
1B35APO Computer Architectures

Computer Architectures

I/O Subsystem Part 1

Pavel Píša, Richard Šusta,
Michal Štepanovský, Miroslav Šnorek

Czech Technical University in Prague, Faculty of Electrical Engineering

Ver.1.10

2B35APO Computer Architectures

Picture to Please Eyes

3B35APO Computer Architectures

Lecture outline

● I/O subsystem – introduction
● Memory mapped I/O
● QtMips I/O Examples
● Use of buses in real computers
● PCI Bus – Peripheral Component

Interconnect
● PCIe – Peripheral Component Interconnect

Express
● HDD, SSD and RAID

4B35APO Computer Architectures

John von Neumann's Computer Architecture

28. 12. 1903 -
8. 2. 1957

von Neumann's computer architecture
Princeton Institute for Advanced Studies Processor

Input Output

Memory

ctrl
ALU

●5 functional units – control unit, arithmetic logic unit, memory, input (devices),
output (devices)

●An computer architecture should be independent of solved problems. It has to
provide mechanism to load program into memory. The program controls what the
computer does with data, which problem it solves.

●Programs and results/data are stored in the same memory. That memory consists
of a cells of same size and these cells are sequentially numbered (address).

●The instruction which should be executed next, is stored in the cell exactly after
the cell where preceding instruction is stored (exceptions branching etc.).

●The instruction set consists of arithmetics, logic, data movement, jump/branch
and special/control instructions.

5B35APO Computer Architectures

Data
Memory

Data Path, Control and Memory from Our CPU Design

MemWrite
MemToReg

Branch
ALUControl 2:0
ALUScr
RegDest
RegWrite

31:26

5:0

Control
Unit

Opcode

Funct

4

PC’ PC Instr
25:21

20:16

20:16

15:11

15:0

SrcA

SrcB

Zero

AluOutM

WriteData
WriteReg

SignImm
PCPlus4D

PCBranch
PCPlus4E

Result

PCPlus4F

Rt
Rd

A RD
A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

+

+

0
1

0
1

0
1

0
1

Sign Ext <<2

ALU

ReadData

AluOutW

Control unit
(control path)

Data/ALU
(data path)

Instr.
Memory

A RD

A RD

WD

WE

Return back to non-pipelined CPU version

Memory

6B35APO Computer Architectures

Signals to Connect CPU to External Memory and Peripherals

Memory or I/O peripherals

Data bus (D0..D31)

can be bidirectional or separate parallel or
serial lane for each direction

IOW#

Control bus or signals

IOW, IOR if input output is separated from
memory operations

Byte enable if bytes writes are supported
on bus wider than 8-bit

IOR#

MEMW#

MEMR#

Address bus (A0..A31)

can be separate or multiplexed or encoded
on same signals as data

Processor (CPU)

BE0 to 3#

7B35APO Computer Architectures

Classification of Input/Output Devices/Peripherals

● Behavior
● Input read only
● Output write only, cannot be read
● Storage can be reread and usually rewritten
● Communications, often hierarchy (fast bus (PCIe), slower SPI, ADC)

● Partner
● What’s on the other end? Human or Machine

● Data Rate
● Peak Rate of transfer between I/O and Memory or CPU

● Example
● Keyboard → Input Device → Used by Human → 10 B/s
● Robotic sensors and actuators

● Today peripherals are usually complex, even sensor or input
requires setup, output (i.e. motor driver) requires monitoring

8B35APO Computer Architectures

Diversity of Use and Needs of IO Devices

Device Behavior Partner Data rate (Mbit/s) Max latency (msec)

Keyboard Input Human 0.0001 200

Mouse Input Human 0.0038 50

Voice input Input Human 0.2640 10 / 0.02

Sound input Input Machine 3.0000 10 / 0.02

Scanner Input Human 3.2000 na

Voice output Output Human 0.2640 10 / 0.02

Sound output Output Human 8.0000 10 / 0.02

Laser printer Output Human 3.2000 na

Graphics display Output Human 800 - 8000 40 / nsec range

Cable modem Bidirectional Machine 0.1 - 100 100 / nsec range

Network/WLAN Bidirectional Machine 11-8000 10 / nsec range

Magnetic disk Storage Machine 800-3000 30

Flash disk NVMe Storage Machine Up to 30000 10

DC motor control Actuator+FB Environment 0.080 0.05 – 0.5

PMSM DQ control Actuator+FB Environment 0.8 0.01 – 0.05

9B35APO Computer Architectures

Layers of the I/O Software System

● User application communicating with device
● User/level I/O software
● Operating systems interfaces (lecture about Syscall)

● Device-independent operating system software
● Generic subsystems interfaces (filesystems, block

management and queues, networking, terminals, GPIO)
● Device drivers – function interfaces
● Device drivers – physical devices and bus drivers
● Interrupt handlers and or direct memory access (DMA)
● Hardware

10B35APO Computer Architectures

Linux Storage Stack Diagram (Simplified but Complex Still)

Source: Werner Fischer and Georg Schönberger – simplified

Applications (processes)

VFS

Request-based
device mapper targets

dm-multipath

Physical devices

HDD SSD DVD
drive

Micron
PCIe card

LSI
RAID

Adaptec
RAID

Qlogic
HBA

Emulex
HBA

malloc

BIOs (block I/Os)

sysfs
(transport attributes) SCSI upper level drivers

/dev/sda

scsi-mq

.../dev/sd*

SCSI low level drivers
megaraid_sas

aacraid

qla2xxx ...libata

ahci ata_piix ... lpfc

Transport classes
scsi_transport_fc

scsi_transport_sas

scsi_transport_...

/dev/vd*

virtio_blk mtip32xx

/dev/rssd*

ext2 ext3

btrfs

ext4 xfs

ifs iso9660

...

NFS coda
Network FS

gfs ocfs

smbfs ...

Pseudo FS Special
purpose FSproc sysfs

futexfs

usbfs ...

tmpfs ramfs

devtmpfs
pipefs

network

nvme
device

mmap
(anonymous pages)

iscsi_tcp

network

/dev/rbd*

Block-based FS

re
a
d
(2

)

w
ri

te
(2

)

o
p
e
n
(2

)

st
a
t(

2
)

ch
m

o
d
(2

)

..
.

