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thanks to, Daniel Novák and Filip Železný
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(Re-)introduction uncertainty/probability

I Markov Decision Processes (MDP) – uncertainty about outcome of actions

I Now: uncertainty may be also associated with states
I Different states may have different prior probabilities.
I The states s ∈ S may not be directly observable .
I They need to be inferred from features x ∈ X .

I This is addressed by the rules of probability (such as Bayes theorem) and leads on to
I Bayesian classification
I Bayesian decision making
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Probability example: Picking fruits

I red box: 2 apples, 6 oranges

I blue box: 3 apples, 1 orange

I Scenario: Pick a box—say red box in 40% cases—, then pick a fruit at random.
I (Frequent) questions:

I What is the overall probability that the selection procedure will pick an apple?
I Given that we have chosen an orange, what is the probability that the box we chose was the

blue one?

Example from Chapter 1.2 [1]

3 / 24



Picking fruits. What is the probability that . . . ?

I red box: 2 apples, 6 oranges

I blue box: 3 apples, 1 orange

Procedure: Pick a box (say red box in 40% cases), then pick a fruit at random.
What is the probability that the selection procedure will pick an apple?

A: 11/20

B: 6/8

C: 1/2

D: Different value.

4 / 24



Picking fruits. What is the probability that . . . ?

I red box: 2 apples, 6 oranges

I blue box: 3 apples, 1 orange

Procedure: Pick a box (say red box in 40% cases), then pick a fruit at random.
Given that we have chosen an orange, what is the probability that the box we chose was the
blue one?

A: 1/4

B: 3/5

C: 1/3

D: Different value.
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Rules of probability and notation I

I random variables X ,Y

I xi where i = 1, ...,M – values taken by variable X

I yj where j = 1, ..., L – values taken by variable Y

I P(X = xi ,Y = yi ) – probability that X takes the value xi and Y takes yi –
joint probability

I P(X = xi ) – probability that X takes the value xi
I Sum rule of probability :

I P(X = xi ) =
∑L

j=1 P(X = xi ,Y = yj)

I P(X = xi ) is sometimes called marginal probability – obtained by marginalizing / summing
out the other variables

I general rule, compact notation: P(X ) =
∑

Y P(X ,Y )
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Rules of probability and notation II

I Conditional probability : P(Y = yj |X = xi )

I Product rule of probability :

I P(X = xi ,Y = yi ) = P(Y = yj |X = xi )P(X = xi )
I general rule, compact notation: P(X ,Y ) = P(Y |X )P(X )

I Bayes theorem :

I from P(X ,Y ) = P(Y ,X ) and product rule

P(Y |X ) =
P(X |Y )P(Y )

P(X )

posterior =
likelihood × prior

evidence

I Independence : P(X ,Y ) = P(X )P(Y )

6 / 24



Rules of probability and notation II

I Conditional probability : P(Y = yj |X = xi )

I Product rule of probability :

I P(X = xi ,Y = yi ) = P(Y = yj |X = xi )P(X = xi )
I general rule, compact notation: P(X ,Y ) = P(Y |X )P(X )

I Bayes theorem :

I from P(X ,Y ) = P(Y ,X ) and product rule

P(Y |X ) =
P(X |Y )P(Y )

P(X )

posterior =
likelihood × prior

evidence

I Independence : P(X ,Y ) = P(X )P(Y )

6 / 24



Boxes and Fruits: posterior? likelihood? prior? evidence?

posterior =
likelihood × prior

evidence

Connect with lines:

I posterior
after observation

I likelihood
of an observation

I prior
before observation

I evidence
total observations

I P(B)

I P(F )

I P(F | B)

I P(B | F )
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Decision example: Insure or not? (from late 1980s) [4]

A doctor calls: “Your HIV test is positive, 999/1000 you will die in 10 years. I’m sorry . . . ”.
Insurance company does not want to insure a married couple.

I Was the doctor right?

I Was the insurance company rational?

What the doctor (and the company) knew:

I HIV test falsely positive only in 1 case out of 1000.
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Decision example: Insure or not? (from late 1980s) [4]
A doctor calls: “Your HIV test is positive, 999/1000 you will die in 10 years. I’m sorry . . . ”.
Insurance company does not want to insure a married couple.

I Was the doctor right?

I Was the insurance company rational?

What the doctor (and the company) knew:

I HIV test falsely positive only in 1 case out of 1000.

What is the probability the man is infected?

