k-NN and Linear Classifiers, Learning

Tomáš Svoboda and Matěj Hoffmann
thanks to Daniel Novák and Filip Železný, Ondřej Drbohlav
Vision for Robots and Autonomous Systems, Center for Machine Perception Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

May 13, 2021

K-Nearest neighbors classification

For a query \vec{x} :

Find K nearest \vec{x} from the tranining (labeled) data.

- Classify to the class with the most exemplars in the set above.

Notes

Some properties:

- A nonparametric method - does not assume anything about the distribution (that it is Gaussian etc.)
- Can be used for classification or regression. Here: classification.
- Training: Only store feature vectors and their labels.
- Very simple and suboptimal. With unlimited nr. prototypes, error never worse than twice the Bayes rate (optimum).
- instance-based or lazy learning - function only approximated locally; computation only during inference.
- Limitations
- Curse of dimensionality - for every additional dimension, one needs exponentially more points to cover the space.
- Comp. complexity - has to look through all the samples all the time. Some speed-up is possible. E.g., storing data in a K-d tree.
- Noise. Missclassified examples will remain in the database....
$K-$ Nearest Neighbor and Bayes $j^{*}=\operatorname{argmax}_{j} P\left(s_{j} \mid \vec{x}\right)$
Assume data:
- N points \vec{x} in total.
- N_{j} points in s_{j} class. Hence, $\sum_{j} N_{j}=N$.

We want classify \vec{x}. We draw a sphere centered at \vec{x} containing K points irrespective of class. V is the volume of this sphere. $P\left(s_{j} \mid \vec{x}\right)=$?

(a)

$K-$ Nearest Neighbor and Bayes $j^{*}=\operatorname{argmax}_{j} P\left(s_{j} \mid \vec{x}\right)$

Assume data:

- N points \vec{x} in total.
- N_{j} points in s_{j} class. Hence, $\sum_{j} N_{j}=N$.

We want classify \vec{x}. We draw a sphere centered at \vec{x} containing K points irrespective of class. V is the volume of this sphere. $P\left(s_{j} \mid \vec{x}\right)=$?

$$
\begin{array}{rlrl}
& & \\
P\left(s_{j}\right) & =\frac{N_{j}}{N} \\
P(\vec{x}) & =\frac{K}{N V} \\
P\left(\vec{x} \mid s_{j}\right) & =\frac{K_{j}}{N_{j} V} \\
P\left(s_{j} \mid \vec{x}\right)=\frac{P\left(\vec{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\vec{x})} & =\frac{P\left(\vec{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\vec{x})}=\frac{K_{j}}{K}
\end{array}
$$

k - $N N$ for non-parametric density estimation

$$
\begin{aligned}
& P(\vec{x})=\frac{K}{N V} \\
& V=V_{d} R_{k}^{d}(\vec{x})
\end{aligned}
$$

$R_{k}(\vec{x})$ - distance from \vec{x} to its k-th nearest neighbour point (radius)

$$
V_{d}=\frac{\pi^{d / 2}}{\Gamma(d / 2+1)}
$$

volume od unit d-dimensional sphere, Γ denotes gamma function. $V_{1}=2, V_{2}=\pi, V_{3}=\frac{4}{3} \pi$

More details, including a computational example, in [2].
A $K-$ NN belongs to non-parametric methods for density estimation, see section 2.5 from [1]. (Figure from [1]) Try yourself, https://scikit-learn.org/stable/modules/density.html\#kernel-density

NN classification example

(a)

(b)

[^0]
NN classification example

Fast on "learning", very slow on decision.
There are ways for speeding it up, search for NN editing - making training data sparser, keeping only representative points.

What is nearest? Metrics for NN classification ...