Page
cache

mdraid
...

stackable

Devices on top of “normal”
block devices drbd

(optional)

LVM
BIOs (block I/Os)

BIOs BIOs

Block Layer
blkmq hooked in device drivers

BIOs

I/O scheduler

Request
based drivers

BIO
based drivers

Request
based drivers

ceph

struct bio
- sector on disk
 - bio_vec cnt
- bio_vec index
- bio_vec list

- sector cnt

Fi
b
re

 C
h
a
n
n
e
l

o
v
e
r

E
th

e
rn

e
t

LIO

target_core_mod

tc
m

_f
c

Fi
re

W
ir

e

IS
C

S
I

Direct I/O
(O_DIRECT)

device mapper

network

is
cs

i_
ta

rg
e
t_

m
o
d

sb
p
_t

a
rg

e
t

target_core_file

target_core_iblock

target_core_pscsi

vfs_writev, vfs_readv, ...

dm-crypt dm-mirror
dm-thindm-cache

tc
m

_q
la

2
x
x
x

tc
m

_u
sb

_g
a
d
g
e
t

U
S
B

Fi
b

re
 C

h
a
n
n

e
l

tc
m

_v
h
o
st

V
ir

tu
a
l
H

o
st

/dev/nvme*n*

SCSI mid layer

virtio_pci

LSI 12Gbs
SAS HBA

mpt3sas

bcache

/dev/nullb*

vmw_pvscsi

/dev/skd*

skd

stec
device

virtio_scsi

para-virtualized
SCSI

VMware's
para-virtualized

SCSI

target_core_user

unionfs FUSE

/dev/mmcblk*p*

dm-raid

/dev/sr* /dev/st*

pm8001

PMC-Sierra
HBA

SD-/MMC-Card

/dev/rsxx*

rsxx

IBM flash
adapter

/dev/zram*

memory

null_blk

ufs

userspace

ecryptfs

Stackable FS

mobile device
flash memory

nvme

overlayfs

userspace (e.g. sshfs)

mmcrbdzram

dm-delay

https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram

11B35APO Computer Architectures

Memory-mapped I/O

● The idea: Processors can use the interface used for
memory access (MIPS: lw, sw instructions) to
communicate with input/output (I/O) devices such as
keyboards, monitors, and printers.

Common address space
for I/O and memory

memory-mapped
peripheral (I/O)
registers

Main/system
memory

12B35APO Computer Architectures

Address Decoder – Idea

• Logical
Structure:

• (Illusion)

• Possible
physical
arrangement :

CPU

MEM I/O 1 I/O 2 I/O 3

CPU

MEM I/O 1 Bridge

I/O 2 I/O 3

13B35APO Computer Architectures

Address Decoder – Central or on Addon Boards

• Option A:
(Central)

• Option B:
• (Autonomous)

CPU

MEM I/O 1 I/O 2 I/O 3

Address
Decoder

CPU

MEM I/O 1 I/O 2 I/O 3

Address
decoder

Registers

Address
decoder

Registers

Address
decoder

Registers

Address
decoder

Registers

14B35APO Computer Architectures

Example: Speech Synthesizer – Hardware

● Words are composed of one or more allophones, the
fundamental units of sound. The 64 different allophones
appear in the English language.

● Problem: Integrate HW support and write synthesizer driver
● Simplified assumption: 5 units (allophones) are placed at

address 0x10000000. They are read by driver and sent to
SP0256 synthesizer chip.

http://little-scale.blogspot.cz/2009/02/sp0256-al2-
creative-commons-sample-pack.html

Czech: allophone – artikulace určitého fonému

Top View

OSC228•1V SS

OSC1272RESET
ROM CLOCK263ROM DISABLE
SBY RESET254C1
DIGITAL OUT245C2
V D1236C3
TEST227V DD

SER IN218SBY
ALD209LRQ
SE1910A8
A11811A7
A21712SER OUT
A31613A6
A41514A5

15B35APO Computer Architectures

Example: Speech Synthesizer – Integration

● When the SBY output is 1, the speech chip is standing by and is ready to
receive a new allophone. On the falling edge of the address load input
ALD#, the speech chip reads the allophone specified by A6:1.

● We arbitrarily have chosen that the A6:1 port is mapped to address
0xFFFFFF00, ALD# to 0xFFFFFF04, and SBY to 0xFFFFFF08.

16B35APO Computer Architectures

The device driver controls the speech synthesizer by sending an appropriate series
of allophones over the memory-mapped I/O interface. It follows the protocol
expected by the SPO256 chip, given below:

Example: Speech Synthesizer – Driver

1.Set ALD# to 1

2.Wait until the chip asserts SBY
to indicate that it is finished
speaking the previous
allophone and is ready for the
next

3.Write a 6-bit code selecting
allophone to A6:1

4.Reset ALD# to 0 to initiate
speech

This sequence can be repeated for
any number of allophones and
speech is synthesized

17B35APO Computer Architectures

Example: Speech Synthesizer – Driver on MIPS

1.Set ALD# to 1

2.Wait until the chip asserts
SBY to indicate that it is
finished speaking the
previous allophone and is
ready for the next

3.Write a 6-bit allophone
code to A6:1

4.Reset ALD# to 0 to initiate
speech

init:
 addi t1,$0,1 // t1 = 1 (value to write to ALD#)
 addi t2,$0,20 // t2 = array size ×4 (20 bytes)
 lui t3,0x1000 // t3 = array base address
 addi t4,$0,0 // t4 = 0 (array index)
start:
 sw t1,0xFF04($0) // ALD#=1
loop:
 lw t5,0xFF08($0) // t5 = SBY (monitor state)
 beq $0,t5,loop // loop until SBY == 1
 add t5,t3,t4 // t5 = address of allophone
 lw t5,0(t5) // t5 = allophone
 sw t5,0xFF00($0) // A6:1 = allophone
 sw $0,0xFF04($0) // ALD# = 0 (to initiate speech)
 addi t4,t4,4 // increment array index
 beq t4,t2,done // all allophone in array done?
 j start // repeat
done:

Instead of polling, the processor could use an interrupt connected to SBY. When SBY rises,
the processor stops what it is doing and jumps to code that handles the interrupt.

Notice polling loop to check for
ready to speak condition. CPU is
blocked to do useful work.

18B35APO Computer Architectures

Serial Port – UART, The First Chance to Say Hello for CPU

Start D0 D1 D2 D3 D4 D5* D6* D7* D8* P* StopIdle Idle

Frame

*

Bit Time = 1 / Baud Rate

Stop

* optional

Source: Wikipedia

RX_ST
receive status

0xffffc000
IE READY
.1 .0

RX_DATA
receive data

0xffffc004 .7..0

TX_ST
trasmit status

0xffffc008
IE READY
.1 .0

TX_DATA
transmit data

0xffffc00c .7..0 transmit shift register TX

receive shift register

main memory

0x00000000 ... 0xefffffff

CPU
address

data

address
decoder

QtMips serial port
(UART) emulation

19B35APO Computer Architectures

QtMips Serial Port Addresses

SERIAL_PORT_BASE 0xffffc000
base address of QtMIps serial port, mirrors on 0xffff0000 for MARS and QtSpim

SERP_RX_ST_REG 0xffffc000 Receiver status register
SERP_RX_ST_REG_o 0x0000 Offset of RX_ST_REG
SERP_RX_ST_REG_READY_m 0x1 Data byte is ready to be read
SERP_RX_ST_REG_IE_m 0x2 Enable Rx ready interrupt

SERP_RX_DATA_REG 0xffffc004 Received data byte in 8 LSB bits
SERP_RX_DATA_REG_o 0x0004 Offset of RX_DATA_REG

SERP_TX_ST_REG 0xffffc008 Transmitter status register
SERP_TX_ST_REG_o 0x0008 Offset of TX_ST_REG
SERP_TX_ST_REG_READY_m 0x1 Transmitter can accept next byte
SERP_TX_ST_REG_IE_m 0x2 Enable Tx ready interrupt