A: 1
1000

B: 999
1000

C: Don’t know yet, more info needed, but less than 1
2

D: Don’t know yet, more info needed, but more than 1
2
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Decision example: Insure or not? (from late 1980s) [4]

A doctor calls: “Your HIV test is positive, 999/1000 you will die in 10 years. I’m sorry . . . ”.
Insurance company does not want to insure a married couple.

I Was the doctor right?

I Was the insurance company rational?

What the doctor (and the company) knew:

I HIV test falsely positive only in 1 case out of 1000.

I Heterosexual male, has family, no drugs, no risk behavior.
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Decision: guilty or not? (people of CA vs Collins, 1968) [4]
I Robbery, LA 1964, fuzzy evidence of the offenders:

I female, around 65 kg
I wearing something dark
I hair of light color, between light and dark blond, in

a ponytail

I At the same time, additional evidence close to the
crime scene:

I loud scream, yelling, looking at the this direction
. . .

I a woman sitting into a yellow car
I car starts immediately and passes close to the

additional witness
I a black man with beard and moustache was driving

I No more evidence

I Testimony of both the victim and the witness not
unambiguous (didn’t recognize suspects)

I Still, the suspects were sentenced to jail.
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Classification example: What’s the fish?

I Factory for fish processing

I 2 classes s1,2:
I salmon
I sea bass

I Features ~x : length, width, lightness etc.
from a camera
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Fish – classification using probability

posterior =
likelihood × prior

evidence

I Notation for classification problem
I Classes sj ∈ S (e.g., salmon, sea bass)
I Features xi ∈ X or feature vectors (~xi ) (also called attributes)

I Optimal classification of ~x :
δ∗(~x) = arg max

j
P(sj |~x)

I We thus choose the most probable class for a given feature vector .
I Both likelihood and prior are taken into account – recall Bayes rule:

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)

I Can we do (classify) better?
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Bayes classification in practice
I Usually, we are not given P(s|~x)

I It has to be estimated from already classified examples – training data
I For discrete ~x , training examples (~x1, s1), (~x2, s2), . . . (~x l , sl)

I so-called i.i.d (independent, identically distributed) multiset
I every (~xi , s) is drawn independently from P(~x , s)

I Without knowing anything about the distribution, a non-parametric estimate:

P(s|~x) ≈ # examples where ~x i = ~x and si = s

# examples where ~x i = ~x

I Hard in practice:
I To reliably estimate P(s|~x), the number of examples grows exponentially with the number of

elements of ~x .
I e.g. with the number of pixels in images
I curse of dimensionality
I denominator often 0
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Näıve Bayes classification
I For efficient classification we must thus rely on additional assumptions.

I In the exceptional case of statistical independence between ~x components for each class
s it holds

P(~x |s) = P(x [1]|s) · P(x [2]|s) · . . .

I Use simple Bayes law and maximize:

P(s|~x) =
P(~x |s)P(s)

P(~x)
=

P(s)

P(~x)
P(x [1]|s) · P(x [2]|s) · . . . =

I No combinatorial curse in estimating P(s) and P(x [i ]|s) separately for each i and s.

I No need to estimate P(~x). (Why?)

I P(s) may be provided apriori.

I näıve = when used despite statistical dependence
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Decision making under uncertainty
I An important feature of intelligent systems

I make the best possible decision
I in uncertain conditions

I Example: Take a tram OR subway from A to B?
I Tram: timetables imply a quicker route, but adherence uncertain.
I Subway: longer route, but adherence almost certain.

I Example: where to route a letter with this ZIP?

I 15700? 15706? 15200? 15206?

I What is the optimal decision ?

I Both examples fall into the same framework.
14 / 24
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Example: What to cook for a dinner [3]

I Wife coming back from work. Husband: what to cook for dinner?

I 3 dishes ( decisions ) in his repertoire:
I nothing . . . don’t bother cooking ⇒ no work but makes wife upset
I pizza . . . microwave a frozen pizza ⇒ not much work but won’t impress
I g.T.c. . . . general Tso’s chicken ⇒ will make her day, but very laborious.

I Hassle incurred by the individual options depends wife’s feeling

I For each of the 9 possible situation (3 possible decisions × 3 possible states) the hassle is
quantified by a loss function l(d , s):

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

Wife’s state of mind is an uncertain state.
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Example (cont’d), State uncertain, . . .

I Husband’s experiment. He tells her he accidentally overtaped their wedding video and
observes her reaction.