A function D which is: nonnegative, reflexive, symmetrical, satisfying triangle inequality:
$D(\vec{a}, \vec{b}) \geq 0$
$D(\vec{a}, \vec{b})=0$ iff $\vec{a}=\vec{b}$
$D(\vec{a}, \vec{b})=D(\vec{b}, \vec{a})$
$D(\vec{a}, \vec{b})+D(\vec{b}, \vec{c}) \geq D(\vec{a}, \vec{c})$

When taking \vec{x} as all the intenties, " 5 " shifted 3 pixels left is farther from its etalon thant to etalon of " 8 ". One could consider preprocessing:

1. shift query image to all possible positions and compute min distances
2. take the $\min (\min ($ distance $))$
3. perform NN classification

Costly

What is nearest? Metrics for NN classification ...

A function D which is: nonnegative, reflexive, symmetrical, satisfying triangle inequality:
$D(\vec{a}, \vec{b}) \geq 0$
$D(\vec{a}, \vec{b})=0$ iff $\vec{a}=\vec{b}$
$D(\vec{a}, \vec{b})=D(\vec{b}, \vec{a})$
$D(\vec{a}, \vec{b})+D(\vec{b}, \vec{c}) \geq D(\vec{a}, \vec{c})$

Invariance to geometrical transformations? (figure from [3])
Notes
When taking \vec{x} as all the intenties, " 5 " shifted 3 pixels left is farther from its etalon thant to etalon of " 8 ". One could consider preprocessing:

1. shift query image to all possible positions and compute min distances
2. take the $\min (\min ($ distance $))$
3. perform NN classification

Costly

Etalon based classification

Represent \vec{x} by etalon , \vec{e}_{s} per each class $s \in S$

Separate etalons

$$
s^{*}=\underset{s \in S}{\arg \min }\left\|\vec{x}-\vec{e}_{s}\right\|^{2}
$$

$9 / 35$

What etalons?

If $\mathcal{N}(\vec{x} \mid \vec{\mu}, \Sigma)$; all classes same covariance matrices, then

$$
\vec{e}_{s} \stackrel{\text { def }}{=} \vec{\mu}_{s}=\frac{1}{\left|\mathcal{X}^{s}\right|} \sum_{i \in \mathcal{X}^{s}} \vec{x}_{i}^{s}
$$

and separating hyperplanes halve distances between pairs.
minimum distance from etalons

$$
\mathcal{N}(\vec{x} \mid \vec{\mu}, \Sigma)=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\vec{x}-\vec{\mu})^{\top} \Sigma^{-1}(\vec{x}-\vec{\mu})\right\}
$$

Etalon based classification, $\vec{e}_{s}=\vec{\mu}_{s}$

Notes
Some wrongly classified samples. We like the simple idea. Are there better etalons? How to find them?

Digit recognition - etalons $\vec{e}_{s}=\vec{\mu}_{s}$
etalon for 0
etalon for 1

etalon for 6
etalon for 7
etalon for 8
etalon for 9

Figures from [6]

Better etalons - Fischer linear discriminant

Notes

At the mmoment, it is good to know, there are better etalons, obviously. We will come to the last lecture. Searching for a projection of the data to minimize intra-class variance and maximize inter-class variance.

Better etalons - Fischer linear discriminant

- Dimensionality reduction
- Maximize distance between means, ...
- ... and minimize within class variance. (minimize overlap)

Figures from [1]

Notes

At the mmoment, it is good to know, there are better etalons, obviously. We will come to the last lecture. Searching for a projection of the data to minimize intra-class variance and maximize inter-class variance.

Better etalons?

Figures from [6]

This is just to show that there is an etalon classifier that make no mistake on the data. But how to find the best etalons?

