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Games, man vs. algorithm

» Deep Blue

> Alpha Go

» Deep Stack

» Why Games, actually?
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Notes

Please note, the hyperlinks at the main slides are not active in the slides with notes. Hyperlinks within the notes

should be active, though.


https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/AlphaGo
https://arxiv.org/pdf/1701.01724.pdf

Games, man vs. algorithm

» Deep Blue

> Alpha Go

» Deep Stack

» Why Games, actually?

Games are interesting for Al because they are hard (to solve).
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Notes

Please note, the hyperlinks at the main slides are not active in the slides with notes. Hyperlinks within the notes

should be active, though.


https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/AlphaGo
https://arxiv.org/pdf/1701.01724.pdf

More: Adversarial Learning

Video: Adversing visual segmentation
Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras, video at YT: https://youtu.be/KvdZmtVguOo
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e Fooling Tesla autopilot by adversarial attack:


http://cmp.felk.cvut.cz/cmp/courses/B3B33KUI/videos/advers-pedestrians.avi
http://cyber.felk.cvut.cz/vras
https://youtu.be/KvdZmtVguOo
https://www.techradar.com/news/researchers-tricked-a-tesla-model-s-into-speeding-with-a-piece-of-tape-how-could-hackers-cheat-our-cars-in-the-future

Elements of the game

> sp: The initial state O O
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Notes
Defining a game as a kind of search problem:
Considering the notation, we are making slight transition from [1] to [2].

e Players: P ={1,2,..., N} (often just N = 2)
e Transition functions: S x A — S.

e Terminal utilities: S x P — R. (R - as a Reward)

What are we loking for? A strategy/policy S — A


https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
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> sp: The initial state O O
» PLAYER(S). Which player has to move in s. O 9.0,
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| 4

TERMINAL-UTILITY (s, p). What is the prize? Examples for
some games ...

https://commons.wikimedia.org/wiki/File:

Tic-tac-toe.5.png
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Terminal utilitity: Zero-Sum and General games

> Zero-sum: players have opposite utilities (values)

» Zero-sum: playing against opponent
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Notes
Most common games—such as chess—have these properties:

e two-player
e turn-taking
e deterministic with perfect information (a.k.a. deterministic, fully observable environments)

In some games, there is imperfect information (evironment is not fully observable). E.g., poker — no access to

what cards opponents hold.



Terminal utilitity: Zero-Sum and General games

> Zero-sum: players have opposite utilities (values)
P> Zero-sum: playing against opponent
» General game: independent utilities

> General game: cooperations, competition, ...
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Notes
Most common games—such as chess—have these properties:

e two-player
e turn-taking
e deterministic with perfect information (a.k.a. deterministic, fully observable environments)

In some games, there is imperfect information (evironment is not fully observable). E.g., poker — no access to

what cards opponents hold.



Game Tree(s)

Me (x)
thinking
Me playing
Opp (o) X X X . .
thinking X X %
Opp playing \
X|0 X| |o] [X
Me (x) )
thinking
Me playing
X[o[X| [x|o x|o
O_pp .(o) X X
thinking
Opp playing
terminal X[O[X]| |X|O|X| [X|O]|X
states O|X| |O[0|X X
o x|x]o] [x]o]o
-1 0 +1
TERMINAL-UTILITY (s, X) 6/25
Notes

Init state, ACTIONS function, and RESULT function defines game tree.

Note: game tree as opposed to search tree. Game tree are all possible evolutions of the game.
(With standard search, we similarly had state space graph vs. search tree.)

Note: Tic-tac-toe actually is literally zero-sum (at least in our slides, winner: 1, loser: -1, draw: both 0). Unlike

chess (sum is 1)... Conceptually, it is the same.



State Value V/(s)

V/(s) — value V of a state s : The best utility achievable from this state.

V(s)= max V(s)

s’€children(s)
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Notes
Think about the State Value. It is a theoretical construct, definition. Depending on the problem, there may be
various computational algorithms.
In a game, what State Values are known? Usually, only terminal states.

Think, for a moment, you are the only player. You can control every step. How would you compute the V(s) for
a given state s?
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What is the Value of the root V(A)?

%

b1 b2 b3
8
V(s) - value V of astate s : The best utlllty achlevable from this state.

A, B, C, D - states of the game. | begin, values represent values

A: V(A)=6 of terminal states, more is better for me - think about the (my)
B: V(A)=3 money prize. Assume (strictly) rational players.
C: V(A) =2
D: V(A) =16
8/25
Notes

The correct answer is A: V(A) = 6.