I Anticipates 4 possible reactions:
I mild . . . all right, we keep our memories.
I irritated . . . how many times do I have to tell you....
I upset . . . Why did I marry this guy?
I alarming . . . silence

I The reaction is a measurable attribute ( “feature” ) of the mind state.

I From experience, the husband knows how individual reactions are probable in each state
of mind; this is captured by the joint distribution P(x , s) .

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03
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Decision strategy
I Decision strategy : a rule selecting a decision for any given value of the measured

attribute(s).
I i.e. function d = δ(x).
I Example of husband’s possible strategies:

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.
δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.
δ4(x) = nothing nothing nothing nothing

I How many strategies?
I How to define which strategy is best? How to sort them by quality?
I Define the risk of a strategy as a mean (expected) loss value .

r(δ) =
∑
x

∑
s

l(s, δ(x))P(x , s)
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Calculating r(δ) =
∑

x

∑
s l(s, δ(x))P(x , s)

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.
δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.

...
...

...
...

...

Do we need to evaluate all possible strategies? P(x , s) = P(s|x)P(x)

18 / 24



Calculating r(δ) =
∑

x

∑
s l(s, δ(x))P(x , s)

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.
δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.

...
...

...
...

...

Do we need to evaluate all possible strategies? P(x , s) = P(s|x)P(x)

18 / 24



Calculating r(δ) =
∑

x

∑
s l(s, δ(x))P(x , s)

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.
δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.

...
...

...
...

...

Do we need to evaluate all possible strategies? P(x , s) = P(s|x)P(x)

18 / 24



Calculating r(δ) =
∑

x

∑
s l(s, δ(x))P(x , s)

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.
δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.

...
...

...
...

...

Do we need to evaluate all possible strategies? P(x , s) = P(s|x)P(x)

18 / 24



Calculating r(δ) =
∑

x

∑
s l(s, δ(x))P(x , s)

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.
δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.

...
...

...
...

...

Do we need to evaluate all possible strategies? P(x , s) = P(s|x)P(x)

18 / 24



Bayes optimal strategy
I The Bayes optimal strategy : one minimizing mean risk.

δ∗ = arg min
δ

r(δ)

I From P(x , s) = P(s|x)P(x) (Bayes rule), we have

r(δ) =
∑
x

∑
s

l(s, δ(x))P(x , s) =
∑
s

∑
x

l(s, δ(x))P(s|x)P(x)

=
∑
x

P(x)
∑
s

l(s, δ(x))P(s|x)︸ ︷︷ ︸
Conditional risk

I The optimal strategy is obtained by minimizing the conditional risk separately for each x :

δ∗(x) = arg min
d

∑
s

l(s, d)P(s|x)
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Optimal strategy: δ∗(x) = arg mind

∑
s l(s, d)P(s|x)

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ∗(x) = ?? ?? ?? ??
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Statistical decision making: wrapping up

I Given:
I A set of possible states : S
I A set of possible decisions : D
I A loss function l : D × S → <
I The range X of the attribute
I Distribution P(x , s), x ∈ X , s ∈ S.

I Define:
I Strategy : function δ : X → D
I Risk of strategy δ : r(δ) =

∑
x

∑
s l(s, δ(x))P(x , s)

I Bayes problem:
I Goal: find the optimal strategy δ∗ = arg minδ∈∆ r(δ)
I Solution: δ∗(x) = arg mind

∑
s l(s, d)P(s|x)
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A special case - Bayesian classification
I Bayesian classification is a special case of statistical decision theory:

I Attribute vector ~x = (x1, x2, . . . ): pixels 1, 2, . . . .
I State set S = decision set D = {0, 1, . . . 9}.
I State = actual class, Decision = recognized class
I Loss function:

l(s, d) =

{
0, d = s
1, d 6= s

δ∗(~x) = arg min
d

∑
s

l(s, d)︸ ︷︷ ︸
0 if d=s

P(s|~x) = arg min
d

∑
s 6=d

P(s|~x)

Obviously
∑

s P(s|~x) = 1, then:

P(d |~x) +
∑
s 6=d

P(s|~x) = 1

Inserting into above:

δ∗(~x) = arg min
d

[1− P(d |~x)] = arg max
d

P(d |~x)
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Slovart, 2009.

[6] Stuart Russell and Peter Norvig.

Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2010.

http://aima.cs.berkeley.edu/.

24 / 24

http://aima.cs.berkeley.edu/

	Introduction
	Real life examples
	Entering classification realm
	Bayesian decision
	Problems with Bayesian decision making

	Deciding by minimizing risk/loss
	References

