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Games, man vs. algorithm

» Deep Blue

> Alpha Go

» Deep Stack

» Why Games, actually?
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Games, man vs. algorithm

» Deep Blue

> Alpha Go

» Deep Stack

» Why Games, actually?

Games are interesting for Al because they are hard (to solve).
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https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
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Video: Adversing visual segmentation
Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras, video at YT: https://youtu.be/KvdZmtVguOo



http://cmp.felk.cvut.cz/cmp/courses/B3B33KUI/videos/advers-pedestrians.avi
http://cyber.felk.cvut.cz/vras
https://youtu.be/KvdZmtVguOo
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> sp: The initial state O O
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Elements of the game

> sp: The initial state O O
» PLAYER(S). Which player has to move in s. O 9.0,
» ACTIONS(s). What are the legal moves? O 8OOO
» RESULT(s, a). Transition, result of a move. O

» TERMINAL-TEST(s). Game over? O

| 4

O

TERMINAL-UTILITY (s, p). What is the prize? Examples for
some games ...

https://commons.wikimedia.org/wiki/File:
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Terminal utilitity: Zero-Sum and General games

> Zero-sum: players have opposite utilities (values)

» Zero-sum: playing against opponent

5/25



Terminal utilitity: Zero-Sum and General games

> Zero-sum: players have opposite utilities (values)
» Zero-sum: playing against opponent
» General game: independent utilities

> General game: cooperations, competition, ...
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Game Tree(s)

Me (x)
thinking
Me playing
Opp (o) X X X . .
thinking X X <
Opp playing F\
X|0 X| |o] [X .
Me (x) o)
thinking
Me playing
Opp (0) X[o[X| [x|o x|o
thinking X X
Opp playing
terminal X[O[X]| |X|O|X| [X|O]|X
states O|X| |O[0|X X
o x[x]o] [x]olo
-1 0 +1

TERMINAL-UTILITY(s, X) 6/25



State Value V(s)

V(s) — value V of a state s : The best utility achievable from this state.

V(s)= max V(s)

s’&children(s)

7/25



State Value V(s)

V(s) — value V of a state s : The best utility achievable from this state.

V(s)= max V(s)

s’&children(s)

7/25



What is the Value of the root V(A)?

%

b1 bz b3
8
V(s) - value V of a state s : The best ut|I|ty achlevable from this state.

A, B, C,D - states of the game. | begin, values represent values

A: V(A)=6 of terminal states, more is better for me - think about the (my)
B: V(A)=3 money prize. Assume (strictly) rational players.

C: V(A) =2

D: V(A) =16
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Two-ply game: max for me, min for the opponent.

/AN
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Two-ply game: max for me, min for the opponent.

:/3\/ N YY,
LR
AN

ay = arg max RESULT(state = A, a)
acACTIONS(state=A)
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Zero-Sum game: max for me, min for the opponent.

MAX (X)
MIN (0) [
X X
o X . ... .
X|O[X X|0[X (o]
TERMINAL o[x] [0]o[X X
o] X|X[O o]
Utility -1 0+l
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o[ | (X[ Jo] [x
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max  MINIMAX(RESULT(s,a)) if PLAYER(S) = MAX
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Zero-Sum game: max for me, min for the opponent.

MAX (x)
X X X
MIN (o) X X X
F\ : : §
x[o x| Jo] [x
X[O|X| [X|O|X]| [X[O|X s
TERMINAL o[x| [o[o]x X
ol | [xIxlo] [x[olo
Utility -1 0 +1
MINIMAX(S) =
UTILITY(s) if TERMINAL-TEST(S)
max  MINIMAX(RESULT(s,a)) if PLAYER(s) = MAX
aEACTIONS(s)
min  MINIMAX(RESULT(s,a)) if PLAYER(s) = MIN

aEACTIONS(s)
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Minimax algorithm

