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Example: Digit recognition/classification

07123456788

» Input: 8-bit image 13 x 13, pixel intensities 0 — 255. (0 means black, 255 means white)
» Output: Digit 0 — 9. Decision about the class, classification.

» Features: Pixel intensities ...
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Classification as a special case of statistical decision theory

> Attribute vector X = [x1,xp,...]": pixels 1, 2, ....
> State set S = decision set D = {0,1,...9}.
> State = actual class, Decision = recognized class

» Loss function:
0, d=s
/(s,d)—{L d+s

3 (X) = arg mdin Z I(s,d) P(s|X) = arg m(jn Z P(s|x)

S 0if d=s s#d

Obviously Y. P(s|X) =1, then:

P(d|%) + > P(s[%) =1
s#d
Inserting into above:

*(X) = arg min (1 - P(d|x)> = argmax P(d|X)
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Bayes classification in practice; P(s|x) =7
» Usually, we are not given P(s|X)
P It has to be estimated from already classified examples — training data
» For discrete X, training examples (X1, s1), (X2, s2), ... (X, 51)
> every (X}, s) is drawn independently from P(X,s), i.e. sample i does not depend on
1, ,i—1
> so-called i.i.d (independent, identically distributed) multiset
> Without knowing anything about the distribution, a non-parametric estimate:

P(X,s)  # examples where X; =X and s; = s

P(s|X) = ~
(s[X) P(X) # examples where X; = X

» Hard in practice:

> To reliably estimate P(s|X), the number of examples grows
exponentially with the number of elements of X.

> e.g. with the number of pixels in images
> curse of dimensionality
» denominator often 0
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How many images?

0723456788

8-bit image 13 x 13, pixel intensities 0 — 255. (0 means black, 255 means white)
A:

mO oW

169256

256169

1313

169 x 256
different quantity
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Naive Bayes classification

» For efficient classification we must thus rely on additional assumptions.

» In the exceptional case of statistical independence between components of X for each
class s it holds

P(X|s) = P(x[1]]s) - P(x[2]|s) - - ..

» Use simple Bayes law and maximize:

. P(X|s)P(s)  P(s)
PR =" = PR

P(x[1]ls) - P(x[2]]s) - ... =

» No combinatorial curse in estimating P(s) and P(x[i]|s) separately for each i and s.
» No need to estimate P(X). (Why?)

» P(s) may be provided apriori.

> naive = when used despite statistical dependence
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Example: Digit recognition/classification

071236456788

» Input: 8-bit image 13 x 13, pixel intensities 0 — 255. (0 means black, 255 means white)
» Output: Digit 0 — 9. Decision about the class, classification.
P Features: Pixel intensities ...
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Example: Digit recognition/classification

071236456788

» Input: 8-bit image 13 x 13, pixel intensities 0 — 255. (0 means black, 255 means white)
» Output: Digit 0 — 9. Decision about the class, classification.
P Features: Pixel intensities ...
Collect data , ...
» P(X). What is the dimension of X? How many possible images?
» Learn P(X|s) per each class (digit).
» Classify s* = argmax, P(s|X).
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From images to X
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Conditional probabilities, likelihoods

» Apriori digit probabilities P(s)
» Likelihoods for pixels. P(x;c = li|sk)
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Conditional likelihoods
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Unseen events

0123456788

Images 13 x 13, intensities 0 — 255, 100 exemplars per each class.
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Unseen event, how to decide?

A new (not in training) query image with xg o = 101. How would you classify?

P(x0,0 = 101 | 5;) = 0, for all classes
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Laplace smoothing ( “additive smoothing”)

P(x) = count(x)
total samples

Problem: count(x) =0

13/26



Laplace smoothing ( “additive smoothing”)

P(x) = count(x)
total samples

Problem: count(x) =0
Pretend you see the (any) sample one more time.