Etalon classifier - Linear classifier

$$
\begin{aligned}
s^{*} & =\arg \min _{s \in S}\left\|\vec{x}-\vec{e}_{s}\right\|^{2}=\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2 \vec{e}_{s}^{\top} \vec{x}+\vec{e}_{s}^{\top} \vec{e}_{s}\right)= \\
& =\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}-\frac{1}{2}\left(\vec{e}_{s}^{\top} \vec{e}_{s}\right)\right)\right)= \\
& =\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}+b_{s}\right)\right)= \\
& =\arg \max _{s \in S}\left(\vec{e}_{s}^{\top} \vec{x}+b_{s}\right)=\arg \max _{s \in S} g_{s}(\vec{x}) . \quad b_{s}=-\frac{1}{2} \vec{e}_{s}^{\top} \vec{e}_{s}
\end{aligned}
$$

Linear function (plus offset)

$$
g_{s}(\mathbf{x})=\mathbf{w}_{s}^{\top} \mathbf{x}+w_{s 0}
$$

Notes

The result is a linear discriminant function - hence etalon classifier is a linear classifier.
We classify into the class with highest value of the discriminant function.
\mathbf{w}_{s} is a generalized etalon. How do we find it? Such that it is better than just the mean of the class members in the training set.
(1) Linear discriminant function - two class case

$$
g(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+w_{0}
$$

Decide s_{1} if $g(\mathbf{x})>0$ and s_{2} if $g(\mathbf{x})<0$

Figure from [3]
Notes
$g(\mathbf{x})=0$ is the separating hyperplane. Its dimension is one less that that of the input space - for 2D space, it is a line. (This is a bit counterintuitive - "hyper" normally means above, more...)
What is the geometric meaning of the weight vector \mathbf{w} ?

(1) Linear discriminant function - two class case

$$
g(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+w_{0}
$$

Decide s_{1} if $g(\mathbf{x})>0$ and s_{2} if $g(\mathbf{x})<0$

Figure from [3]
Notes
$g(\mathbf{x})=0$ is the separating hyperplane. Its dimension is one less that that of the input space - for 2 D space, it is a line. (This is a bit counterintuitive - "hyper" normally means above, more...)
What is the geometric meaning of the weight vector \mathbf{w} ?

Separating hyperplane

$$
\begin{gathered}
\mathbf{w}^{\top} \mathbf{x}_{1}+w_{0}=\mathbf{w}^{\top} \mathbf{x}_{2}+w_{0} \\
\mathbf{w}^{\top}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=0
\end{gathered}
$$

Notes
(any) vector ($\mathbf{x}_{1}-\mathbf{x}_{2}$) lies on the separating hyperplane, \mathbf{w} is perpendicular to it
Summary: A linear discriminant function divides the feature space by a hyperplane decision surface.

- The orientation of the surface is detemined by the normal vector \mathbf{w}.
- The location of the surface is determined by the bias term w_{0}.

Separating hyperplane

$$
\begin{gathered}
\mathbf{w}^{\top} \mathbf{x}_{1}+w_{0}=\mathbf{w}^{\top} \mathbf{x}_{2}+w_{0} \\
\mathbf{w}^{\top}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=0
\end{gathered}
$$

$g(\mathbf{x})$ gives an algebraic measure of the distance from \mathbf{x} to the hyperplane.

$$
\mathbf{x}=\mathbf{x}_{p}+r \frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

as $g\left(\mathbf{x}_{p}\right)=0$,
and $g(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+w_{0}$, then:

$$
g(\mathbf{x})=r\|\mathbf{w}\|
$$

Figure from [3]
(any) vector ($\mathbf{x}_{1}-\mathbf{x}_{2}$) lies on the separating hyperplane, \mathbf{w} is perpendicular to it
Summary: A linear discriminant function divides the feature space by a hyperplane decision surface.

- The orientation of the surface is detemined by the normal vector \mathbf{w}.
- The location of the surface is determined by the bias term w_{0}.

Separating hyperplane from g_{1} and g_{2}

Etalon classifier, etalons $\vec{\mu}_{1}, \vec{\mu}_{2}$

$$
\begin{aligned}
& g_{1}(\vec{x})=\vec{\mu}_{1}^{\top} \vec{x}-\frac{1}{2} \vec{\mu}_{1}^{\top} \vec{\mu}_{1} \\
& g_{2}(\vec{x})=\vec{\mu}_{2}^{\top} \vec{x}-\frac{1}{2} \vec{\mu}_{2}^{\top} \vec{\mu}_{2}
\end{aligned}
$$

