
Lecture 5: Solving MDPs and Reinforcement
Learning

Viliam Lisý & Branislav Bošanský

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.

Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

March, 2021

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 1 / 19

Plan of today’s lecture

1 Value functions and Bellman equations

2 Basic iterative solution techniques for known MDP

Next lecture

1 RL algorithms in tabular representation for unknown MDP

2 Scaling up with Neural Networks

3 DQN algorithm and its application to Atari games

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 2 / 19

Reinforcement learning

Reinforcement learning
is more autonomous learning

Agent

Action
Sensation/

state Reward

World

• Learning that requires less input from people
• AI that can learn for itself, during its normal operation

Taken from R. Sutton’s slides (and many following are adaptations as well).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 3 / 19

Remember MDP

Standard model for Reinforcement Learning problems

Source: Waldoalvarez @ wikimedia

S – states

R – rewards

A – actions

Discrete steps t = 0, 1, 2, . . .

Environment dynamics

p(s ′, r |s, a)← Pr{St = s ′,Rt = r |St−1 = s,At−1 = a}

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 4 / 19

The Agent Learns a Policy

Policy at step t, denoted πt , maps from states to actions.

πt(a|s) = probability that At = a when St = s

Special case are deterministic policies.

πt(s) = the action taken with prob = 1 when St = s

Reinforcement learning methods specify how the agent
changes its policy as a result of experience

Roughly, the agent’s goal is to get as much reward as it can
over the long run.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 5 / 19

Value Functions

One of the most fundamental concepts of RL!

A value function for an MDP and a policy π

vπ : S → R

is a function assigning each state s the expected return
vπ(s) = Eπ G0 obtained by following policy π from state s.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 6 / 19

Optimal Value Functions

For finite MDPs, policies can be partially ordered:

π ≤ π′ if and only if vπ(s) ≤ vπ′(s) for all s ∈ S

There are always one or more policies that are better than or
equal to all the others. These are the optimal policies. We
denote them all π∗.

Optimal policies share the same optimal state-value
function:

v∗(s) = max
π

vπ(s) for all s ∈ S

Optimal policies also share the same optimal action-value
function:

q∗(s, a) = max
π

qπ(s, a) for all s ∈ S and a ∈ A.

This is the expected return for taking action a in state s and
thereafter following an optimal policy.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 7 / 19

Why Are Optimal (Action-) Value Functions Useful

Any policy that is greedy with respect to v∗ is an optimal policy.

π∗(s) = arg max
a

∑

s′,r

p(s ′, r |s, a)
[
r + γv∗(s ′)

]

Given q∗, the agent does not even have to do a one-step-ahead
search:

π∗(s) = arg max
a

q∗(s, a)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 8 / 19

Bellman Equation for a Policy

vπ(s) =
∑

a

π(a|s)
∑

s′,r

p(s ′, r |s, a)
[
r + γvπ(s ′)

]

This is a set of equations (in fact, linear), one for each state. The
value function for π is its unique solution.

Allows simple computation of values for a policy.
Can we also compute policy for values?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 9 / 19

Backup exmaple

A robot on a slippery floor successfully moves with probability 0.9.

####

#@ #

#G #

####

d

####

#

#@ #

####

(r = 1) 0.9

####

#@ #

#G #

####

0.1

π(d |s0) = 0.66

r

####

@#

#G #

####

0.9

####

#@ #

#G #

####

0.1

π(r |s0) = 0.34

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 10 / 19

Bellman Optimality Equation for v∗

The value of a state under an optimal policy must equal the
expected return for the best action from that state:

v∗(s) = max
a

qπ∗(s, a)

= max
a

E [Rt+1 + γv∗(St+1)|St = s,At = a]

= max
a

∑

s′,r

p(s ′, r |s, a)
[
r + γv∗(s ′)

]
.

The relevant backup diagram:

v∗ is the unique solution of this system of nonlinear equations.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 11 / 19

Bellman Optimality Equation for q∗

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1, a

′)|St = s,At = a

]

=
∑

s′,r

p(s ′, r |s, a)

[
r + γmax

a′
q∗(s ′, a′)

]
.

The relevant backup diagram:

q∗ is the unique solution of this system of nonlinear equations.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 12 / 19

Relation to algorithm A

Is there any relation between v , q used in RL and f , g , h we defined
for deterministic MDPs for algorithm A?

v∗(s) = h∗(s)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 13 / 19

Solving the Bellman Optimality Equation

Finding an optimal policy by solving the Bellman Optimality
Equation requires the following:

accurate knowledge of environment dynamics;

we have enough space and time to do the computation;

the Markov Property.