SERP_TX_DATA_REG 0xffffc00c Write word to send 8 LSB bits to terminal
SERP_TX_DATA_REG_o 0x000c Offset of TX_DATA_REG

20B35APO Computer Architectures

QtMips Write Hello World to Serial Port

_start:
Loop: la $a0, SERIAL_PORT_BASE // load base address of serial port

la $a1, text_1 // load address of text
next_char:

lb $t1, 0($a1) // load one byte after another
beq $t1, $zero, end_char // is this the terminal zero byte
addi $a1, $a1, 1 // move pointer to next text byte

tx_busy:lw $t0, SERP_TX_ST_REG_o($a0) // read status of transmitter
andi $t0, $t0, SERP_TX_ST_REG_READY_m // mask ready bit
beq $t0, $zero, tx_busy // if not ready wait for ready condition
nop // fill branch instruction delay slot
sw $t1,SERP_TX_DATA_REG_o($a0) // write byte to Tx data register
beq $0, $0, next_char // unconditional branch to process next byte
nop // fill delay slot

end_char: break // stop continuous execution
beq $zero, $zero, loop
nop // fill delay slot

.data
text_1: .asciz "Hello word.\n" // store zero terminated ASCII text

21B35APO Computer Architectures

QtMips Serial Port – Single Cycle

SERP_RX_ST_REG
SERP_RX_DATA_REG

SERP_TX_ST_REG
SERP_TX_DATA_REG

22B35APO Computer Architectures

QtMips Serial Port – Pipelined

SERP_TX_DATA_REG

23B35APO Computer Architectures

QtMips – Simple I/O Peripherals

base of SPILED port region
SPILED_REG_BASE 0xffffc100

RGB LED 1 color components – 8 bits each
SPILED_REG_LED_RGB1 0xffffc110
SPILED_REG_LED_RGB1_o 0x0010

RGB LED 2 color components – 8 bits each
SPILED_REG_LED_RGB2 0xffffc114
SPILED_REG_LED_RGB2_o 0x0014

Three 8 bit knob values
SPILED_REG_KNOBS_8BIT 0xffffc124
SPILED_REG_KNOBS_8BIT_o 0x0024

line of 32 LEDs for binary value representation
SPILED_REG_LED_LINE 0xffffc104
SPILED_REG_LED_LINE_o 0x0004

bits 23..16 bits 15..8 bits 7..0

bit 24bit 25bit 26

bits 310

24B35APO Computer Architectures

QtMips Peripherals Documentation and Frame Buffer

● All peripherals supported by QtMips are described at
QtMips project page (README.md file)

https://github.com/cvut/QtMips/#peripherals
● The simple 16-bit per pixel (RGB565) framebuffer

The size corresponds to MZ_APO 480 x 320 pixel display

components
● bits 11 .. 15 red
● bits 5 .. 10 green
● bits 0 .. 4 blue

Frame buffer starts at address
● LCD_FB_START 0xffe00000
● LCD_FB_END 0xffe4afff

https://github.com/cvut/QtMips/#peripherals

25B35APO Computer Architectures

Generalized Summary Based on Example

● There are two methods for I/O devices (peripherals) access
● memory mapped I/O
● I/O specialized instructions (if implemented/available) – they use address

space independent of memory access
● There are address range(s) dedicated to device access in the case of

memory mapped I/O. Reads/writes from/to these addresses are
interpreted as commands or data transfers from/to peripheral devices.
Memory subsystem is informed about I/O ranges and ignores these
accesses. I/O devices/bus controller is aware of addresses assigned to
it and fulfills requests.

● The CPU can be informed about I/O device request for service by:
● repeated monitoring of its ready condition (status register) – polling
● interrupt request – interrupt-driven I/O – it is asynchronous to the actual

program execution (is initiated by device when it needs servicing)
● Have you noticed address decoder function?
● What about caches in the case of I/O range/region access?

26B35APO Computer Architectures

Use of Buses for Input/Output on Real Systems

27B35APO Computer Architectures

Motivation to Use and Study Buses

bus interconnection
technologies are used
everywhere to connect
computer system
components/subsystems

28B35APO Computer Architectures

Motivation – Intel – Only as an Example

29B35APO Computer Architectures

30B35APO Computer Architectures

What is the Main Task of I/O Subsystem?

● Interconnection of subsystems inside computer,
connection of external peripherals and computers
together

● Demands on I/O subsystem:

Creating optimal data paths, especially critical for the
most demanding peripherals (graphic cards, external
memories)

● Possible solutions:

There have to be compromises due to price/performance
ratio when it is

● possible to share data paths, or
● advantageous to share them.

31B35APO Computer Architectures

Some Other Examples and Solutions
● Do you know Parallel ATA (PATA)?
● Integrated Drive Electronics (IDE) nebo EIDE

(Enhanced IDE) from Western Digital may be
more known term

● ATA = Advanced Technology Attachment

• It has been the most used interface
to connect hard-drives and optical
units

• 40-pin header -> 40 leads (16 of these
for data)

• later 80 leads used for better signal
integrity (shielding), but 40-pin header
preserved

32B35APO Computer Architectures

Serial ATA – Solution Used Today

http://en.wikipedia.org/wiki/Serial_ATA

● Serial ATA (SATA) more used today
● SATA 1.0: 150 MB/s (PATA:130MB/s)
● SATA 2.0: 300 MB/s
● SATA 3.0: 600 MB/s
● SATA 3.2: about 2 GB/s

• Interface used for drives and
optical units connection today

• 7 leads only!!! Pin Mating Function

1 1st Ground

2 2nd A+ (Transmit)

3 2nd A− (Transmit)

4 1st Ground

5 2nd B− (Receive)

6 2nd B+ (Receive)

7 1st Ground

33B35APO Computer Architectures

Interfacing Terminology – Important Terms:

● Interface
● Common communication part shared by two systems,

equipment or programs.
● Includes also boundary and supporting control elements

necessary for their interconnection.
● Bus × point-to-point connection.
● Address, data, control bus.
● Multiplexed/separate bus.
● Processor, system, local, I/O bus.
● Bus cycle, bus transaction.
● Open collector, 3-state output, switched multiplexers
● Initiator/target

34B35APO Computer Architectures

Reminder: bus x point-to-point connection

Bus – shared data path

Point-to-point connection

Many different combinations in between in real systems

Remark: logical topology as seen from
computer system inside (OS, programs)
can differ from the physical topology

35B35APO Computer Architectures

Synchronous Parallel Data Transfer

The events are determined by a clock!

Good synchronization of all signals is absolutely essential!