Separating hyperplane:

$$
\begin{gathered}
g_{1}(\vec{x})=g_{2}(\vec{x}) \\
\left(\vec{\mu}_{1}-\vec{\mu}_{2}\right)^{\top} \vec{x}=\frac{1}{2}\left(\vec{\mu}_{1}^{\top} \vec{\mu}_{1}-\vec{\mu}_{2}^{\top} \vec{\mu}_{2}\right)
\end{gathered}
$$

Think about case where $\left\|\vec{\mu}_{1}\right\|=\left\|\vec{\mu}_{2}\right\|$ and reason about simplified equation of the separating hyperplane.

Two classes set-up
$|S|=2$, i.e. two states (typically also classes)

$$
g(\mathbf{x})=\left\{\begin{array}{l}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0 \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0
\end{array}\right.
$$

There are two steps here:

1. Transformation to homogenous notation with augmented feature vector and augmented weight vector.
2. "Normalization" that simplifies treatment of the two-class case: labels can be ignored. Just look for a weight vector \mathbf{w} such that $\mathbf{w}^{\top} \mathbf{x}>0$
It means, the sign of \mathbf{x} depends on the class it belongs to! Keep in mind.

Two classes set-up
$|S|=2$, i.e. two states (typically also classes)

$$
g(\mathbf{x})=\left\{\begin{array}{l}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0, \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0 .
\end{array}\right.
$$

$$
\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{l}
1 \\
\mathbf{x}_{j}
\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{l}
w_{0} \\
\mathbf{w}
\end{array}\right]
$$

There are two steps here:

1. Transformation to homogenous notation with augmented feature vector and augmented weight vector.
2. "Normalization" that simplifies treatment of the two-class case: labels can be ignored. Just look for a weight vector \mathbf{w} such that $\mathbf{w}^{\top} \mathbf{x}>0$

It means, the sign of \mathbf{x} depends on the class it belongs to! Keep in mind.

Two classes set-up
$|S|=2$, i.e. two states (typically also classes)

$$
g(\mathbf{x})=\left\{\begin{array}{l}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0, \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0 .
\end{array}\right.
$$

$$
\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{c}
1 \\
\mathbf{x}_{j}
\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{l}
w_{0} \\
\mathbf{w}
\end{array}\right]
$$

for all \mathbf{x}^{\prime}

$$
\mathbf{w}^{\prime \top} \mathbf{x}^{\prime}>0
$$

drop the dashes to avoid notation clutter.

There are two steps here:

1. Transformation to homogenous notation with augmented feature vector and augmented weight vector.
2. "Normalization" that simplifies treatment of the two-class case: labels can be ignored. Just look for a weight vector \mathbf{w} such that $\mathbf{w}^{\top} \mathbf{x}>0$

It means, the sign of \mathbf{x} depends on the class it belongs to! Keep in mind.

Solution (graphically)

Four training samples. Left: orginal, Right: sign corrected
Figure from [3] (notation changed)

Four training samples (black for class/category w_{1}, red for w_{2}). Left: Raw data Right: "Normalized data". Class w_{2} member replaced by their negatives... Simplifies the situation: labels can be ignored. Just look for a weight vector \mathbf{w} such that $\mathbf{w}^{\top} \mathbf{x}>0$
Before: defining the linear discriminant function. Now: How can we obtain it from (labeled) data?
What is the meaning of solution region?

A criterion to be minimized $J(\mathbf{w})$; assume to be known
Initialize w, threshold θ, learning rate α
$k \leftarrow 0$
repeat
$k \leftarrow k+1$
$\mathbf{w} \leftarrow \mathbf{w}-\alpha(k) \nabla J(\mathbf{w})$
until $|\alpha(k) \nabla J(\mathbf{w})|<\theta$
return w

This is a general scheme, we do not know $J(\mathbf{w})$, yet.
We're looking into error-based classification methods: missclassified examples are used to tune the classifier...
We already discussed (stochastic) Gradient descent when talking about Q-function learning