How much space and time do we need?

polynomial in number of states,

BUT, number of states is often huge (e.g., backgammon has
about 1020 states).

We usually have to settle for approximations.
Many RL methods can be understood as approximately solving the
Bellman Optimality Equation.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 14 / 19

Policy Evaluation: for a given policy π, compute the
 state-value function vπ

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

Policy Evaluation (Prediction)

Recall: State-value function for policy π

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G
(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St =s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St =s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St =s, At =a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

Recall: Bellman equation for vπ

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St =s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St =s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St =s, At =a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

—a system of | | simultaneous equations

.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

Iterative Policy Evaluation (Prediction)

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

v0 ! v1 ! · · ·! vk ! vk+1 ! · · ·! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s0)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St =s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St =s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St =s, At =a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

v0 ! v1 ! · · ·! vk ! vk+1 ! · · ·! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s0)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St =s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St =s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St =s, At =a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

A Small Gridworld Example

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

R

γ = 1

6

Iterative Policy Eval  
for the Small Gridworld

€

π = equiprobable random action choices

∞

R

γ = 1

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)

❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

v0 ! v1 ! · · ·! vk ! vk+1 ! · · ·! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s0)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St =s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St =s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St =s, At =a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

4

Iterative Policy Evaluation – One array version
86 CHAPTER 4. DYNAMIC PROGRAMMING

Input ⇡, the policy to be evaluated
Initialize an array V (s) = 0, for all s 2 S+

Repeat
� 0
For each s 2 S:

v V (s)
V (s) P

a ⇡(a|s)Ps0,r p(s0, r|s, a)
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)
Output V ⇡ v⇡

Figure 4.1: Iterative policy evaluation.

Another implementation point concerns the termination of the algorithm.
Formally, iterative policy evaluation converges only in the limit, but in practice
it must be halted short of this. A typical stopping condition for iterative policy
evaluation is to test the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and
stop when it is su�ciently small. Figure 4.1 gives a complete algorithm for
iterative policy evaluation with this stopping criterion.

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

R

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions pos-
sible in each state, A = {up, down, right, left}, which deterministically
cause the corresponding state transitions, except that actions that would take
the agent o↵ the grid in fact leave the state unchanged. Thus, for instance,
p(6|5, right) = 1, p(10|5, right) = 0, and p(7|7, right) = 1. This is an undis-
counted, episodic task. The reward is �1 on all transitions until the terminal
state is reached. The terminal state is shaded in the figure (although it is
shown in two places, it is formally one state). The expected reward function is
thus r(s, a, s0) = �1 for all states s, s0 and actions a. Suppose the agent follows
the equiprobable random policy (all actions equally likely). The left side of
Figure 4.2 shows the sequence of value functions {vk} computed by iterative
policy evaluation. The final estimate is in fact v⇡, which in this case gives for
each state the negation of the expected number of steps from that state until

Why Does Iterative Policy Evaluation Work?

Many other RL algorithms use the same proof technique.

Definition (γ-contraction)

Any function F : Rn → Rn is a γ-contraction for 0 < γ < 1 if and
only if for some norm || and all x , y ∈ Rn

||F (x)− F (y)|| ≤ ||x − y ||

Theorem (Contraction mapping)

For a γ-contraction F

Iterative application of F converges to a unique fixed point
independently of the starting point

at a linear convergence rate determined by γ.

(Based on Tom Mitchell’s slides)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 15 / 19

http://www.andrew.cmu.edu/course/10-703/slides/lecture4_valuePolicyDP-9-10-2018.pdf

Policy Improvement

Suppose we have computed a vπ for policy π. Can we easily
improve it?

If there is a state s and action a such that qπ(s, a) > vπ(s)
than setting π(s) = a improves the strategy.

Can it break the strategy somewhere else?
No, because the value at s improves.
The values in other states that eventually lead to s improve.
There is no state for which the value can decrease.