function MINIMAX(state) returns an action

function MIN-VALUE(state) returns a utility value v

function MAX-VALUE(state) returns a utility value v
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Minimax algorithm

function MINIMAX(state) returns an action

return argmax MIN-VALUE(RESULT(state, a))
a€Actions(s)

end function

function MIN-VALUE(state) returns a utility value v
if TERMINAL-TEST(state) then return UTILITY(state)
end if
V 4 00
for all ACTIONS(state) do

v < min(v, MAX-VALUE(RESULT(state,a)))

end for

end function

function MAX-VALUE(state) returns a utility value v
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Minimax algorithm

function MINIMAX(state) returns an action
return argmax MIN-VALUE(RESULT(state, a))
a€Actions(s)
end function

function MIN-VALUE(state) returns a utility value v
if TERMINAL-TEST(state) then return UTILITY(state)
end if
V < 00
for all ACTIONS(state) do
v < min(v, MAX-VALUE(RESULT(state,a)))
end for
end function

function MAX-VALUE(state) returns a utility value v
if TERMINAL-TEST(state) then return UTILITY((state)
end if
V4 —00
for all AcTIONS(state) do
v <— max(v, MIN-VALUE(RESULT(state,a)))
end for
ond fiinctinon
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A two ply game, down to terminal and back again ...

function MINIMAX(s) returns a

MAX
argmax MINVAL(RES(s, a))
a€Actions(s)
end function
function MINVAL(S) returns v MIN

if TERMINAL(s) then UTIL(s)
end if
V < 00
for all AcTIONS(s) do
v < min(v, MAXVAL(RES(s, a)))
end for
end function
function MAXVAL(s) returns v
if TERMINAL(s) then UTIL(s)
end if
V < —00
for all AcTIONS(s) do
v < max(v, MINVAL(RES(s, a)))
end for
end function
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A two ply game, recursive run
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A two ply game, recursive run

a7
/1N

by by b3

/N
3

12 8 2 4 6

ap

13/25



A two ply game, recursive run

A

31 an

Kzs

27
VI \\
b1 by b3
/|
3 4

12

13/25



A two ply game, recursive run
31 Ag as

Kzs

27
VI \\
b1 by b3
/|
3 4

12

13/25



A two ply game, recursive run

AR

31 an as

K3

27
VI \\
b1 by b3
/|
3 4

12

13/25



A two ply game, recursive run

AR

31 an as

K3

27
VI \\
b1 by b3
/|
3 4

12 14 5

13/25



A two ply game, recursive run

AR

31 an as

K3

27
VI \\
b1 by b3
/|
3 4

12 14 5 2

13/25



A two ply game, recursive run

A
\

G W 27
0 \\ \\
b1 by b3

AN

3 12 8 2 4 6 5

14

13/25



A two ply game, recursive run

A
\

G W 27
0 \\ \\
b1 by b3

AN

3 12 8 2 4 6 5

14

13/25



A two ply game, recursive run
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VAR N
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Is it like DFS or BFS?
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A two ply game, recursive run
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A two ply game, recursive run

AN

G U7 Yoy
0 \\ /\\
b1 by b3

AN
3 12 8 2 4 6 14 5 2

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?

13/25



Nodes (sub-trees) worth visiting

/AN
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a-f pruning
« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

/AN

v value of the state
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a-f pruning
« highest (best) value choice found so far for any choice along MAX
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a-f prunnig — How much can we save?

original: Time: O(b™)
> how to consider next actions/moves (in what order)?