Important is that we need to evaluate from the bottom and then go up.



Two-ply game: max for me, min for the opponent.

/AN
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Notes

One move consists of two plies (half-moves).

I'm the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.
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Two-ply game: max for me, min for the opponent.

3 12 8 2 4 16 14 5 2

ay = arg max RESULT(state = A, a)
acACTIONS(state=A)
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Zero-Sum game: max for me, min for the opponent.

MAX (x)
MIN (0) [ X X x X X
F\ X X X
(o] X[ |0 X
MAX (x) o | | | ‘
X|O[X X|O[X X|0|X
TERMINAL o[X] [0]o[X X
[o] X|X|0| [X|O|O
Utility -1 0 +1
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Notes

Max step: | want to maximize my outcome.

Min step: Opponent wants to maximize his outcome which is equivalent to minimizing my outcome.
UTILITY of a state is here the same as VALUE of a state
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Max step: | want to maximize my outcome.
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Minimax algorithm

function MINIMAX(state) returns an action

function MIN-VALUE(state) returns a utility value v

function MAX-VALUE(state) returns a utility value v
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A two ply game, down to terminal and back again ...

function MINIMAX(s) returns a
argmax MINVAL(RES(Ss, a))
a€Actions(s)
end function
function MINVAL(s) returns v
if TERMINAL(s) then UTIL(s)
end if
V < 00
for all AcTIONS(s) do
v < min(v, MAXVAL(RES(s, a)))
end for
end function
function MAXVAL(s) returns v
if TERMINAL(s) then UTIL(s)
end if
V < —00
for all AcTIiONS(S) do
v < max(v, MINVAL(RES(s, a)))
end for
end function

MAX

MIN

12/25

Notes
Before going to the animation on the next slide, try to follow the algorithm by a pencil and paper.



A two ply game, recursive run
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Notes

Efficiency/complexity:
o Exhaustive DFS
e Time O(b™)
e Space O(bm)

Chess b~ 35,m~ 100 ...
Note on implementation: Natural implementation of this? Recursion.... Similar to DFS, but there you could

circumvent it by using stack for the frontier. Here you have to really dive deep using recursive calls.
e We cannot go(dive) to the end

e Can we save something?
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e We cannot go(dive) to the end

e Can we save something?
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a-f prunnig — How much can we save?

original: Time: O(b™)

> how to consider next actions/moves (in what order)?

> perfect ordering?
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It is clear that ordering of child nodes matters. It is depth-first search. Picking useless action first may be a huge
waste of time—a complete subtree beneath the current node will be explored.
Draw a tree of -3 search in case of perferct ordering. Effective branching factor becomes v/b instead of b which

effectively doubles the depth that can be searched: Time: O(b™/?)



a-f3 saving, sketch ...
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Notes




function ALPHA-BETA-SEARCH(state) returns an action
v < MAX-VALUE(state, & = —0c0, 8 = o0)
return action corresponding to v

end function

18/25

Notes
Take the tree from the previous slide and try to go step-by-step, watch «, 8 and v
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V < —00
for all ACTIONS(state) do
v + max(v, MIN-VALUE(RESULT(state,a),a, §))
if v> g return v
a < max(a, v)
end for
end function
function MIN-VALUE(state, «, 3) returns a utility value v
if TERMINAL-TEST(state) return UTILITY (state)
V < o0
for all AcTIONS(state) do
v < min(v, MAX-VALUE(RESULT(state,a),«, 3))
if v < areturn v
B <+ min(8,v)
end for
end function
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Notes
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Recall: lterative deepening DFS (ID-DFS)

» Start with maxdepth = 1

» Perform DFS with limited depth. Report success or failure.

> If failure, forget everything, increase maxdepth and repeat DFS.
The "wasting” of resources is not too bad. Recall:

> Most nodes are at the deepest levels.

> Asymptotic complexity unchanged.

Bonus for a-8 pruning: previous “shallower” iterations can be reused for node ordering.

19/25
Notes
a-f3 pruning is good. Still, in chess, for example, there is no way we can compute till the end.
Time is limited. We need to respond within a certain amount of time.
Possible solution: iterative deepening search. If | can’t complete the computation for the current depth, | can
use the previous shallower one that finished (also called anytime algorithm).




