Adversarial Search

Tom3as Svoboda and Maté&j Hoffmann

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

March 9, 2021

1/25

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

Games, man vs. algorithm

» Deep Blue

> Alpha Go

» Deep Stack

» Why Games, actually?

2/25

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/AlphaGo
https://arxiv.org/pdf/1701.01724.pdf

Games, man vs. algorithm

» Deep Blue

> Alpha Go

» Deep Stack

» Why Games, actually?

Games are interesting for Al because they are hard (to solve).

2/25

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/AlphaGo
https://arxiv.org/pdf/1701.01724.pdf

Video: Adversing visual segmentation
Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras, video at YT: https://youtu.be/KvdZmtVguOo

http://cmp.felk.cvut.cz/cmp/courses/B3B33KUI/videos/advers-pedestrians.avi
http://cyber.felk.cvut.cz/vras
https://youtu.be/KvdZmtVguOo

Elements of the game

> sp: The initial state O O

4/25

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

> sp: The initial state O O OO
» PLAYER(s). Which player has to move in s. O 0.0
0000
OXO
O
O
O

4/25

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

> sp: The initial state O O OO
» PLAYER(s). Which player has to move in s. O 0.0
» ACTIONS(s). What are the legal moves? 0O 8000
O
= O

4/25

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

> sp: The initial state O O OO
» PLAYER(s). Which player has to move in s. O 0.0
» ACTIONS(s). What are the legal moves? 0O 8000
» RESULT(s, a). Transition, result of a move. O
= O

4/25

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

vVvyVvYyVvyy

so: The initial state

PLAYER(s). Which player has to move in s.

ACTIONS(s). What are the legal moves?
RESULT(s, a). Transition, result of a move.
TERMINAL-TEST(s). Game over?

@,
@,

9.0,
OO0
O

O
O
O

4/25

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

> sp: The initial state O O
» PLAYER(S). Which player has to move in s. O 9.0,
» ACTIONS(s). What are the legal moves? O 8OOO
» RESULT(s, a). Transition, result of a move. O

» TERMINAL-TEST(s). Game over? O

| 4

O

TERMINAL-UTILITY (s, p). What is the prize? Examples for
some games ...

https://commons.wikimedia.org/wiki/File:

Tic-tac-toe5.png

4/25

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Terminal utilitity: Zero-Sum and General games

> Zero-sum: players have opposite utilities (values)

» Zero-sum: playing against opponent

5/25

Terminal utilitity: Zero-Sum and General games

> Zero-sum: players have opposite utilities (values)
» Zero-sum: playing against opponent
» General game: independent utilities

> General game: cooperations, competition, ...

5/25

Game Tree(s)

Me (x)
thinking
Me playing
Opp (o) X X X . .
thinking X X <
Opp playing F\
X|0 X| |o] [X .
Me (x) o)
thinking
Me playing
Opp (0) X[o[X| [x|o x|o
thinking X X
Opp playing
terminal X[O[X]| |X|O|X| [X|O]|X
states O|X| |O[0|X X
o x[x]o] [x]olo
-1 0 +1

TERMINAL-UTILITY(s, X) 6/25

State Value V(s)

V(s) — value V of a state s : The best utility achievable from this state.

V(s)= max V(s)

s’&children(s)

7/25

State Value V(s)

V(s) — value V of a state s : The best utility achievable from this state.

V(s)= max V(s)

s’&children(s)

7/25

What is the Value of the root V(A)?

%

b1 bz b3
8
V(s) - value V of a state s : The best ut|I|ty achlevable from this state.

A, B, C,D - states of the game. | begin, values represent values

A: V(A)=6 of terminal states, more is better for me - think about the (my)
B: V(A)=3 money prize. Assume (strictly) rational players.

C: V(A) =2

D: V(A) =16

8/25

Two-ply game: max for me, min for the opponent.

/AN

9/25

Two-ply game: max for me, min for the opponent.

A

a1 a as

v @ v

9/25

Two-ply game: max for me, min for the opponent.

9/25

Two-ply game: max for me, min for the opponent.

9/25

Two-ply game: max for me, min for the opponent.