Can anything break if we modify more states at once?
No, for a similar reason, the value in each state only increases.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 16 / 19

11

Policy Iteration – One array version (+ policy)

92 CHAPTER 4. DYNAMIC PROGRAMMING

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Repeat

� 0
For each s 2 S:

v V (s)
V (s) P

s0,r p(s0, r|s, ⇡(s))
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)

3. Policy Improvement
policy-stable true
For each s 2 S:

a ⇡(s)
⇡(s) arg maxa

P
s0,r p(s0, r|s, a)

⇥
r + �V (s0)

⇤

If a 6= ⇡(s), then policy-stable false
If policy-stable, then stop and return V and ⇡; else go to 2

Figure 4.3: Policy iteration (using iterative policy evaluation) for v⇤. This
algorithm has a subtle bug, in that it may never terminate if the policy con-
tinually switches between two or more policies that are equally good. The bug
can be fixed by adding additional flags, but it makes the pseudocode so ugly
that it is not worth it. :-)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Policy Iteration

 policy evaluation policy improvement
“greedification”

4.3. POLICY ITERATION 91

selected in the new greedy policy. Any apportioning scheme is allowed as long
as all submaximal actions are given zero probability.

The last row of Figure 4.2 shows an example of policy improvement for
stochastic policies. Here the original policy, ⇡, is the equiprobable random
policy, and the new policy, ⇡0, is greedy with respect to v⇡. The value function
v⇡ is shown in the bottom-left diagram and the set of possible ⇡0 is shown in
the bottom-right diagram. The states with multiple arrows in the ⇡0 diagram
are those in which several actions achieve the maximum in (4.9); any appor-
tionment of probability among these actions is permitted. The value function
of any such policy, v⇡0(s), can be seen by inspection to be either �1, �2, or �3
at all states, s 2 S, whereas v⇡(s) is at most �14. Thus, v⇡0(s) � v⇡(s), for all
s 2 S, illustrating policy improvement. Although in this case the new policy
⇡0 happens to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡0, we can
then compute v⇡0 and improve it again to yield an even better ⇡00. We can thus
obtain a sequence of monotonically improving policies and value functions:

⇡0
E�! v⇡0

I�! ⇡1
E�! v⇡1

I�! ⇡2
E�! · · · I�! ⇡⇤

E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement .
Each policy is guaranteed to be a strict improvement over the previous one
(unless it is already optimal). Because a finite MDP has only a finite number
of policies, this process must converge to an optimal policy and optimal value
function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete
algorithm is given in Figure 4.3. Note that each policy evaluation, itself an
iterative computation, is started with the value function for the previous policy.
This typically results in a great increase in the speed of convergence of policy
evaluation (presumably because the value function changes little from one
policy to the next).

Policy iteration often converges in surprisingly few iterations. This is illus-
trated by the example in Figure 4.2. The bottom-left diagram shows the value
function for the equiprobable random policy, and the bottom-right diagram
shows a greedy policy for this value function. The policy improvement theo-
rem assures us that these policies are better than the original random policy.
In this case, however, these policies are not just better, but optimal, proceed-
ing to the terminal states in the minimum number of steps. In this example,
policy iteration would find the optimal policy after just one iteration.

6

Iterative Policy Eval  
for the Small Gridworld

∞

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)

❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

€

π = equiprobable random action choices

R

γ = 1

⇡0(s)
.
= arg max

a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

60 CHAPTER 4. DYNAMIC PROGRAMMING

4.1 Policy Evaluation (Prediction)

First we consider how to compute the state-value function v⇡ for an arbitrary policy ⇡. This is called
policy evaluation in the DP literature. We also refer to it as the prediction problem. Recall from Chapter
3 that, for all s 2 S,

v⇡(s)
.
= E⇡[Gt | St =s]

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.8))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] (4.3)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r |s, a)
h
r + �v⇡(s0)

i
, (4.4)

where ⇡(a|s) is the probability of taking action a in state s under policy ⇡, and the expectations are
subscripted by ⇡ to indicate that they are conditional on ⇡ being followed. The existence and uniqueness
of v⇡ are guaranteed as long as either � < 1 or eventual termination is guaranteed from all states under
the policy ⇡.

If the environment’s dynamics are completely known, then (4.4) is a system of |S| simultaneous linear
equations in |S| unknowns (the v⇡(s), s 2 S). In principle, its solution is a straightforward, if tedious,
computation. For our purposes, iterative solution methods are most suitable. Consider a sequence
of approximate value functions v0, v1, v2, . . ., each mapping S+ to R (the real numbers). The initial
approximation, v0, is chosen arbitrarily (except that the terminal state, if any, must be given value 0),
and each successive approximation is obtained by using the Bellman equation for v⇡ (4.4) as an update
rule:

vk+1(s)
.
= E⇡[Rt+1 + �vk(St+1) | St =s]

=
X

a

⇡(a|s)
X

s0,r

p(s0, r |s, a)
h
r + �vk(s0)

i
, (4.5)

for all s 2 S. Clearly, vk = v⇡ is a fixed point for this update rule because the Bellman equation for v⇡
assures us of equality in this case. Indeed, the sequence {vk} can be shown in general to converge to
v⇡ as k ! 1 under the same conditions that guarantee the existence of v⇡. This algorithm is called
iterative policy evaluation.