Bus Clock

Address

RD/WR

Data

t0
t1 t2 t3 t4

36B35APO Computer Architectures

Asynchronous Bus

B35APO Computer Architectures 36

• Not clocked
• Requires a handshaking protocol (It behaves as TCP internet protocol)

• performance not as good as that of synchronous bus
• No need for frequency converters, but does need extra lines

• Does not suffer from clock skew like the synchronous bus

Source: Sudeep Pasricha,
On Chip Communication, Colorado 2011

37B35APO Computer Architectures

Asynchronous Parallel Data Transfer by Strobing

Strobe

RD/WR

Address

t0

Data

t1 t2

Strobing accelerates asynchronous bus operations,
but it is less reliable. (It behaves as UDP internet protocol)

Source: Sudeep Pasricha,
On Chip Communication, Colorado 2011

38B35APO Computer Architectures

PC Architecture (cca 2000+) … Based on PCI

Buses

Source: http://computer.howstuffworks.com/pci.htm

Point-to-point

39B35APO Computer Architectures

PCIe Architecture - Bus is Replaced by Shared Switch

Microprocessor
Root

complex

End
point

End
point

End
point RAM

RAM

RAM

End
point

End
point End

point

End
point

End
point

End
point

End
point

Switch

Microprocessor

Bus
bridge

L2
cache

RAM

Front Side bus (FSB)

AGP
chipset

Memory
controller

RAM

RAM
Graphic

controller

Bus
bridge

PCI Bus ISA Bus

S
ys

te
m

m
em

o
ry

Back Side bus
(BSB)

P
C

I
de

vi
ce

s

IS
A

 d
ev

ic
es

PCIe = PCI Express

More details later …

40B35APO Computer Architectures

PCI Bus – Peripheral Component Interconnect

41B35APO Computer Architectures

PCI Signals – 32-bit Version

PCI
device interrupts

INTA#

INTB#

INTC#

INTD#

AD[31::00]

C/BE[3::0]#

FRAME#

TRDY#

IRDY#

STOP#

DEVSEL#

IDSEL#

PERR#

SERR#

REQ#

GNT#

CLK#

RST#

address
and data

PAR

interface
control

error
reporting

access
arbitration

(master only)

system

42B35APO Computer Architectures

PCI Devices Examples

43B35APO Computer Architectures

PCI 32-bit Bus Signals
Pin # Name PCI Pin Description Pin # Name PCI Pin Description

A1 TRST Test Logic Reset B1 -12V -12 VDC

A2 +12V +12 VDC B2 TCK Test Clock

A3 TMS Test Mde Select B3 GND Ground

A4 TDI Test Data Input B4 TDO Test Data Output

A5 +5V +5 VDC B5 +5V +5 VDC

A6 INTA Interrupt A B6 +5V +5 VDC

A7 INTC Interrupt C B7 INTB Interrupt B

A8 +5V +5 VDC B8 INTD Interrupt D

A9 ----- Reserved B9 PRSNT1 Present

A10 +5V Pow er (+5 V or +3.3 V) B10 ----- Reserved

A11 ----- Reserved B11 PRSNT2 Present

A12 GND03

A13 GND05
Ground or Keyw ay for
3.3/Universal PWB

B12 GND

B13 GND
Ground or Keyw ay for
3.3/Universal PWB

A14 3.3Vaux ----- B14 RES Reserved

A15 RESET Reset B15 GND Ground

A16 +5V Pow er (+5 V or +3.3 V) B16 CLK Clock

A17 GNT Grant PCI use B17 GND Ground

A18 GND08 Ground B18 REQ Request

A19 PME# Pow er Managment Event B19 +5V Pow er (+5 V or +3.3 V)

A20 AD30 Address/Data 30 B20 AD31 Address/Data 31

A21 +3.3V01 +3.3 VDC B21 AD29 Address/Data 29

A22 AD28 Address/Data 28 B22 GND Ground

A23 AD26 Address/Data 26 B23 AD27 Address/Data 27

A24 GND10 Ground B24 AD25 Address/Data 25

A25 AD24 Address/Data 24 B25 +3.3V +3.3VDC

A26 IDSEL Initialization Device Select B26 C/BE3 Command, Byte Enable 3

A27 +3.3V03 +3.3 VDC B27 AD23 Address/Data 23

A28 AD22 Address/Data 22 B28 GND Ground

A29 AD20 Address/Data 20 B29 AD21 Address/Data 21

A30 GND12 Ground B30 AD19 Address/Data 19

A31 AD18 Address/Data 18 B31 +3.3V +3.3 VDC

Pin # Name PCI Pin Description Pin # Name PCI Pin Description

A32 AD16 Address/Data 16 B32 AD17 Address/Data 17

A33 +3.3V05 +3.3 VDC B33 C/BE2 Command, Byte Enable 2

A34 FRAME Address or Data phase B34 GND13 Ground

A35 GND14 Ground B35 IRDY# Initiator Ready

A36 TRDY# Target Ready B36 +3.3V06 +3.3 VDC

A37 GND15 Ground B37 DEVSEL Device Select

A38 STOP Stop Transfer Cycle B38 GND16 Ground

A39 +3.3V07 +3.3 VDC B39 LOCK# Lock bus

A40 ----- Reserved B40 PERR# Parity Error

A41 ----- Reserved B41 +3.3V08 +3.3 VDC

A42 GND17 Ground B42 SERR# System Error

A43 PAR Parity B43 +3.3V09 +3.3 VDC

A44 AD15 Address/Data 15 B44 C/BE1 Command, Byte Enable 1

A45 +3.3V10 +3.3 VDC B45 AD14 Address/Data 14

A46 AD13 Address/Data 13 B46 GND18 Ground

A47 AD11 Address/Data 11 B47 AD12 Address/Data 12

A48 GND19 Ground B48 AD10 Address/Data 10

A49 AD9 Address/Data 9 B49 GND20 Ground

A50 Keyw ay Open or Ground for 3.3V PWB B50 Keyw ay Open or Ground for 3.3V PWB

A51 Keyw ay Open or Ground for 3.3V PWB B51 Keyw ay Open or Ground for 3.3V PWB

A52 C/BE0 Command, Byte Enable 0 B52 AD8 Address/Data 8

A53 +3.3V11 +3.3 VDC B53 AD7 Address/Data 7

A54 AD6 Address/Data 6 B54 +3.3V12 +3.3 VDC

A55 AD4 Address/Data 4 B55 AD5 Address/Data 5

A56 GND21 Ground B56 AD3 Address/Data 3

A57 AD2 Address/Data 2 B57 GND22 Ground

A58 AD0 Address/Data 0 B58 AD1 Address/Data 1

A59 +5V Pow er (+5 V or +3.3 V) B59 VCC08 Pow er (+5 V or +3.3 V)

A60 REQ64 Request 64 bit B60 ACK64 Acknow ledge 64 bit

A61 VCC11 +5 VDC B61 VCC10 +5 VDC

A62 VCC13 +5 VDC B62 VCC12 +5 VDC

44B35APO Computer Architectures

PCI 64-bit Signals
Pin # Name PCI Pin Description Pin # Name PCI Pin Description

A63 GND Ground B63 RES Reserved

A64 C/BE[7]# Command, Byte Enable 7 B64 GND Ground

A65 C/BE[5]# Command, Byte Enable 5 B65 C/BE[6]# Command, Byte Enable 6

A66 +5V Pow er (+5 V or +3.3 V) B66 C/BE[4]# Command, Byte Enable 4

A67 PAR64 Parity 64 B67 GND Ground

A68 AD62 Address/Data 62 B68 AD63 Address/Data 63

A69 GND Ground B69 AD61 Address/Data 61

A70 AD60 Address/Data 60 B70 +5V Pow er (+5 V or +3.3 V)

