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K-Nearest neighbors classification

For a query X:
» Find K nearest X from the tranining (labeled) data.

» Classify to the class with the most exemplars in the set above.

1-nearest neighbour classifier
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Notes

Some properties:
e A nonparametric method — does not assume anything about the distribution (that it is Gaussian etc.)
e Can be used for classification or regression. Here: classification.
e Training: Only store feature vectors and their labels.

e Very simple and suboptimal. With unlimited nr. prototypes, error never worse than twice the Bayes rate
(optimum).
e instance-based or lazy learning — function only approximated locally; computation only during inference.

e Limitations

— Curse of dimensionality - for every additional dimension, one needs exponentially more points
to cover the space.

— Comp. complexity - has to look through all the samples all the time. Some speed-up is
possible. E.g., storing data in a K-d tree.

— Noise. Missclassified examples will remain in the database....



K — Nearest Neighbor and Bayes j* = argmax; P(s;|X)
Assume data:

» N points X in total.

» N; points in s; class. Hence, Zj N; = N.

We want classify X. We draw a sphere centered at X containing K points irrespective of class.
V' is the volume of this sphere. P(s;j|X) =7

x4 . P(s%) P()_(’EJ(Z?I)D(SJ)
’ [ ] * e L ]
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k — NN for non-parametric density estimation

S K
P(X):W

V = Vy4RY(X)
Rk(X) - distance from X to its k—th nearest neighbour point (radius)

d/2

Va = r(d/2+1)

volume od unit d—dimensional sphere, [ denotes gamma function. V; =2 Vo =x, V3 = %77
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More details, including a computational example, in [2].
A K—NN belongs to non-parametric methods for density estimation, see section 2.5 from [1]. (Figure from [1])

Try yourself, https://scikit-learn.org/stable/modules/density.html#kernel-density


https://scikit-learn.org/stable/modules/density.html#kernel-density
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NN classification example

s Pentagon data 1-nearest neighbour classifier
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Notes
Fast on “learning”, very slow on decision.

There are ways for speeding it up, search for NN editing - making training data sparser, keeping only representative

points.



What is nearest? Metrics for NN classification ...

A function D which is: nonnegative,
reflexive, symmetrical, satisfying trian-
gle inequality:

D(3,b) >0
D(3,b)=0iff3=0b
D(3,b) = D(b, 3)

D(3,b) + D(b,2) > D(3,?)
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Notes

When taking X as all the intenties, “5" shifted 3 pixels left is farther from its etalon thant to etalon of “8”. One
could consider preprocessing:

1.

shift query image to all possible positions and compute min distances
2. take the min(min(distance))

3. perform NN classification

Costly ...
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Notes
When taking X as all the intenties, “5" shifted 3 pixels left is farther from its etalon thant to etalon of “8”. One
could consider preprocessing:

1. shift query image to all possible positions and compute min distances
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3. perform NN classification

Costly ...



Etalon based classification

Pentagon data
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Separate etalons

minimum distance from etalons

s* = argmin||X — &||?

seS
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What etalons?

If N(X|ii, X); all classes same covariance matri-
ces, then

minimum distance from etalons

odef L P
€s = Hs |XS|Z

ieXxs

and separating hyperplanes halve distances be-
tween pairs. ~
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Notes

NILE) = sz s @0l =30 = ) (% - )



Etalon based classification, €5 = ji.

s Pentagon data minimum distance from etalons
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Notes
Some wrongly classified samples. We like the simple idea. Are there better etalons? How to find them?




Digit recognition - etalons € = ji,

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

D923 456789

Figures from [6]
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Better etalons — Fischer linear discriminant

4.

o
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Notes
At the mmoment, it is good to know, there are better etalons, obviously. We will come to the last lecture.
Searching for a projection of the data to minimize intra-class variance and maximize inter-class variance.



Better etalons — Fischer linear discriminant
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» Dimensionality reduction
» Maximize distance between means, ...

» ...and minimize within class variance. (minimize overlap)

Figures from [1]
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Notes
At the mmoment, it is good to know, there are better etalons, obviously. We will come to the last lecture.
Searching for a projection of the data to minimize intra-class variance and maximize inter-class variance.



Better etalons?

minimum distance from etalons perceptron

Figures from [6]
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Notes

This is just to show that there is an etalon classifier that make no mistake on the data. But how to find the best
etalons?




Etalon classifier — Linear classifier

s s =12 . ST o ST =To
= —_ P —_ 2 =
st =arg rsn€|2||x &l|“ = arg r;nelg(x X —268,X+ & €s)

1
. (ST ST o 2Tz
:argrsn€|2<x X—2( SX_E(es es))> =

S “To
:argrsnég(x X —2(8 X+ bs)) =

=|arg Tgag(é’j%—{— bs) :argTEa;gs(S(’). 5&s

Linear function (plus offset)

gs(x) = wsTx -+ Wep
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Notes
The result is a linear discriminant function — hence etalon classifier is a linear classifier.
We classify into the class with highest value of the discriminant function.
w; is a generalized etalon. How do we find it? Such that it is better than just the mean of the class members in
the training set.



