

$$
C= \begin{cases}O-X_{1} \leq-50 & \text { train } \\ X_{2}-X_{1} \leq 20 & \text { walk } \\ X_{1}-X_{2} \leq-10 & \text { walk } \\ X_{3}-X_{2} \leq 20 & \text { metro } \\ X_{3}-O \leq 90 & \text { exam start }\end{cases}
$$

$$
C= \begin{cases}O-X_{1} \leq-50 & \text { train } \\ X_{2}-X_{1} \leq 20 & \text { walk } \\ X_{1}-X_{2} \leq-10 & \text { walk } \\ X_{3}-X_{2} \leq 20 & \text { metro } \\ X_{3}-O \leq 90 & \text { exam start } \\ X_{2}-X_{3} \leq 0 & \text { metro }\end{cases}
$$

$$
C= \begin{cases}O-X_{1} \leq-50 & \text { train } \\ X_{2}-X_{1} \leq 20 & \text { walk } \\ X_{1}-X_{2} \leq-10 & \text { walk } \\ X_{3}-X_{2} \leq 20 & \text { metro } \\ X_{3}-O \leq 90 & \text { exam start } \\ X_{2}-X_{3} \leq 0 & \text { metro }\end{cases}
$$

Tip: Right-to-left arrows are (+) upper bounds, left-to-right are (-) lower bounds

Example

Now, we can calculate shortest path lengths between all combinations of nodes:

D	O	X_{1}	$X 2$	X_{3}
O	0	∞	∞	90
X_{1}	-50	0	20	∞
X_{2}	∞	-10	0	20
X_{3}	∞	∞	0	0

Example

Now, we can calculate shortest path lengths between all combinations of nodes:

D	O	X_{1}	$X 2$	X_{3}
O	0	∞	∞	90
X_{1}	-50	0	20	∞
X_{2}	∞	-10	0	20
X_{3}	∞	∞	0	0

(e.g. by using Floyd-Warshall in more complex cases)

Example

Now, we can calculate shortest path lengths between all combinations of nodes:

D	O	X_{1}	$X 2$	X_{3}
O	0	80	90	90
X_{1}	-50	0	20	40
X_{2}	-60	-10	0	20
X_{3}	-60	-10	0	0

(e.g. by using Floyd-Warshall in more complex cases)

Consistency?

Questions:

- Q: Was the plan consistent?

Consistency?

Questions:

- Q: Was the plan consistent?
- A: Yes.

Consistency?

Questions:

- Q: Was the plan consistent?
- A: Yes.
- Q: When would it be inconsistent?

Consistency?

Questions:

- Q: Was the plan consistent?
- A: Yes.
- Q: When would it be inconsistent?
- A: e.g. if I wanted to wake up at 9:00

Consistency?

Questions:

- Q: Was the plan consistent?
- A: Yes.
- Q: When would it be inconsistent?
- A: e.g. if I wanted to wake up at 9:00
- Q: How would we know it was infeasible?

Consistency?

Questions:

- Q: Was the plan consistent?
- A: Yes.
- Q: When would it be inconsistent?
- A: e.g. if I wanted to wake up at 9:00
- Q: How would we know it was infeasible?

Consistency?

Questions:

- Q: Was the plan consistent?
- A: Yes.
- Q: When would it be inconsistent?
- A: e.g. if I wanted to wake up at 9:00
- Q: How would we know it was infeasible?

Thm: Fundamental Theorem of STNs

STN consistent \Longleftrightarrow Distance matrix has zeros on diagonal iff graph has no negative cycles

- Solution is an assignment of values to timepoints (nodes) that satisfies given constraints.
- If such solution exists, it solution is consistent.
- Consistency can be checked by checking the distance matrix.

Thank you for participating in the tutorials :-)

Please fill out the feedback form \rightarrow

https://forms.gle/gQHP1uA3CLajtcdr8

[^0]: ${ }^{1}$ Slides based mostly on AIMA, these slides and this example, definition by [Dechter et al., 1991]

[^1]: ${ }^{1}$ Slides based mostly on AIMA, these slides and this example, definition by [Dechter et al., 1991]