Learning w - Perceptron criterion

Goal: Find a weight vector $\mathbf{w} \in \Re^{D+1}$ (original feature space dimensionality is D) such that:

$$
\mathbf{w}^{\top} \mathbf{x}_{j}>0 \quad(\forall j \in\{1,2, \ldots, m\})
$$

solution

Notes

What are the possible choices for $J(\mathbf{w})$? First choice: number of missclassified examples. Problem: this function is piecewise constant.
Better choice: perceptron criterion function.
Mind that $\mathbf{w}^{\top} \mathbf{x}_{j} \leq 0$ for $\mathbf{x} \in \mathcal{X}$
Geometrically: $J(\mathbf{w}) \propto$ sum of the distance of the missclassified samples to the decision boundary. What is $\nabla J(\mathbf{w})$ equal to?

Learning w - Perceptron criterion

Goal: Find a weight vector $\mathbf{w} \in \Re^{D+1}$ (original feature space dimensionality is D) such that:

$$
\mathbf{w}^{\top} \mathbf{x}_{j}>0 \quad(\forall j \in\{1,2, \ldots, m\})
$$

(Perceptron) Criterion to be minimized:

where \mathcal{X} is a set of missclassified \mathbf{x}.

$$
\nabla J(\mathbf{w})=\sum_{\mathbf{x} \in \mathcal{X}}-\mathbf{x}
$$

What are the possible choices for $J(\mathbf{w})$? First choice: number of missclassified examples. Problem: this function is piecewise constant.
Better choice: perceptron criterion function.
Mind that $\mathbf{w}^{\top} \mathbf{x}_{j} \leq 0$ for $\mathbf{x} \in \mathcal{X}$
Geometrically: $J(\mathbf{w}) \propto$ sum of the distance of the missclassified samples to the decision boundary. What is $\nabla J(\mathbf{w})$ equal to?

(Batch) Perceptron algorithm

```
Initialize w, threshold \(\theta\), learning rate \(\alpha\)
\(k \leftarrow 0\)
repeat
    \(k \leftarrow k+1\)
    \(\mathbf{w} \leftarrow \mathbf{w}+\alpha(k) \sum_{\mathbf{x} \in \mathcal{X}(k)} \mathbf{x}\)
until \(\left|\alpha(k) \sum_{\mathbf{x} \in \mathcal{X}(k)} \mathbf{x}\right|<\theta\)
return w
```

Fixed-increment single-sample Perceptron
n patterns/samples, we are looping over all patterns repeatedly
Initialize w
$k \leftarrow 0$
repeat
$k \leftarrow(k+1) \bmod n$
if \mathbf{x}^{k} missclassified, then $\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}$
until all \mathbf{x} correctly classified
return w

Notes
As we are looping over all patterns repeatedly, it is not an on-line algorithm

Perceptron iterations/loops

n patterns/samples, we are looping over all patterns repeatedly:

Initialize w
$k \leftarrow 0$

repeat

$k \leftarrow(k+1) \bmod n$ if \boldsymbol{x}^{k} missclassified, then

$$
\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}
$$

until all \mathbf{x} correctly classified return w
(Dark) Blue is w after update step. Reds are + , Greens -.

Keep in mind the \pm normalization of \mathbf{x}.

$$
\begin{gathered}
g(\mathbf{x})=\left\{\begin{array}{c}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0, \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0 .
\end{array}\right. \\
\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{c}
1 \\
\mathbf{x}_{j}
\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{c}
w_{0} \\
\mathbf{w}
\end{array}\right]
\end{gathered}
$$

(as discussed few slides ago)
Red x are + , green are -
Track the iteration steps. After each update \mathbf{x}, draw a separating line for the next and verify.

Perceptron iterations/loops

n patterns/samples, we are looping over all patterns repeatedly:

Initialize w
$k \leftarrow 0$

repeat

$k \leftarrow(k+1) \bmod n$ if \boldsymbol{x}^{k} missclassified, then

$$
\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}
$$

until all \mathbf{x} correctly classified return w

(Dark) Blue is w after update step. Reds are + , Greens -.