> perfect ordering?
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a-f3 saving, sketch ...
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function ALPHA-BETA-SEARCH(state) returns an action
Vv < MAX-VALUE(state, & = —0c0, 8 = c0)
return action corresponding to v

end function
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Vv < MAX-VALUE(state, & = —0c0, 8 = c0)
return action corresponding to v

end function

function MAX-VALUE(state,a, 3) returns a utility value v
if TERMINAL-TEST(state) return UTILITY (state)
V < —00
for all ACTIONS(state) do
v + max(v, MIN-VALUE(RESULT(state,a),a, §))
if v> [ return v
a < max(a, v)
end for
end function
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function ALPHA-BETA-SEARCH(state) returns an action
Vv < MAX-VALUE(state, & = —0c0, 8 = c0)
return action corresponding to v

end function

function MAX-VALUE(state,a, 3) returns a utility value v
if TERMINAL-TEST(state) return UTILITY (state)
V < —00
for all ACTIONS(state) do
v + max(v, MIN-VALUE(RESULT(state,a),a, §))
if v> [ return v
a < max(a, v)
end for
end function

function MIN-VALUE(state, «, 3) returns a utility value v
if TERMINAL-TEST(state) return UTILITY (state)
V < o0
for all AcTIONS(state) do
v < min(v, MAX-VALUE(RESULT(state,a),«, 3))
if v < areturn v
B <+ min(8, v)
end for
end function
18/25



Recall: lterative deepening DFS (ID-DFS)

» Start with maxdepth = 1

» Perform DFS with limited depth. Report success or failure.

> If failure, forget everything, increase maxdepth and repeat DFS.
The “wasting” of resources is not too bad. Recall:

> Most nodes are at the deepest levels.

> Asymptotic complexity unchanged.

Bonus for a-8 pruning: previous “shallower” iterations can be reused for node ordering.
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Imperfect but real-time decisions: iterative deepening

H-MINIMAX(S, d) =
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Imperfect but real-time decisions: iterative deepening

H-MINIMAX(S, d) =
EVAL(s) if CUTOFF-TEST(s,d)

max  H-MINIMAX(RESULT(s,a),d + 1) if PLAYER(S) = MAX
aEACTIONS(s)

min  H-MINIMAX(RESULT(s,a,d + 1)) if PLAYER(S) = MIN
aEACTIONS(s)
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Cutting off search and evaluation functions

Replace

if TERMINAL-TEST(s) then return TERMINAL-UTILITY (S)
with:

if CUTOFF-TEST(s,d) then return EVAL(s)

Historical note: cutting search off earlier and use of heuristic evaluation functions proposed by
Claude Shannon in Programming a Computer for Playing Chess (1950).

21/25



EVAL(s) — Evaluation functions

(Estimate of) State value for non-terminal states.
We need an easy-to-compute function correlated with “chance of winning”. For chess:

» fi(s) Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

» f(s) Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

» Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

» fi(s) =--- We can create many. How to combine them?
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» fi(s) =--- We can create many. How to combine them?

EVAL(S) = wifi(s) + wafa(s) + - - - wufn(s)

How to find /compute proper weights?
How to find/create fi(s)?
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EVAL(s) — Problems
What if something important happens just after the cut — in the next ply?

(a) White to move (b) White to move

Additional improvements:

> “Killer moves”—capturing opponent'’s pieces, check etc.—should be considered first.

» Quiescence search — EVAL function should be applied only once things calm down.
During capturing of pieces, depth should be locally increased.

23/25



Horizon effect

Pushing unavoidable loss deeper in tree by a
delaying tactics. We know it is useless but
does the machine?

See the situation on right. Black is on move,
her bishop is surely doomed. However, the in-
evitable loss can be postponed by moving her
pawns and checking the white king. Depend-
ing on the searchable depth this may put the
loss over the horizon and moving pawns may
look promising.
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Computer play vs. grandmaster play

» Computers are better since 1997 (Deep Blue defeating Garry Kasparov).
> The way they play is still very different: “dumb”, relying on “brute force”.

» Deep Blue examined 200M positions per second.
» In some cases, depth of search was 40 ply.

» Grandmasters do not excel in being able to compute very deep—many moves ahead.

P> They play based on experience: super-effective pruning and evaluation functions.
> They consider only 2 to 3 moves in most positions (branching factor).
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