To produce each successive approximation, vk+1 from vk, iterative policy evaluation applies the same
operation to each state s: it replaces the old value of s with a new value obtained from the old values of
the successor states of s, and the expected immediate rewards, along all the one-step transitions possible
under the policy being evaluated. We call this kind of operation an expected update. Each iteration of
iterative policy evaluation updates the value of every state once to produce the new approximate value
function vk+1. There are several di↵erent kinds of expected updates, depending on whether a state (as
here) or a state–action pair is being updated, and depending on the precise way the estimated values of
the successor states are combined. All the updates done in DP algorithms are called expected updates
because they are based on an expectation over all possible next states rather than on a sample next
state. The nature of a update can be expressed in an equation, as above, or in an update diagram like
those introduced in Chapter 3. For example, the update diagram corresponding to the expected update
used in iterative policy evaluation is shown on page 47.

To write a sequential computer program to implement iterative policy evaluation as given by (4.5)
you would have to use two arrays, one for the old values, vk(s), and one for the new values, vk+1(s).
With two arrays, the new values can be computed one by one from the old values without the old values
being changed. Of course it is easier to use one array and update the values “in place,” that is, with
each new value immediately overwriting the old one. Then, depending on the order in which the states
are updated, sometimes new values are used instead of old ones on the right-hand side of (4.5). This

22

Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

A geometric metaphor for
convergence of GPI:

evaluation

improvement

⇡ greedy(V)

V⇡

V v⇡

v⇤⇡⇤

v⇤,⇡⇤
V0,⇡0

V = v⇡

⇡ = greed
y(V)

Generalised Policy Iteration

It is sufficient to co combine any consistent improvement in value
estimate with any consistent improvement of the policy based on
the value.

Subset of states (even one)

Improvement only in expectation

Policy improvement only based on one action

Small value improvement in the right direction

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 17 / 19

15

Value Iteration

Recall the full policy-evaluation backup:

Here is the full value-iteration backup:

v0 ! v1 ! · · ·! vk ! vk+1 ! · · ·! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s0)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St =s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St =s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St =s, At =a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

v0 ! v1 ! · · ·! vk ! vk+1 ! · · ·! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s0)

i
8s 2 S

vk+1(s) = max
a

X

s0,r

p(s0, r|s, a)
h
r + �vk(s0)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St =s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St =s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St =s, At =a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

16

Value Iteration – One array version
96 CHAPTER 4. DYNAMIC PROGRAMMING

Initialize array V arbitrarily (e.g., V (s) = 0 for all s 2 S+)

Repeat
� 0
For each s 2 S:

v V (s)
V (s) maxa

P
s0,r p(s0, r|s, a)

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)

Output a deterministic policy, ⇡, such that
⇡(s) = arg maxa

P
s0,r p(s0, r|s, a)

⇥
r + �V (s0)

⇤

Figure 4.5: Value iteration.

by only a small amount in a sweep. Figure 4.5 gives a complete value iteration
algorithm with this kind of termination condition.

Value iteration e↵ectively combines, in each of its sweeps, one sweep of
policy evaluation and one sweep of policy improvement. Faster convergence is
often achieved by interposing multiple policy evaluation sweeps between each
policy improvement sweep. In general, the entire class of truncated policy
iteration algorithms can be thought of as sequences of sweeps, some of which
use policy evaluation backups and some of which use value iteration backups.
Since the max operation in (4.10) is the only di↵erence between these backups,
this just means that the max operation is added to some sweeps of policy
evaluation. All of these algorithms converge to an optimal policy for discounted
finite MDPs.