Keep in mind the \pm normalization of \mathbf{x}.

$$
\begin{gathered}
g(\mathbf{x})=\left\{\begin{array}{c}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0, \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0 .
\end{array}\right. \\
\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{c}
1 \\
\mathbf{x}_{j}
\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{c}
w_{0} \\
\mathbf{w}
\end{array}\right]
\end{gathered}
$$

(as discussed few slides ago)
Red x are + , green are -
Track the iteration steps. After each update \mathbf{x}, draw a separating line for the next and verify.

Perceptron iterations/loops

n patterns/samples, we are looping over all patterns repeatedly:

Initialize w
$k \leftarrow 0$

repeat

$k \leftarrow(k+1) \bmod n$ if \boldsymbol{x}^{k} missclassified, then

$$
\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}
$$

until all \mathbf{x} correctly classified return w

(Dark) Blue is w after update step. Reds are + , Greens -.

Keep in mind the \pm normalization of \mathbf{x}.

$$
\begin{gathered}
g(\mathbf{x})=\left\{\begin{array}{c}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0, \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0 .
\end{array}\right. \\
\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{c}
1 \\
\mathbf{x}_{j}
\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{c}
w_{0} \\
\mathbf{w}
\end{array}\right]
\end{gathered}
$$

(as discussed few slides ago)
Red x are + , green are -
Track the iteration steps. After each update \mathbf{x}, draw a separating line for the next and verify.

Perceptron iterations/loops

n patterns/samples, we are looping over all patterns repeatedly:

Initialize w
$k \leftarrow 0$

repeat

$k \leftarrow(k+1) \bmod n$ if \boldsymbol{x}^{k} missclassified, then

$$
\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}
$$

until all \mathbf{x} correctly classified return w
(Dark) Blue is w after update step. Reds are + , Greens -.

Notes

Keep in mind the \pm normalization of \mathbf{x}.

$$
\begin{gathered}
g(\mathbf{x})=\left\{\begin{array}{c}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0, \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0 .
\end{array}\right. \\
\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{c}
1 \\
\mathbf{x}_{j}
\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{c}
w_{0} \\
\mathbf{w}
\end{array}\right]
\end{gathered}
$$

(as discussed few slides ago)
Red x are + , green are -
Track the iteration steps. After each update \mathbf{x}, draw a separating line for the next and verify.

Perceptron iterations/loops

n patterns/samples, we are looping over all patterns repeatedly:

Initialize w
$k \leftarrow 0$

repeat

$k \leftarrow(k+1) \bmod n$ if \mathbf{x}^{k} missclassified, then

$$
\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}
$$

until all \mathbf{x} correctly classified return w
(Dark) Blue is w after update step. Reds are + , Greens -.

Notes

Keep in mind the \pm normalization of \mathbf{x}.

$$
\begin{gathered}
g(\mathbf{x})=\left\{\begin{array}{c}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0, \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0 .
\end{array}\right. \\
\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{c}
1 \\
\mathbf{x}_{j}
\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{c}
w_{0} \\
\mathbf{w}
\end{array}\right]
\end{gathered}
$$

(as discussed few slides ago)
Red x are + , green are -
Track the iteration steps. After each update \mathbf{x}, draw a separating line for the next and verify.

Perceptron iterations/loops

(Dark) Blue is w after update step. Reds are + , Greens -.

Keep in mind the \pm normalization of \mathbf{x}.

$$
\begin{gathered}
g(\mathbf{x})=\left\{\begin{array}{l}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0, \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0 .
\end{array}\right. \\
\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{c}
1 \\
\mathbf{x}_{j}
\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{c}
w_{0} \\
\mathbf{w}
\end{array}\right]
\end{gathered}
$$

(as discussed few slides ago)
Red x are + , green are -
Track the iteration steps. After each update \mathbf{x}, draw a separating line for the next and verify.

