Linear Classifiers II

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

May 26, 2021

Linear Classifiers - supplement lecture

- Supplement to the lecture about learning Linear Classifiers (perceptron, ...)
- Better etalons by applying Fischer linear discriminator analysis.
- LSQ formulation of the learning task.

Fischer linear discriminant

- Dimensionality reduction
- Maximize distance between means,
- ... and minimize within class variance. (minimize overlap)

Figures from [1]

Projections to lower dimensions $y=\mathbf{w}^{\top} \mathbf{x}$

Figure from [2]

Projection to lower dimension $\mathbf{y}=W^{\top} \mathbf{x}$

Figure from [2]

Finding the best projection $y=\mathbf{w}^{\top} \mathbf{x}, y \geq-w_{0} \Rightarrow C_{1}$, otherwise C_{2}

Finding the best projection $y=\mathbf{w}^{\top} \mathbf{x}, y \geq-w_{0} \Rightarrow C_{1}$, otherwise C_{2}

$$
m_{2}-m_{1}=\mathbf{w}^{\top}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

Within class scatter of projected samples

$$
s_{i}^{2}=\sum_{y \in C_{i}}\left(y-m_{i}\right)^{2}
$$

Fischer criterion:

$$
J(\mathbf{w})=\frac{\left(m_{2}-m_{1}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}
$$

Finding the best projection $y=\mathbf{w}^{\top} \mathbf{x}, y \geq-w_{0} \Rightarrow C_{1}$, otherwise C_{2}

$$
\begin{array}{cc}
m_{2}-m_{1}=\mathbf{w}^{\top}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right) & \mathrm{S}_{i}=\sum_{x \in C_{i}}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{\top} \\
s_{i}^{2}=\sum_{y \in C_{i}}\left(y-m_{i}\right)^{2} & \mathrm{~S}_{W}=\mathrm{S}_{1}+\mathrm{S}_{2} \\
J(\mathbf{w})=\frac{\left(m_{2}-m_{1}\right)^{2}}{s_{1}^{2}+s_{2}^{2}} & \mathrm{~S}_{B}=\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)^{\top} \\
\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}=0 & J(\mathbf{w})=\frac{\mathbf{w}^{\top} \mathrm{S}_{B} \mathbf{w}}{\mathbf{w}^{\top} \mathrm{S}_{W} \mathbf{w}}
\end{array}
$$

LSQ approach to linear classification

$$
\begin{gathered}
\mathbf{w}=\left[\begin{array}{c}
w_{0} \\
\mathbf{w}
\end{array}\right] \\
\mathrm{X} \mathbf{w}=\mathbf{b} \\
J(\mathbf{w})=\|\mathbf{X} \mathbf{w}-\mathbf{b}\|^{2}
\end{gathered}
$$

LSQ approach, better margins \mathbf{b} ?

$$
\begin{gathered}
X=\left[\begin{array}{cc}
1_{1} & \mathrm{X}_{1} \\
-1_{2} & -\mathrm{X}_{2}
\end{array}\right] \\
\mathbf{b}=\left[\begin{array}{c}
\frac{n}{n_{1}} 1_{1} \\
\frac{n}{n_{2}} 1_{2}
\end{array}\right]
\end{gathered}
$$

References I

Further reading: Chapter 4 of [1], or chapter 3 and 5 of [2].
[1] Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer Science+Bussiness Media, New York, NY, 2006.
PDF freely downloadable.
[2] Richard O. Duda, Peter E. Hart, and David G. Stork.
Pattern Classification.
John Wiley \& Sons, 2nd edition, 2001.