9/25

Two-ply game: max for me, min for the opponent.

9/25

Two-ply game: max for me, min for the opponent.

9/25

Two-ply game: max for me, min for the opponent.

9/25

Two-ply game: max for me, min for the opponent.

9/25

Two-ply game: max for me, min for the opponent.

9/25

Two-ply game: max for me, min for the opponent.

:/3\/ N YY,
LR
AN

ay = arg max RESULT(state = A, a)
acACTIONS(state=A)

9/25

Zero-Sum game: max for me, min for the opponent.

MAX (X)
MIN (0) [
X X
o X
X|O[X X|0[X (o]
TERMINAL o[x] [0]o[X X
o] X|X[O o]
Utility -1 0+l

10/25

Zero-Sum game: max for me, min for the opponent.

MAX (x)
MIN (0) [X 2l % X
I‘\ X X X
o[| (X[Jo] [x
MAX (x) o | | | ‘
x[o[x] [X[o[x] [X[o[x
TERMINAL 0o[Xx] [0o]o[X X
o x[xJo] [x[olo
Utility -1 0+

MINIMAX(S) =

10/25

Zero-Sum game: max for me, min for the opponent.

MAX (x)
MIN (o) P X sl X X
I‘\ X X X
x]o x| [o] [x
MAX (x) o | | | ‘
X[O[X| |X[O|X]| |X|O|X
TERMINAL o[x]| [o]o]X X
o X[X[O| [X[O|O
Utility -1 0+l

MINIMAX(S) =
UTILITY(s) if TERMINAL-TEST(S)

10/25

Zero-Sum game: max for me, min for the opponent.

MAX (x)
MIN (o) P X sl X X
I‘\ X X X
x]o x| [o] [x
MAX (x) o | | | ‘
X[O[X| |X[O|X]| |X|O|X
TERMINAL o[x]| [o]o]X X
o X[X[O| [X[O|O
Utility -1 0+l

MINIMAX(S) =

UTILITY(s) if TERMINAL-TEST(S)

max MINIMAX(RESULT(s,a)) if PLAYER(S) = MAX
aEACTIONS(s)

10/25

Zero-Sum game: max for me, min for the opponent.

MAX (x)
X X X
MIN (o) X X X
F\ : : §
x[o x| Jo] [x
X[O|X| [X|O|X]| [X[O|X s
TERMINAL o[x| [o[o]x X
ol | [xIxlo] [x[olo
Utility -1 0 +1
MINIMAX(S) =
UTILITY(s) if TERMINAL-TEST(S)
max MINIMAX(RESULT(s,a)) if PLAYER(s) = MAX
aEACTIONS(s)
min MINIMAX(RESULT(s,a)) if PLAYER(s) = MIN

aEACTIONS(s)

10/25

Minimax algorithm

function MINIMAX(state) returns an action

function MIN-VALUE(state) returns a utility value v

function MAX-VALUE(state) returns a utility value v

11/25

Minimax algorithm

function MINIMAX(state) returns an action

return argmax MIN-VALUE(RESULT(state, a))
a€Actions(s)
end function

function MIN-VALUE(state) returns a utility value v

function MAX-VALUE(state) returns a utility value v

11/25

Minimax algorithm

function MINIMAX(state) returns an action

return argmax MIN-VALUE(RESULT(state, a))
a€Actions(s)

end function

function MIN-VALUE(state) returns a utility value v
if TERMINAL-TEST(state) then return UTILITY(state)
end if
V 4 00
for all ACTIONS(state) do

v < min(v, MAX-VALUE(RESULT(state,a)))

end for

end function

function MAX-VALUE(state) returns a utility value v

11/25

Minimax algorithm

function MINIMAX(state) returns an action
return argmax MIN-VALUE(RESULT(state, a))
a€Actions(s)
end function

function MIN-VALUE(state) returns a utility value v
if TERMINAL-TEST(state) then return UTILITY(state)
end if
V < 00
for all ACTIONS(state) do
v < min(v, MAX-VALUE(RESULT(state,a)))
end for
end function

function MAX-VALUE(state) returns a utility value v
if TERMINAL-TEST(state) then return UTILITY((state)
end if
V4 —00
for all AcTIONS(state) do
v <— max(v, MIN-VALUE(RESULT(state,a)))
end for
ond fiinctinon