Example 4.3: Gambler’s Problem A gambler has the opportunity to
make bets on the outcomes of a sequence of coin flips. If the coin comes up
heads, he wins as many dollars as he has staked on that flip; if it is tails, he
loses his stake. The game ends when the gambler wins by reaching his goal
of $100, or loses by running out of money. On each flip, the gambler must
decide what portion of his capital to stake, in integer numbers of dollars. This
problem can be formulated as an undiscounted, episodic, finite MDP. The
state is the gambler’s capital, s 2 {1, 2, . . . , 99} and the actions are stakes,
a 2 {0, 1, . . . , min(s, 100 � s)}. The reward is zero on all transitions except
those on which the gambler reaches his goal, when it is +1. The state-value
function then gives the probability of winning from each state. A policy is a
mapping from levels of capital to stakes. The optimal policy maximizes the
probability of reaching the goal. Let ph denote the probability of the coin

Example

6

Iterative Policy Eval  
for the Small Gridworld

∞

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)

❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

€

π = equiprobable random action choices

R

γ = 1

⇡0(s)
.
= arg max

a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

60 CHAPTER 4. DYNAMIC PROGRAMMING

4.1 Policy Evaluation (Prediction)

First we consider how to compute the state-value function v⇡ for an arbitrary policy ⇡. This is called
policy evaluation in the DP literature. We also refer to it as the prediction problem. Recall from Chapter
3 that, for all s 2 S,

v⇡(s)
.
= E⇡[Gt | St =s]

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.8))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] (4.3)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r |s, a)
h
r + �v⇡(s0)

i
, (4.4)

where ⇡(a|s) is the probability of taking action a in state s under policy ⇡, and the expectations are
subscripted by ⇡ to indicate that they are conditional on ⇡ being followed. The existence and uniqueness
of v⇡ are guaranteed as long as either � < 1 or eventual termination is guaranteed from all states under
the policy ⇡.

If the environment’s dynamics are completely known, then (4.4) is a system of |S| simultaneous linear
equations in |S| unknowns (the v⇡(s), s 2 S). In principle, its solution is a straightforward, if tedious,
computation. For our purposes, iterative solution methods are most suitable. Consider a sequence
of approximate value functions v0, v1, v2, . . ., each mapping S+ to R (the real numbers). The initial
approximation, v0, is chosen arbitrarily (except that the terminal state, if any, must be given value 0),
and each successive approximation is obtained by using the Bellman equation for v⇡ (4.4) as an update
rule:

vk+1(s)
.
= E⇡[Rt+1 + �vk(St+1) | St =s]

=
X

a

⇡(a|s)
X

s0,r

p(s0, r |s, a)
h
r + �vk(s0)

i
, (4.5)

for all s 2 S. Clearly, vk = v⇡ is a fixed point for this update rule because the Bellman equation for v⇡
assures us of equality in this case. Indeed, the sequence {vk} can be shown in general to converge to
v⇡ as k ! 1 under the same conditions that guarantee the existence of v⇡. This algorithm is called
iterative policy evaluation.

To produce each successive approximation, vk+1 from vk, iterative policy evaluation applies the same
operation to each state s: it replaces the old value of s with a new value obtained from the old values of
the successor states of s, and the expected immediate rewards, along all the one-step transitions possible
under the policy being evaluated. We call this kind of operation an expected update. Each iteration of
iterative policy evaluation updates the value of every state once to produce the new approximate value
function vk+1. There are several di↵erent kinds of expected updates, depending on whether a state (as
here) or a state–action pair is being updated, and depending on the precise way the estimated values of
the successor states are combined. All the updates done in DP algorithms are called expected updates
because they are based on an expectation over all possible next states rather than on a sample next
state. The nature of a update can be expressed in an equation, as above, or in an update diagram like
those introduced in Chapter 3. For example, the update diagram corresponding to the expected update
used in iterative policy evaluation is shown on page 47.

To write a sequential computer program to implement iterative policy evaluation as given by (4.5)
you would have to use two arrays, one for the old values, vk(s), and one for the new values, vk+1(s).
With two arrays, the new values can be computed one by one from the old values without the old values
being changed. Of course it is easier to use one array and update the values “in place,” that is, with
each new value immediately overwriting the old one. Then, depending on the order in which the states
are updated, sometimes new values are used instead of old ones on the right-hand side of (4.5). This

V0 =

V1 =

V2 =

V3 =

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

0.0 -1.0 -2.0 -2.0

-1.0 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.0

-2.0 -2.0 -1.0 0.0

0.0 -1.0 -2.0 -3.0

-1.0 -2.0 -3.0 -2.0

-2.0 -3.0 -2.0 -1.0

-3.0 -2.0 -1.0 0.0

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 18 / 19

Summary

State and action value functions are key concepts in RL

Their values in difference states are tied by Bellman equations

Bellman equations used as operators are contractions and hence
their iterative application converges to unique solutions

(Generalized) poilcy iteration and value iterations are simple
algorithms to solve MDPs

However, there algorithms require full knowledge of MDP, which is
not necessary in RL methods, which generally approximate the full
Bellman operator

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 19 / 19