Perceptron iterations/loops

n patterns/samples, we are looping over all patterns repeatedly:

Initialize w
$k \leftarrow 0$

repeat

$k \leftarrow(k+1) \bmod n$ if \boldsymbol{x}^{k} missclassified, then

$$
\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}
$$

until all \mathbf{x} correctly classified return w
(Dark) Blue is w after update step. Reds are + , Greens -.

Notes

Keep in mind the \pm normalization of \mathbf{x}.

$$
\begin{gathered}
g(\mathbf{x})=\left\{\begin{array}{c}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0, \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0 .
\end{array}\right. \\
\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{c}
1 \\
\mathbf{x}_{j}
\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{c}
w_{0} \\
\mathbf{w}
\end{array}\right]
\end{gathered}
$$

(as discussed few slides ago)
Red x are + , green are -
Track the iteration steps. After each update \mathbf{x}, draw a separating line for the next and verify.

Etalons: means vs. found by perceptron

Figures from [6]

Digit recognition - etalons means vs. perceptron

etalon for 1
etalon for 0

etalon for 1

etalon for 4

etalon for 5

etalon for 7

etalon for 5

etalon for 8
etalon for 9
etalon for 6

Figures from [6]

Notes
"Prototypes" resulting from the perceptron algorithm are harder to interpret because they are not means instead, they are optimized for separating the classes.

What if not lin separable?

Dimension lifting

$$
\mathbf{x}=\left[x, x^{2}\right]^{\top}
$$

Dimension lifting, $\mathbf{x}=\left[x, x^{2}\right]^{\top}$

Performance comparison, parameters fixed

$30 / 35$

Why there some errors in perceptron results? We said zero error on training set.

Learning and decision

Learning stage - learning models/function/parameters from data.
Decision stage - decide about a query \vec{x}.
What to learn?

- Generative model : Learn $P(\vec{x}, s)$. Decide by computing $P(s \mid \vec{x})$.
- Discriminative model : Learn $P(s \mid \vec{x})$
- Discriminant function : Learn $g(\vec{x})$ which maps \vec{x} directly into class labels.

Notes
Generative models because by sampling from them it is possible to generate synthetic data points \vec{x}. For the discriminative model one can consider, e.g. logistic function:

$$
f(x)=\frac{1}{1+e^{-k\left(x-x_{0}\right)}}
$$

Accuracy vs precision

(b)

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

Accuracy: how close (is your model) to the truth. Precision: how consistent/stable In German:

- Accuracy: Richtigkeit
- Precision: Präzision
- Both together: Genauigkeit

In Czech:

- Accuracy: Věrnost, přesnost.
- Precition: Rozptyl,

Accuracy vs precision

Reference value

https://en.wikipedia.org/wiki/Accuracy_and_precision
Notes
Accuracy: how close (is your model) to the truth. Precision: how consistent/stable.
Think about terms bias and error. I

References I

Further reading: Chapter 18 of [5], or chapter 4 of [1], or chapter 5 of [3]. Many figures created with the help of [4]. You may also play with demo functions from [6].
[1] Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer Science+Bussiness Media, New York, NY, 2006.
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/
Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.
[2] Yen-Chi Chen.
Lecture 7: Density estimation: k-nearest neighbor and basis approach.
Lecture within STAT 425: Introduction to Nonparametric Statistics, 2018.
http://faculty.washington.edu/yenchic/18W_425/Lec7_knn_basis.pdf.
[3] Richard O. Duda, Peter E. Hart, and David G. Stork.
Pattern Classification.
John Wiley \& Sons, 2nd edition, 2001.

References II

[4] Votjěch Franc and Václav Hlaváč.
Statistical pattern recognition toolbox.
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html.
[5] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.
[6] Tomáś Svoboda, Jan Kybic, and Hlaváč Václav.
Image Processing, Analysis and Machine Vision - A MATLAB Companion.
Thomson, Toronto, Canada, $1^{\text {st }}$ edition, September 2007.
http://visionbook.felk.cvut.cz/.

[^0]: ${ }^{1}$ Figs from [1]