A71 AD58 Address/Data 58 B71 AD59 Address/Data 59

A72 GND Ground B72 AD57 Address/Data 57

A73 AD56 Address/Data 56 B73 GND Ground

A74 AD54 Address/Data 54 B74 AD55 Address/Data 55

A75 +5V Pow er (+5 V or +3.3 V) B75 AD53 Address/Data 53

A76 AD52 Address/Data 52 B76 GND Ground

A77 AD50 Address/Data 50 B77 AD51 Address/Data 51

A78 GND Ground B78 AD49 Address/Data 49

A79 AD48 Address/Data 48 B79 +5V Pow er (+5 V or +3.3 V)

A80 AD46 Address/Data 46 B80 AD47 Address/Data 47

A81 GND Ground B81 AD45 Address/Data 45

A82 AD44 Address/Data 44 B82 GND Ground

A83 AD42 Address/Data 42 B83 AD43 Address/Data 43

A84 +5V Pow er (+5 V or +3.3 V) B84 AD41 Address/Data 41

A85 AD40 Address/Data 40 B85 GND Ground

A86 AD38 Address/Data 38 B86 AD39 Address/Data 39

A87 GND Ground B87 AD37 Address/Data 37

A88 AD36 Address/Data 36 B88 +5V Pow er (+5 V or +3.3 V)

A89 AD34 Address/Data 34 B89 AD35 Address/Data 35

A90 GND Ground B90 AD33 Address/Data 33

A91 AD32 Address/Data 32 B91 GND Ground

A92 RES Reserved B92 RES Reserved

A93 GND Ground B93 RES Reserved

A94 RES Reserved B94 GND Ground

45B35APO Computer Architectures

PCI - Architecture

C/BE[3::0]#

Control

AD[31::00]

Slot 1
ID

S
E

L

R
E

Q
#

G
N

T
#

Slot 2

ID
S

E
L

R
E

Q
#

G
N

T
#

Slot 4

ID
S

E
L

R
E

Q
#

G
N

T
#

Slot 3

ID
S

E
L

R
E

Q
#

G
N

T
#

PCI

Bus access arbiter

Interrupt subsystem
IRQ

IDSEL

Note: During initial configuration transactions only, the IDSEL is used to
indicate to a PCI endpoint (or bridge) that it is currently selected.

46B35APO Computer Architectures

PCI terms and definitions I.

 Two devices participate in each bus
transaction:
 Initiator (starts the transaction)

× Target (obeys request)
 Initiator = Bus Master,
 Target = Slave for current transaction.

 Initiator and target role does not directly
impose data source and receiver role!

47B35APO Computer Architectures

PCI terms and definitions II.

 What does it mean that bus is multimaster?
 More participants can act as Bus Master – initiate

transfers!
 When bus signals are shared, then transactions

need to be serialized and only one device can act as
master at any given time instant

 Bus master is responsible to grant bus to requesting
participant

 Who takes care of bus arbitration?
 One dedicated device or bus backplane

Note: A decentralized (distributed) bus arbitration also exists, i.e., all devices
participate in the selection of the next bus master, but not for PCI.

48B35APO Computer Architectures

PCI terms and definitions III.

 The rising clock edge is reference/trigger point for all
phase of the bus cycle/transaction timing

 Bus cycle is formed in most cases by
 address phase
 data phase

 Premature termination of data transfer is possible
during bus cycle

 Transfer synchronization itself is pseudo-
synchronous

49B35APO Computer Architectures

Reduce Bus/Signal Lines Number – Share/Multiplexing

C/BE[3::0]#

Control

AD[31::00]

Slot 1
ID

S
E

L

R
E

Q
#

G
N

T
#

Slot 2

ID
S

E
L

R
E

Q
#

G
N

T
#

Slot 4

ID
S

E
L

R
E

Q
#

G
N

T
#

Slot 3

ID
S

E
L

R
E

Q
#

G
N

T
#

PCI

Bus access arbiter

Interrupt subsystem
IRQ

IDSEL

AD[31::00] signals are
used for address

transfer during initial
transfer phase, then

they are used for data

50B35APO Computer Architectures

Bus Cycle Kind/Direction – Command – Specified by C/BE

C/BE[0::3]# Bus command (BUS CMD)

0000 Interrupt Acknowledge

0001 Special Cycle

0010 I/O Read

0011 I/O Write

0100 Reserved

0101 Reserved

0110 Memory Read

0111 Memory Write

1000 Reserved

1001 Reserved

1010 Configuration Read (only 11 low addr bits for fnc and reg + IDSEL)

1011 Configuration Write (only 11 low addr bits for fnc and reg + IDSEL)

1100 Memory Read Multiple

1101 Dual Address Cycle (more than 32 bits for address – i.e. 64-bit)

1110 Memory Read Line

1111 Memory Write and Invalidate

51B35APO Computer Architectures

A Read Operation on the PCI Bus
1 2 3 4 5 6 7

CLK

Frame#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Adress #1 #4

Cmnd Byte enable

#2 #3

52B35APO Computer Architectures

A Read Operation on the PCI Bus

1 2 3 4 5 6 7

CLK

Frame#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Adress #1 #4

Cmnd Byte enable

#2 #3

FRAME# indicate the beginning of a
transaction.
Address on the AD lines
Read command on the C/BE# lines.

53B35APO Computer Architectures

A Read Operation on the PCI Bus

1 2 3 4 5 6 7

CLK

Frame#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Adress #1 #4

Cmnd Byte enable

#2 #3

The selected target asserts
DEVSEL# to indicate recognized its
address and is ready to respond

The initiator removes the address,
from the AD lines

54B35APO Computer Architectures

A Read Operation on the PCI Bus

1 2 3 4 5 6 7

CLK

Frame#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Adress #1 #4

Cmnd Byte enable

#2 #3

Asserts IRDY# to indicate ready
to receive data.

Target asserts TRDY# and
begins to send data.

55B35APO Computer Architectures

A Read Operation on the PCI Bus

1 2 3 4 5 6 7

CLK

Frame#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Adress #1 #4

Cmnd Byte enable

#2 #3

If target is not ready, it would delay
asserting TRDY# until it is ready.
The entire burst of data need not be sent in
successive clock cycles.
Note: Either the initiator or the target may
introduce a pause by deactivating its
ready signal, then asserting it again when
it is ready to resume the transfer of data.

56B35APO Computer Architectures

A Read Operation on the PCI Bus

1 2 3 4 5 6 7

CLK

Frame#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Adress #1 #4

Cmnd Byte enable

#2 #3

FRAME# deactivates this signal
before the last word of the
transfer.

57B35APO Computer Architectures

A Read Operation on the PCI Bus

1 2 3 4 5 6 7

CLK

Frame#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Adress #1 #4

Cmnd Byte enable

#2 #3

Target sends the last word then stops.
After sending the last word, the target
deactivates TRDY# and DEVSEL# and
disconnects its drivers on the AD lines.