11/25

A two ply game, down to terminal and back again ...

function MINIMAX(s) returns a

MAX
argmax MINVAL(RES(s, a))
a€Actions(s)
end function
function MINVAL(S) returns v MIN

if TERMINAL(s) then UTIL(s)
end if
V < 00
for all AcTIONS(s) do
v < min(v, MAXVAL(RES(s, a)))
end for
end function
function MAXVAL(s) returns v
if TERMINAL(s) then UTIL(s)
end if
V < —00
for all AcTIONS(s) do
v < max(v, MINVAL(RES(s, a)))
end for
end function

12/25

A two ply game, recursive run

13/25

A two ply game, recursive run

ai

13/25

A two ply game, recursive run

13/25

A two ply game, recursive run

ai

by by

/o
3

12

13/25

A two ply game, recursive run

by by b3

SN
3 8

12

ai

13/25

A two ply game, recursive run

ai

a7
/1N

by by b3

SN
3 8

12

13/25

A two ply game, recursive run

VAR 7
VX

by by b3

SN
3 8

12

13/25

A two ply game, recursive run

a7
/1N

by by b3

SN
3 8

12

ap

13/25

A two ply game, recursive run

a7
/1N

by by b3

SN
3 8

12

ap

13/25

A two ply game, recursive run

a7
/1N

by by b3

/N
3

12 8 2 4 6

ap

13/25

A two ply game, recursive run

A

31 an

Kzs

27
VI \\
b1 by b3
/|
3 4

12

13/25

A two ply game, recursive run
31 Ag as

Kzs

27
VI \\
b1 by b3
/|
3 4

12

13/25

A two ply game, recursive run

AR

31 an as

K3

27
VI \\
b1 by b3
/|
3 4

12

13/25

A two ply game, recursive run

AR

31 an as

K3

27
VI \\
b1 by b3
/|
3 4

12 14 5

13/25

A two ply game, recursive run

AR

31 an as

K3

27
VI \\
b1 by b3
/|
3 4

12 14 5 2

13/25

A two ply game, recursive run

A
\

G W 27
0 \\ \\
b1 by b3

AN

3 12 8 2 4 6 5

14

13/25

A two ply game, recursive run

A
\

G W 27
0 \\ \\
b1 by b3

AN

3 12 8 2 4 6 5

14

13/25

A two ply game, recursive run

AR,
/

VAR \27
0 \ /\\
b1 by b3

/1A
3 12 8 4 14 5 2

13/25

VA

7 Ne7
= N /N
b1 by b3
VAR N
3 12 8 2 4 5
Is it like DFS or BFS?

13/25

A two ply game, recursive run

N

7T N7 Ner
0 \\ /\\
b1 by b3

AN
3 12 8 2 4 6 14 5 2

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

13/25

A two ply game, recursive run

AN

G U7 Yoy
0 \\ /\\
b1 by b3

AN
3 12 8 2 4 6 14 5 2

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

13/25

Nodes (sub-trees) worth visiting

/AN

14/25

Nodes (sub-trees) worth visiting

14/25

Nodes (sub-trees) worth visiting

14/25

Nodes (sub-trees) worth visiting

14/25

Nodes (sub-trees) worth visiting

14/25

Nodes (sub-trees) worth visiting

14/25

Nodes (sub-trees) worth visiting

14/25

Nodes (sub-trees) worth visiting

14/25

Nodes (sub-trees) worth visiting

I\

< 3,00 >

f

<3,3>

/1N

3

12 8

14/25

Nodes (sub-trees) worth visiting

14/25

Nodes (sub-trees) worth visiting

<3,

]