PLap(x) =
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Laplace smoothing ( “additive smoothing”)

count
P(x) = Ut
total samples
Problem: count(x) =0
Pretend you see the (any) sample one more time.

c(x)+1
Paet) = 5 16+ 1)
PLap(x) = 7\5):3 |+XT

where N is the number of (total) observations; |X| is the number of possible values X can
take (cardinality).
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Piap(x) =7

Observation:

01010,

What is P ap(X = red) and P ap(X = blue)?

oo w>»

: PLap(X =red) = 7/10, P ap(X = blue) =3/10
Piap(X =red) =2/3, PLap(X = blue) =1/3
Piap(X =red) = 3/5, PLap(X = blue) =2/5
None of the above.
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Laplace smoothing - as a hyperparameter k
Pretend you see every sample k extra times:

c(x)+ k
Piap(X) = =50
D le(x) + 4]
c(x)+ k
P = 7
AP () = kX
For conditional, smooth each condition independently
c(x,s)+ k
PLAP(X|S) = ( )

c(s) + k| X|
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Laplace smoothing - as a hyperparameter k
Pretend you see every sample k extra times:

c(x)+ k
Piap(X) = =50
D le(x) + 4]
c(x)+ k
P = 7
Lar () = N kX
For conditional, smooth each condition independently
c(x,s) + k
P =27 -
Lap (x]s) c(s) + k| X|

What is | X| equal to?
A: 10
B: 2

C: 256
D

: None of the above
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What is the right d

1.2

egree of polynomial (hyperparameter

of a regressor)

points

1: 0.00211
2:0.00193
——3:0.00024
——4: 0.00000
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Generalization and overfiting

» Data: training, validating, testing . Wanted classifier performs well on what data?
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Generalization and overfiting

» Data: training, validating, testing . Wanted classifier performs well on what data?

» OQverfitting: too close to training, poor on testing.
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Training and testing

Data labeled instances.

» Training set

» Held-out (validation) set
P> Testing set.

Features : Attribute-value pairs.
Learning cycle:

> Learn parameters (e.g. probabilities) on training set.

» Tune hyperparameters on held-out (validation) set.

» Evaluate performance on testing set.

PONOORUNQD
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Matching table for test set
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Precision and Recall, and . ..

Consider digit detection (is there a digit?) or SPAM/HAM = cleventctemens |

Classiflcatlon . false negatives true negatives
° o ° o o

Recall
» How many relevant items are selected?
> Are we missing some items?

> Also called: True positive rate (TPR), sensitivity, hit
rate ...

Precision

» How many selected items are relevant?

selected elements

> Also called: Positive predictive value

How many selected elevant

How many relev
.. items are relevant? items are selected?
False positive rate (FPR) T t

» Probability of false alarm Precision =

Recall = ——

By Walber - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36926283
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ROC — Receiver operating characteristics curve

ROC curve
TP TP
* PR=p =T
il FP FP
FPR= — = ——
o 8 N FP+4+TN
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FPR - False positive rate
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Discriminant functions (X, s)

Pentagon data

s* = argmax f(X,s)
seS

" - . *
Conditional likelihoods: N (X|ii, s) 5% x X oo x
0.5} x XX Xx f:;:;*s&
L el (¥ i) (E - ) o2
QW’25‘1/2 exp 2 X = Hs s \X = Us . 0% .

Bayes: s K %%
B RRON
s* = argmax P(s|X) = M b
sES P(X)
135 = o5 0 05 1 15
Discriminant function:
1

R 1. 1 =
s* = argmax f(X,s) = P(s)ﬁ exp{—E(x — ,us)TZs 1(x — fig)}
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Towards linear classifier, geometrical thoughts . ..

1

f(Xu 5) = P(S)27T|zs|1/2

1. . e -
exp{—5 (% — i) T 1K — )}
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Product of many small numbers . ..

P(X|s)P(s) _ P(s)
P(X) P(X)

P(s|%) = P(x[1]s) - P(x[2]ls) - ...

P(X) not needed, ... ...

24 /26



Product of many small numbers . ..

P(X[s)P(s) _ P(s)
P(X) P(X)

P(s|X) = P(x[1]]s) - P(x[2]|s) - - ..
P(X) not needed, ... ...

log(P(x[1]|s)P(x[2]]s) - - - ) = log(P(x[1]|s)) + log(P(x[2]]s)) + - --
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Further reading: Chapter 13 and 14 of [4]. Books [1] and [2] are classical textbooks in the
field of pattern recognition and machine learning. This lecture has been also inspired by the

21st lecture of CS 188 at http://ai.berkeley.edu (e.g., Laplace smoothing). Many Matlab
figures created with the help of [3].
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