(1) Linear discriminant function - two class case

g(x) =w'x+ wp

Decide s; if g(x) > 0 and s, if g(x) <0

Figure from [3] 16/35

Notes
g(x) = 0 is the separating hyperplane. Its dimension is one less that that of the input space — for 2D space, it is
a line. (This is a bit counterintuitive - “hyper” normally means above, more...)

What is the geometric meaning of the weight vector w?
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Notes
g(x) = 0 is the separating hyperplane. Its dimension is one less that that of the input space — for 2D space, it is
a line. (This is a bit counterintuitive - “hyper” normally means above, more...)

What is the geometric meaning of the weight vector w?



Separating hyperplane

WTX1 + wp = WTX2 + wo

WT(

X1—X2):0
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Notes

(any) vector (x1 — x2) lies on the separating hyperplane, w is perpendicular to it
Summary: A linear discriminant function divides the feature space by a hyperplane decision surface.

e The orientation of the surface is detemined by the normal vector w.

e The location of the surface is determined by the bias term wy.



Separating hyperplane

WTX1 + wp = WTX2 + wo

w'(x; —x)=0

g(x) gives an algebraic measure of the
distance from x to the hyperplane.

LW
X=X+ r—-
P wll
as g(xp) =0,

and g(x) = w'x + wp, then:

g(x) = rllw]]

Figure from [3] 1738

Notes

(any) vector (x1 — x2) lies on the separating hyperplane, w is perpendicular to it
Summary: A linear discriminant function divides the feature space by a hyperplane decision surface.

e The orientation of the surface is detemined by the normal vector w.

e The location of the surface is determined by the bias term wy.



Separating hyperplane from g; and g

Etalon classifier, etalons fiy, fiy

o ST o
gl(X) = M X—= 5#1 M1
- 1o 1 1.
&%) = fi X = iz iy

Separating hyperplane:
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Notes

Think about case where ||fi;|| = ||[i,]| and reason about simplified equation of the separating hyperplane.




Two classes set-up

|S| = 2, i.e. two states (typically also classes)

s=1, if wx+w >0,
g(x) =
s=-1, if wx+w<0.

19/35
Notes

There are two steps here:

1. Transformation to homogenous notation with augmented feature vector and augmented weight vector.

2. “Normalization” that simplifies treatment of the two-class case: labels can be ignored. Just look for a

weight vector w such that w'x > 0

It means, the sign of x depends on the class it belongs to! Keep in mind.
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Two classes set-up

|S| = 2, i.e. two states (typically also classes)

s=1, if wx+w >0,

g(x) =
s=-1, if wx+w<0.
1 W
Xj w
for all x’
w x>0
drop the dashes to avoid notation clutter.
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Notes

There are two steps here:

1. Transformation to homogenous notation with augmented feature vector and augmented weight vector.

2. “Normalization” that simplifies treatment of the two-class case: labels can be ignored. Just look for a

weight vector w such that w'x > 0

It means, the sign of x depends on the class it belongs to! Keep in mind.



Solution (graphically)

solution solution
region X2 region X2

X! X1
N
Four training samples. Left: orginal, Right: sign corrected
Figure from [3] (notation changed)
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Notes
Four training samples (black for class/category wi, red for w»). Left: Raw data Right: “Normalized data”. Class
w2 member replaced by their negatives... Simplifies the situation: labels can be ignored. Just look for a weight
vector w such that w'x > 0
Before: defining the linear discriminant function.
Now: How can we obtain it from (labeled) data?
What is the meaning of solution region?




Learning w, gradient descent

A criterion to be minimized J(w); assume to be known

Initialize w, threshold @, learning rate «
k+0
repeat
k+—k+1
w < w — a(k)VJ(w)
until |a(k)VJ(w)| < 6
return w
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Notes

This is a general scheme, we do not know J(w), yet.
We're looking into error-based classification methods: missclassified examples are used to tune the classifier...

We already discussed (stochastic) Gradient descent when talking about Q—function learning



Learning w - Perceptron criterion

Goal: Find a weight vector w € R0+ (original feature space dimensionality is D) such that:

w'x; >0 (Vje{1,2,...,m})

solution
region X2

solution
region X2
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Notes

What are the possible choices for J(w)? First choice: number of missclassified examples. Problem: this function
is piecewise constant.

Better choice: perceptron criterion function.

Mind that w'x; < 0 for x € X

Geometrically: J(w) o sum of the distance of the missclassified samples to the decision boundary.
What is VJ(w) equal to?




Learning w - Perceptron criterion

Goal: Find a weight vector w € RP*1 (original feature space dimensionality is D) such that:

w'x; >0 (Vje{1,2,...,m})

(Perceptron) Criterion to be minimized: solution
region X2

J(w) = Z —w'x

xeX

where X is a set of missclassified x.

VI(w) =) —x

xEX
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Notes

What are the possible choices for J(w)? First choice: number of missclassified examples. Problem: this function
is piecewise constant.