o0 >

—

<3,3> C

14/25

Nodes (sub-trees) worth visiting

< 3,00 >

—\

1
<3,3> < —00,2 > 7

14/25

Nodes (sub-trees) worth visiting

< 3,00 >
L
<3,3> < —00,2 >

14/25

Nodes (sub-trees) worth visiting

< 3,00 >
<3,3> < —00,2 >

14/25

Nodes (sub-trees) worth visiting

<3oo>
<3,3> < oo,2>

3 12 8

14

14/25

Nodes (sub-trees) worth visiting

<3oo>
<3,3> < oo,2> < —00,14 >

14/25

Nodes (sub-trees) worth visiting

J*

<3,3> < —00,2 > < —00,14 >

NS

14/25

Nodes (sub-trees) worth visiting

J*

<3,3> < —00,2 > < —00,14 >

AN

14/25

Nodes (sub-trees) worth visiting

J*

<3,3> < —00,2 > < —00,2 >

AN

14/25

Nodes (sub-trees) worth visiting

J*

<3,3> < —00,2 > < —00,2 >

NS

14/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

/AN

v value of the state

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

amod=oou=t

v value of the state

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

- 7
a=—00
B =00,v=—00
7/

v value of the state

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

- 7
a = —00
B =o00,v=—00

v value of the state .

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state .

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state . -

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state . - .

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state . - .

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state . - .

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state . - .

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state . - . .

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state . - . .

In MIN-VAL: v < 2

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state . - . .

In MIN-VAL: v < 2
v < « then: return v!

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state . - . .

In MIN-VAL: v < 2
v < « then: return v!

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

Q
I
w
Q
I
w

a=—00
6=3,v=3 v=2... B =o00,v=—00

v value of the state . - . .

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

o= —00 0123 o =
B=3,v=3 v=2 ... 6=14,v =14

v value of the state . - . .

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

o= —00 0[:3 o =
B=3,v=3 v=2 ... 6=14,v =14

v value of the state . - . . - .

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state . - . . - .

15/25

a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state . - . . - .

15/25

a-f prunnig — How much can we save?

original: Time: O(b™)
> how to consider next actions/moves (in what order)?

> perfect ordering?

16 /25

a-f3 saving, sketch ...

17/25

function ALPHA-BETA-SEARCH(state) returns an action
Vv < MAX-VALUE(state, & = —0c0, 8 = c0)
return action corresponding to v

end function

18/25

function ALPHA-BETA-SEARCH(state) returns an action
Vv < MAX-VALUE(state, & = —0c0, 8 = c0)
return action corresponding to v

end function

function MAX-VALUE(state,a, 3) returns a utility value v
if TERMINAL-TEST(state) return UTILITY (state)
V < —00
for all ACTIONS(state) do
v + max(v, MIN-VALUE(RESULT(state,a),a, §))
if v> [return v
a < max(a, v)
end for
end function

18/25

function ALPHA-BETA-SEARCH(state) returns an action
Vv < MAX-VALUE(state, & = —0c0, 8 = c0)
return action corresponding to v

end function

function MAX-VALUE(state,a, 3) returns a utility value v
if TERMINAL-TEST(state) return UTILITY (state)
V < —00
for all ACTIONS(state) do
v + max(v, MIN-VALUE(RESULT(state,a),a, §))
if v> [return v
a < max(a, v)
end for
end function

function MIN-VALUE(state, «, 3) returns a utility value v
if TERMINAL-TEST(state) return UTILITY (state)
V < o0
for all AcTIONS(state) do
v < min(v, MAX-VALUE(RESULT(state,a),«, 3))
if v < areturn v
B <+ min(8, v)
end for
end function
18/25

Recall: lterative deepening DFS (ID-DFS)

» Start with maxdepth = 1

» Perform DFS with limited depth. Report success or failure.

> If failure, forget everything, increase maxdepth and repeat DFS.
The “wasting” of resources is not too bad. Recall:

> Most nodes are at the deepest levels.

> Asymptotic complexity unchanged.

Bonus for a-8 pruning: previous “shallower” iterations can be reused for node ordering.