58B35APO Computer Architectures

Some Remarks and Observations

● The length of the transferred data block is controlled by
the FRAME signal. It is negated (de-asserted) before last
word transfer by initiator.

● Single world or burst transfer can be delayed by inserting
wait cycles (pseudo-synchronous synchronization)!

59B35APO Computer Architectures

PCI Bus Memory Write Timing

60B35APO Computer Architectures

PCI Bus Memory Read Timing

61B35APO Computer Architectures

Interrupt Acknowledge Cycle

● Processor needs time to save interrupted execution state
to allow state restoration after return from service routine

● Interrupt controller provides vector number (assigned to
the asynchronous event) and CPU is required to translate
it to the interrupt service routine start address

● All these activities require some time

62B35APO Computer Architectures

Interrupt Acknowledge Cycle Timing

63B35APO Computer Architectures

Some More Details About Standard PC PIC IRQ Routing

INTA#
INTB#
INTC#
INTD#

PCI#4

INTA#
INTB#
INTC#
INTD#

PCI#3

INTA#
INTB#
INTC#
INTD#

PCI#4

INTA#
INTB#
INTC#
INTD#

PCI#4

PCI slots

IRQX
IRQY
IRQZ

IRQW

IRQ2,9
IRQ3
IRQ4
IRQ5
IRQ6
IRQ7

IRQ10
IRQ11
IRQ12
IRQ14
IRQ15In

te
rr

up
ts

 f
ro

m
 m

a
in

bo
ar

d
in

te
gr

at
ed

 p
er

ip
he

ra
ls

In
te

rr
up

t
re

qu
es

ts
 m

ul
tip

le
xo

r
(P

C
I

ch
ip

se
t)

P
IC

 8
25

9#
1

Timer
Keyboard

CMOS RTC

0

1
2
3
4
5
6
7

INTR

to CPU

P
IC

 8
25

9#
2

0

1
2
3
4
5
6
7

NXP

64B35APO Computer Architectures

Standard PC PIC Interrupt Vectors Assignment

Common interrupt numbers for
PC category computers:

IRQ

0 Timer (for scheduler, timers)

1 Keyboard

2 i8259 cascade interrupt

8 Real-time clocks (CMOS wall time)

9 Available or SCSI controller

10,11 Available

12 Available or PS/2 mouse

13 Available or arithmetics co-processor

14 1-st IDE controller

15 2-nd IDE controller

3 COM2

4 COM1

5 LPT2 or available

6 Floppy disc controller

7 LPT1

65B35APO Computer Architectures

Message Signaled Interrupt

● Memory address space write by device to a special
address → interrupt to CPU

● MSI from PCI 2.2 (single interrupt per device)
● MSI-X from PCI 3.0 (up to 2048 can be allocated)
● Reasons

● Pin-based PCI interrupts often shared
● Pin-based can arrive before data reach memory
● PCI devices supports only single pin-based per function.

66B35APO Computer Architectures

Recapitulation of the Bus Description Steps

● Notice: we started PCI description by bus topology
analysis, PCI signals and then we moved to timing
diagrams

● simpler cases first (read and write)
● then how bus access is arbitrated
● the special functions (interrupt acknowledge) last

● Doc. Šnorek recommends: always follow these steps
when trying to learn new bus technology.

67B35APO Computer Architectures

PCI Bus Timing Laboratory Exercise

68B35APO Computer Architectures

Some more notes regarding the bus hardware realization

69B35APO Computer Architectures

How Signals are Transferred

Single ended (asymmetric) versus.
differential (symmetric)

English term
Signalling

70B35APO Computer Architectures

Typical Signaling Levels and Some Speed Considerations

Differential signaling Single ended signaling

71B35APO Computer Architectures

PCIe – Peripheral Component Interconnect Express

72B35APO Computer Architectures

Microprocessor
Root

complex

End
point

End
point

End
point RAM

RAM

RAM

End
point

End
point End

point

End
point

End
point

End
point

End
point

Switch

PCIe Architecture

Source:
 http://computer.howstuffworks.com/pci-express.htm

73B35APO Computer Architectures

PCIe Topology and Components

PCI/PCI-X

Switch

Memory

PCI Express
Endpoint CPU Root

Complex

CPU

Legacy
Endpoint

PCI Express
Endpoint

PCI Express
Endpoint

Legacy
Endpoint

PCI Express-PCI
Bridge

PCI
Express

PCI
Express

PCI
Express

PCI
Express

PCI
Express

PCI
Express

74B35APO Computer Architectures

Why Switch to Serial Data Transfer

75B35APO Computer Architectures

RC Delay in Wire

uc(t)=uin (1-e-t /τ), τ=R.C

50 % = 0.69 RC
R

C

 uin uc(t)

0 τ 2τ 3τ

86,3% uin
95% uin

63,2% uin

capacitor C is charged by R

t - time

50% uin

R

 C G C G C G C G

Wire: The length of one wire element → 0 and the number of elements → ∞

R `R `R

76B35APO Computer Architectures

Deformation of Signals

Source:

77B35APO Computer Architectures

High Speed Serial Link

Source: S. Palermo: High-Speed Serial I/O Design for Channel-Limited and Power-Constrained Systems , Texas A&M University 2010

Only ideal theoretical signals:-)

PLL
= Phase-locked Loop

(cz: fázový závěs)
generates frequency
with phase related to
input reference signal

ref clk.

78B35APO Computer Architectures

High Speed Serial Link Reality

Source: TELEDYNE LECROY, 2018

79B35APO Computer Architectures

PCIe Transfers Signaling, PCIe Lanes

● Link interconnect switch with
exactly one device

● Differential AC signaling is used
– two wires for single direction

● Each link consists of one or
more lanes

● Lane consists of two pair of
wires

● One pair for Tx and other one
for Rx

● Data are serialized by 8/10 code
● The separate pairs allow full-

duplex operation/transfers Up to x16 lanes scalable

80B35APO Computer Architectures

PCIe Slot Signals

Pin Side B Connector Side A Connector

Name Description Name Description
1 +12v +12 volt power PRSNT#1 Hot plug presence detect

2 +12v +12 volt power +12v +12 volt power
3 RSVD Reserved +12v +12 volt power
4 GND Ground GND Ground
5 SMCLK SMBus clock JTAG2 TCK

6 SMDAT SMBus data JTAG3 TDI
7 GND Ground JTAG4 TDO
8 +3.3v +3.3 volt power JTAG5 TMS
9 JTAG1 +TRST# +3.3v +3.3 volt power
10 3.3Vaux 3.3v volt power +3.3v +3.3 volt power
11 WAKE# Link Reactivation PWRGD Power Good

Mechanical Key

12 RSVD Reserved GND Ground
13 GND Ground REFCLK+

14 HSOp(0) Transmitter Lane 0, REFCLK-
Reference Clock
Differential pair

15 HSOn(0) Differential pair GND Ground
16 GND Ground HSIp(0)

17 PRSNT#2 Hotplug detect HSIn(0)
Receiver Lane 0,
Differential pair

18 GND Ground GND Ground

81B35APO Computer Architectures

PCIe physical link layer

Differential full-duplex
physical layer

8b/10b encoding provides enough edges for clock signal
reconstruction/synchronization and balanced number of ones and zeros.
This ensures zero common signal (DC) and AC (only) coupling is possible