Imperfect but real-time decisions: iterative deepening

H-MINIMAX(S, d) =

20/25

Notes
Even with perfect ordering, a-8 pruning is O(b’"/2). It doubles the depth we can search. Often, we still cannot
go the very bottom of the search tree.

One problem left: can't compute till the end and need to cut off. Need for Evaluation function.
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Notes
Even with perfect ordering, a-8 pruning is O(b’"/2). It doubles the depth we can search. Often, we still cannot
go the very bottom of the search tree.
One problem left: can't compute till the end and need to cut off. Need for Evaluation function.




Cutting off search and evaluation functions

Replace

if TERMINAL-TEST(s) then return TERMINAL-UTILITY (S)
with:

if CUTOFF-TEST(s,d) then return EVAL(s)

Historical note: cutting search off earlier and use of heuristic evaluation functions proposed by
Claude Shannon in Programming a Computer for Playing Chess (1950).

21/25
Notes
Cutting depends on d only, why we need s as the input parameter?




EVAL(s) — Evaluation functions

(Estimate of ) State value for non-terminal states.
We need an easy-to-compute function correlated with “chance of winning”. For chess:

» fi(s) Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)
» f(s) Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

» Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

» fi(s) =--- We can create many. How to combine them?

22/25

Notes
For many problems it is not so easy to find/construct a proper function. We may try more functions and combine
them conveniently.
fi(s) = number of white pawns — number of black pawns

Weighted sum:
EVAL(s) = wafi(s) + wafa(s) + - - - wafa(s)

How to tune weights w;?
e Look (read) into (abundant) chess literature.
e Ask experts.
e Machine analysis of historical records - machine learning .
e We will talk about learning linear classifiers, weights, later in this course.

e New: have the computer play against itself and learn everything himself. See AlphaZero (2017) - learned
to play chess, Go, and shogi like this, achieving superhuman level of play within 24 hours.

If we do not know the individual functions, is there a way for creating them? Deep Convolution Nets! Yeah!

How to get training data for supervised learning? More later.
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Weighted sum:
EVAL(s) = wafi(s) + wafa(s) + - - - wafa(s)

How to tune weights w;?
e Look (read) into (abundant) chess literature.
e Ask experts.
e Machine analysis of historical records - machine learning .
e We will talk about learning linear classifiers, weights, later in this course.

e New: have the computer play against itself and learn everything himself. See AlphaZero (2017) - learned
to play chess, Go, and shogi like this, achieving superhuman level of play within 24 hours.

If we do not know the individual functions, is there a way for creating them? Deep Convolution Nets! Yeah!

How to get training data for supervised learning? More later.



EVAL(s) — Problems
What if something important happens just after the cut — in the next ply?

(a) White to move (b) White to move

Additional improvements:
> “Killer moves" —capturing opponent'’s pieces, check etc.—should be considered first.

» Quiescence search — EVAL function should be applied only once things calm down.

During capturing of pieces, depth should be locally increased.
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Cutting search at a wrong moment — im-
portant moves/changes are beyond horizon.
Think abou the two situations — states s,, sp
on the right. They are almost indentical. The
only difference is the position of white rook,
see bottom right corner. Very likely:

EvAL(s,) &~ EVAL(sp)

for many possible EVAL functions. (@) White 0 move (b) White 0 move

A good heuristics — which moves to be considered first — may help a lot. Remember perfect ordering from -3

pruning?



Horizon effect

Pushing unavoidable loss deeper in tree by a
delaying tactics. We know it is useless but
does the machine?

See the situation on right. Black is on move,
her bishop is surely doomed. However, the in-
evitable loss can be postponed by moving her
pawns and checking the white king. Depend-
ing on the searchable depth this may put the
loss over the horizon and moving pawns may
look promising.

o0 N N Ut AW N =
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The horizon effect is difficult to mitigate. Singular extension may help. It is a move that is clearly better

than others at this position. Once discovered in the search tree, remember it and use whenever appropriate.



Computer play vs. grandmaster play

» Computers are better since 1997 (Deep Blue defeating Garry Kasparov).
» The way they play is still very different: "dumb”, relying on “brute force”.

» Deep Blue examined 200M positions per second.
» In some cases, depth of search was 40 ply.

» Grandmasters do not excel in being able to compute very deep—many moves ahead.

» They play based on experience: super-effective pruning and evaluation functions.
> They consider only 2 to 3 moves in most positions (branching factor).
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