Better choice: perceptron criterion function.

Mind that w'x; < 0 for x € X

Geometrically: J(w) o sum of the distance of the missclassified samples to the decision boundary.
What is VJ(w) equal to?




(Batch) Perceptron algorithm

Initialize w, threshold @, learning rate «
k+0
repeat
k+—k+1
w =W+ ak) Do r ) X
until [o(k) > ye ) X < 0
return w
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Notes
Next weight vector ~ adding some multiple of the sum of the missclassified samples to the present weight vector.




Fixed-increment single-sample Perceptron

n patterns/samples, we are looping over all patterns repeatedly
Initialize w
k<0
repeat
k < (k+1) mod n
if x* missclassified, then w < w + x*
until all x correctly classified
return w

24/35
Notes

As we are looping over all patterns repeatedly, it is not an on-line algorithm




Perceptron iterations/loops

k < (k+1) mod n
if x* missclassified, then

n patterns/samples, we are loop-

until all x correctly classified

2 ing over all patterns repeatedly:
0000000000 o
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(Dark) Blue is w after update step. Reds are +, Greens —.
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Notes
Keep in mind the £+ normalization of x.

s=1, |if WTX+W0>O,

g(x) =
s=-1, |if WTX+W0<0.

Xi=s ! w=|"
7 X; ) - w

(as discussed few slides ago)
Red x are +, green are —

Track the iteration steps. After each update x, draw a separating line for the next and verify.



Perceptron iterations/loops
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n patterns/samples, we are loop-
ing over all patterns repeatedly:
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k<0
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k < (k+1) mod n
if x* missclassified, then
w — w + xK
until all x correctly classified
return w
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Notes
Keep in mind the £+ normalization of x.

s=1, |if WTX+W0>O,

g(x) =

s=-1, |if WTX+W0<0.

Xi=s ! w=|"
7 X; ) - w

(as discussed few slides ago)
Red x are +, green are —

Track the iteration steps. After each update x, draw a separating line for the next and verify.



Perceptron iterations/loops
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Perceptron iterations/loops
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Perceptron iterations/loops

eececceccooo
eececsecccooo
eececsecccooo
~1 eeeeaccncee
eececsecccooo

1
a—1/\/\/ return w

-2 -1 0 1 2 0 2 4 6 8 10

iter

iter

(Dark) Blue is w after update step. Reds are +, Greens —.

n patterns/samples, we are loop-

2 : )
ceese00000 2 ing over all patterns repeatedly:
| Initialize w
LN N N N N NN N J 1 k%O
(LA N N N NN N NN J
saalliiiilsBesacsees repeat
0 oooooo.ooo" .:: ote O - k’%-(k-%l)lﬂOd n

if x* missclassified, then
wy W {— W + xk
until all x correctly classified

25/35

Notes
Keep in mind the £+ normalization of x.
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Track the iteration steps. After each update x, draw a separating line for the next and verify.



Perceptron iterations/loops

n patterns/samples, we are loop-
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Keep in mind the £+ normalization of x.

s=1, if wx+w >0,
g(x) =
s=-1, |if WTX+W0<0.

i =5 ! w=|"
7 X; ) - w

(as discussed few slides ago)
Red x are +, green are —

Track the iteration steps. After each update x, draw a separating line for the next and verify.



Etalons: means vs. found by perceptron
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Figures from [6]

Notes
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Digit recognition - etalons means vs. perceptron

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9
etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

Figures from [6]
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Notes

“Prototypes” resulting from the perceptron algorithm are harder to interpret because they are not means —
instead, they are optimized for separating the classes.




What if not lin separable?

-10 -05 00 05 10 15 20

Dimension lifting

x = [x,x*]"
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Dimension lifting, x = [x, x?]"
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Notes



Performance comparison, parameters fixed
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Notes

Why there some errors in perceptron results? We said zero error on training set.



Learning and decision

Learning stage - learning models/function/parameters from data.
Decision stage - decide about a query X.
What to learn?

> Generative model : Learn P(X,s). Decide by computing P(s|X).

» Discriminative model : Learn P(s|X)

—

» Discriminant function : Learn g(X) which maps X directly into class labels.

31/35

Notes

Generative models because by sampling from them it is possible to generate synthetic data points X.

For the discriminative model one can consider, e.g. logistic function:

1

f(x) = [ppre=—)



Accuracy vs precision

(b)

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

Notes
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Accuracy: how close (is your model) to the truth. Precision: how consistent/stable
In German:

e Accuracy: Richtigkeit

e Precision: Prazision

e Both together: Genauigkeit
In Czech:

e Accuracy: Vé&rnost, pfesnost.

e Precition: Rozptyl,


https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg
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Notes
Accuracy: how close (is your model) to the truth. Precision: how consistent/stable.
Think about terms bias and error. |
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Further reading: Chapter 18 of [5], or chapter 4 of [1], or chapter 5 of [3]. Many figures
created with the help of [4]. You may also play with demo functions from [6].
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