82B35APO Computer Architectures

PCIe Physical Layer Model

Source: Budruk, R., at all: PCI Express System Architecture

83B35APO Computer Architectures

PCIe Characteristics

● 2.5 GHz clock frequency (1 GT/s), raw single link single
direction bandwidth 250 MB/s (can be multiplied by parallel
lanes – 2×, 4×, 8×)

● Single link efficient data rate is 200 MB/s, this is 2× … 4×
more than for classic PCI

● The bandwidth is not shared, point to point interconnection
● Two pairs of wires, differential signaling
● Data are encoded (modulated) using 8b/10b code
● Expected up to 10 GHz clocks due technology advances
● PCI Express 2.x (2007) allows 5 GT/s (5 GHz clock)
● PCI Express 3.x (started at 2010) increases it to 8 GT/s
● Encoding changed from 8b/10b (20% bandwidth used by

encoding) to "scrambling" and 128b/130b encoding (takes
only 1.5% of the bandwidth)

84B35APO Computer Architectures

PCI and PCIe Slots on the PC Motherboard

Picture source: Wikipedia

PCIe x4

PCIe x16

PCIe x1

PCIe x16

32-bit classic
PCI slot

LanParty nF4 Ultra-D mainboard
from DFI

85B35APO Computer Architectures

ExpressCard

ExpressCard/34 CardBus
PCMCI

ExpressCard/54

PCIe 1

PCIe 4

PCIe 1

PCIe 8

86B35APO Computer Architectures

The PCIe board DB4CGX15 Example

● PCIe x1
● Altera

EP4CGX15
BF14C6N FPGA

● EPCS16
Configuration
device

● 32Mbyte DDR2
SDRAM

● 20 I/O Pins
● 4 Input Pins
● 2 User LEDs

87B35APO Computer Architectures

PCIe Communication Protocol – HW and SW Layers

PCIe physical topology is serial, point-to-point, packet oriented, but its logical view
and behavior is the same as PCI – that is multi-master bus, same enumeration,
read/write cycles

88B35APO Computer Architectures

Data Packet Structure and Transport Layers

Source: http://zone.ni.com/devzone/cda/tut/p/id/3767#toc0

89B35APO Computer Architectures

PCIe Packet Format

Specification highlights:

• Packet length from 4B to 4096B
• PCIe packed has o be exchanged as the whole (no option to

preempt when higher priority transfer is requested)
• Long packed can cause increase of latencies in the system
• On the other hand, short packets overhead (frame/data) is

considerable

90B35APO Computer Architectures

USB-C, Alternative Modes, PCIe and Thunderbolt

● SuperSpeed+ / USB 2.0 with up to 480 Mbit/s data rate
● 10 and 20 Gbit/s (1 and ~2.4 GB/s) when two lanes used
● USB Power Delivery 2.0 3 A current (@ 20 V, 60 W),

high-power 5 A current (@ 20 V, 100 W).
● Cable electronic ID chip
● Alternate Mode partner specifications: DisplayPort,

Mobile High-Definition Link, Thunderbolt, HDMI

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

B12 B1B2B3B4B5B6B7B8B9B10B11

RX1+ RX1− VBUS SBU2 D− D+ CC2 TX2−VBUS TX2+GND GND

TX1− VBUS CC1 D+ D− SBU1 RX2−VBUS RX2+TX1+GND GNDGND

91B35APO Computer Architectures

USB-C Signals

Source: https://en.wikipedia.org/wiki/USB-C

Pin Name Description Pin Name Description

A1 GND Ground return B12 GND Ground return

A2 SSTXp1 SuperSpeed diff. pair #1, TX,
pos.

B11 SSRXp1 SuperSpeed diff. pair #2, RX,
pos.

A3 SSTXn1 SuperSpeed diff. pair #1, TX,
neg.

B10 SSRXn1 SuperSpeed diff. pair #2, RX,
neg.

A4 VBUS Bus power B9 VBUS Bus power

A5 CC1 Configuration channel B8 SBU2 Sideband use (SBU)

A6 Dp1 USB 2.0 diff. pair, position 1,
pos.

B7 Dn2 USB 2.0 diff. pair, position 2,
neg.

A7 Dn1 USB 2.0 diff. pair, position 1,
neg.

B6 Dp2 USB 2.0 diff. pair, position 2,
pos.

A8 SBU1 Sideband use (SBU) B5 CC2 Configuration channel

A9 VBUS Bus power B4 VBUS Bus power

A10 SSRXn2 SuperSpeed diff. pair #4, RX,
neg.

B3 SSTXn2 SuperSpeed diff. pair #3, TX,
neg.

A11 SSRXp2 SuperSpeed diff. pair #4, RX,
pos.

B2 SSTXp2 SuperSpeed diff. pair #3, TX,
pos.

A12 GND Ground return B1 GND Ground return

92B35APO Computer Architectures

PCI(e) I/O Bandwidth Expectations and Reality

Source: Nextpatform

PCIe buses overcome theoretical expectations

https://www.nextplatform.com/2017/07/14/system-bottleneck-shifts-pci-express/

93B35APO Computer Architectures

PCI-signal Bandwidth in Numbers

Source: Nextpatform

https://www.nextplatform.com/2017/07/14/system-bottleneck-shifts-pci-express/

94B35APO Computer Architectures

PCI/PCIe Programmer/Operating System Model

95B35APO Computer Architectures

Computer Startup Procedure (from PCI perspective)

1. CPU is directed by BIOS code to retrieve device identification for each PCI slot.
This is done by read cycle from PCI configuration space. The read (topological)
address decodes to IDSEL (Initialization Device Select) signal to the
corresponding PCI slot (bus/device/function) + register number

2. Each device identification (Vendor ID, Device ID) and request for I/O resources
(sizes of I/O ports and memory ranges and interrupt link (A/B/C/D) use by function)
are read. All this information is available in card/slot configuration space. This
search is done together with bus numbers assignment when bridge is found.

3. BIOS allocates non-overlapping ranges to the devices. It ensures that there is no
collision with system memory and I/O. Interrupts can be, and are, shared but
sharing level can be balanced. Allocated ranges/resources are written to the
corresponding device/function Base Address Register (BAR). They usually stay
constant till computer power off but OS can reconfigure them under certain
circumstances.

4. Operating System is loaded and given control. OS reads devices identifications
again from PCI configuration space and locates device drivers according to VID:PID
(+class,+subsystem IDs).

● This process of device “searching” is called enumeration and is used in some form
by each PnP aware bus (PCI, USB, etc.).