19/25

Imperfect but real-time decisions: iterative deepening

H-MINIMAX(S, d) =

20/25

Imperfect but real-time decisions: iterative deepening

H-MINIMAX(S, d) =
EVAL(s) if CUTOFF-TEST(s,d)

20/25

Imperfect but real-time decisions: iterative deepening

H-MINIMAX(S, d) =
EVAL(s) if CUTOFF-TEST(s, d)

)
max H-MINIMAX(RESULT(s,a),d + 1) if PLAYER(S) = MAX
aEACTIONS(s)

20/25

Imperfect but real-time decisions: iterative deepening

H-MINIMAX(S, d) =
EVAL(s) if CUTOFF-TEST(s,d)

max H-MINIMAX(RESULT(s,a),d + 1) if PLAYER(S) = MAX
aEACTIONS(s)

min H-MINIMAX(RESULT(s,a,d + 1)) if PLAYER(S) = MIN
aEACTIONS(s)

20/25

Cutting off search and evaluation functions

Replace

if TERMINAL-TEST(s) then return TERMINAL-UTILITY (S)
with:

if CUTOFF-TEST(s,d) then return EVAL(s)

Historical note: cutting search off earlier and use of heuristic evaluation functions proposed by
Claude Shannon in Programming a Computer for Playing Chess (1950).

21/25

EVAL(s) — Evaluation functions

(Estimate of) State value for non-terminal states.
We need an easy-to-compute function correlated with “chance of winning”. For chess:

» fi(s) Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

» f(s) Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

» Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

» fi(s) =--- We can create many. How to combine them?

22/25

EVAL(s) — Evaluation functions

(Estimate of) State value for non-terminal states.
We need an easy-to-compute function correlated with “chance of winning”. For chess:

» fi(s) Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

» f(s) Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

» Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

» fi(s) =--- We can create many. How to combine them?

EVAL(S) = wifi(s) + wafa(s) + - - - wufn(s)

22/25

EVAL(s) — Evaluation functions

(Estimate of) State value for non-terminal states.
We need an easy-to-compute function correlated with “chance of winning”. For chess:

» fi(s) Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

» f(s) Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

» Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

» fi(s) =--- We can create many. How to combine them?

EVAL(S) = wifi(s) + wafa(s) + - - - wufn(s)

How to find /compute proper weights?

22/25

EVAL(s) — Evaluation functions

(Estimate of) State value for non-terminal states.
We need an easy-to-compute function correlated with “chance of winning”. For chess:

» fi(s) Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

» f(s) Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

» Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

» fi(s) =--- We can create many. How to combine them?

EVAL(S) = wifi(s) + wafa(s) + - - - wufn(s)

How to find /compute proper weights?
How to find/create fi(s)?

22/25

EVAL(s) — Problems
What if something important happens just after the cut — in the next ply?

(a) White to move (b) White to move

Additional improvements:

> “Killer moves”—capturing opponent'’s pieces, check etc.—should be considered first.

» Quiescence search — EVAL function should be applied only once things calm down.
During capturing of pieces, depth should be locally increased.

23/25

Horizon effect

Pushing unavoidable loss deeper in tree by a
delaying tactics. We know it is useless but
does the machine?

See the situation on right. Black is on move,
her bishop is surely doomed. However, the in-
evitable loss can be postponed by moving her
pawns and checking the white king. Depend-
ing on the searchable depth this may put the
loss over the horizon and moving pawns may
look promising.

o N N Lt AW N =

Computer play vs. grandmaster play

» Computers are better since 1997 (Deep Blue defeating Garry Kasparov).
> The way they play is still very different: “dumb”, relying on “brute force”.

» Deep Blue examined 200M positions per second.
» In some cases, depth of search was 40 ply.

» Grandmasters do not excel in being able to compute very deep—many moves ahead.

P> They play based on experience: super-effective pruning and evaluation functions.
> They consider only 2 to 3 moves in most positions (branching factor).

25 /25

References

Many images, including the chess plates are from Chapter 5, “Adversarial search” in [1].

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[2] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.

http://www.incompleteideas.net/book/the-book-2nd.html.

26 /25

http://aima.cs.berkeley.edu/
http://www.incompleteideas.net/book/the-book-2nd.html

	Introduction
	Minimax strategy
	Minimax algorithm
	Two-ply example

	Alpha-beta pruning
	Cut-off search
	References