96B35APO Computer Architectures

PCI Bus Hierarchy

DI D2

1
Bridge

DI D2

DI

DI D2

CPU

Bus 0

Bus 1

Bridge Bridge
3 2

Bus 4

Bridge
4

Bus 2Bus 3

Subordinate=4

Primary Bus = 0
Secondary Bus = 1

Subordinate=2

Primary Bus = 1
Secondary Bus = 2

Subordinate=4

Subordinate=4

Primary Bus = 1
Secondary Bus = 3

Primary Bus = 3
Secondary Bus = 4

97B35APO Computer Architectures

PCI BUS Address Space(s)

● PCI bus recognizes three address spaces:
● memory – address is 32 or 64-bit
● I/O – exists mainly for compatibility with x86 specific I/O ports and

I/O instructions concept
● configuration space – 256 bytes are assigned to each device

function in the basic PCI bus variant, 8 functions per
device/slot/card and 32 devices per bus can exist in maximum.

● Each end-point device can implement up to 6 Base Address
Registers (BARs) which can define up to 6 independent regions
(address ranges) – each for I/O or memory mapped access. For
64-bit ranges BARs are used in pairs. The requested size is
obtained by writing ones into BAR bits and reading back where
BAR's bits corresponding to the range size are fixed on zero.
LSB bits then informs about address space type. Then
BIOS/OS writes allocated region start address back to the BAR.

98B35APO Computer Architectures

PCI Configuration Space Address and Access

● There are two mechanisms of accessing configuration space
on x86 PC:

● Through well known I/O ports
0xCF8 – PCI CONFIG_ADDRESS (write address first, A0:1=0)

0xCFC – PCI CONFIG_DATA (read/write corresponding byte,
16-bit or 32-bit entity, address bits 0 and 1 added to 0xCFC)

● Enhanced Configuration Access Mechanism (ECAM) –
required for PCI express – 4kB per slot, memory mapped

071131 10 8 2 1
00Func RegisterDevice Select

071131 10 8 2 1
0Func Register 1Reserved DeviceBus

24 23 16 15
Topological/geographical BDF address

1 from n original IDSEL activation address – not used today

99B35APO Computer Architectures

PCI Device Header
31 1516 0

Device Id Vendor Id
CommandStatus

Class Code

00h
04h

08h

24h

10h

3Ch

Base Address Registers

Line Pin

Rev ID

BIST Hdr.Type Max.Lat. Cache LS

3ChCap ptr

0131

Reserved

Base Address 1

Base Address for PCI I/O Space

2

234

Base Address

Typeprefetchable

Base Address for PCI Memory Space

01

0

31

Device's PCI header is located in PCI bus
configuration space

100B35APO Computer Architectures

PCI Device Header Type 0 – End-point device

Device ID Vendor ID

Status Command

Class Code Revision ID

BIST Header Type Master Lat. Timer Cache Line Size

Base Address Registers
6 max

Cardbus CIS Pointer

Subsystem ID Subsystem vendor ID

Expansion ROM Base Address

Reserved Capabilities Pointer

Reserved

Max_Lat Min_Gnt Interrupt Pin Interrupt Line

Byte
Offset

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

101B35APO Computer Architectures

PCI Device Header Type 1 – Bus Bridges
Byte
Offset

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

Reserved Capabilities Pointer

Expansion ROM Base Address

Bridge Control Interrupt Pin Interrupt Line

Device ID Vendor ID

Status Command

Class Code Revision ID

BIST Header Type Master Lat. Timer Cache Line Size

Base Address Register 0

Base Address Register 1

Secondary Latency
Timer

Subordinate Bus
Number

Secondary Bus
Number

Primary Bus
Number

Secondary Status I/O Limit I/O Base

Prefetchable Memory Limit Prefetchable Memory Base

Prefetchable Base Upper 32 Bits

Prefetchable Limit Upper 32 Bits

I/O Limit Upper 16 Bits I/O Limit Base Upper 16 Bits

Memory Limit Memory Base

102B35APO Computer Architectures

I/O address space (x86 in, out instructions)

BAR 0
BAR 1
BAR 2
BAR 3
BAR 4
BAR 5

Mem

I/O

Mem

Memory space:
common for I/O and
system memory

BAR 0
BAR 1
BAR 2
BAR 3
BAR 4
BAR 5 Mem

PCI card #0

PCI card #1

If CPU writes to
this location, write
is recognized by
PCI device/card
#0. Its effect
depends on card
logic. I.e. for
graphic card
frame-buffer it
behaves same as
regular memory,
but data are seen
on the screen.

Mem

I/O

Memory

PCI device/card is informed
about assigned addresses …

BAR registry

data
data
data

data

data
data

103B35APO Computer Architectures

I/O address space (x86 in, out instructions)

BAR 0
BAR 1
BAR 2
BAR 3
BAR 4
BAR 5

Mem

I/O

Mem

Memory space:
common for I/O and
system memory

BAR 0
BAR 1
BAR 2
BAR 3
BAR 4
BAR 5 Mem

PCI card #0

PCI card #1

If CPU writes to
this location, write
is recognized by
PCI device/card
#0. Its effect
depends on card
logic…

Mem

I/O

Memory

PCI device/card is informed
about assigned addresses …

BAR registry

data
data
data

data

data
data

This is
physical

/bus
address

Study mmap()
function
manual.

Do not forget to
munmap()…

mmap(BAR1)

base addr. +4
mmap(BAR0)

mmap(BAR1)

CPU/code use
virtual

addresses and
are translated

by MMU !!!

104B35APO Computer Architectures

Linux /proc/bus/pci Directory

● Each directory represents one PCI bus (with its number
assigned) and each file mirrors one PCI device function PCI
header (the first 64 bytes)

● Homework: Write C/C++ language program that can traverse and
open files in given directory and its subdirectory and searches for
given sequence of four characters (4B) at each file start. The full
path of the first matching file is printed.

105B35APO Computer Architectures

Linux /proc/bus/pci Directory – Command lspci -vb

00:00.0 Host bridge: Intel Corporation 82X38/X48 Express DRAM Controller
 Subsystem: Hewlett-Packard Company Device 1308
 Flags: bus master, fast devsel, latency 0
 Capabilities: [e0] Vendor Specific Information <?>
 Kernel driver in use: x38_edac
 Kernel modules: x38_edac

00:01.0 PCI bridge: Intel Corporation 82X38/X48 Express Host-Primary PCI
Express Bridge
 Flags: bus master, fast devsel, latency 0
 Bus: primary=00, secondary=01, subordinate=01, sec-latency=0
 I/O behind bridge: 00001000-00001fff
 Memory behind bridge: f0000000-f2ffffff
 Kernel driver in use: pcieport
 Kernel modules: shpchp

00:1a.0 USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI
Controller #4 (rev 02)
 Subsystem: Hewlett-Packard Company Device 1308
 Flags: bus master, medium devsel, latency 0, IRQ 5
 I/O ports at 2100
 Capabilities: [50] PCI Advanced Features
 Kernel driver in use: uhci_hcd

106B35APO Computer Architectures

Disk – Another Critical Memory Hierarchy Component

● Enhancement required
● Speedup
● Reliability

107B35APO Computer Architectures

Hard Drive

Picture source: https://www.hddzone.com/hard_disk_drive_compontents.html

Drawing source: Junfeng Yang

https://www.hddzone.com/hard_disk_drive_compontents.html

108B35APO Computer Architectures

Disk Storage

Head
Assembly
All heads move

together Platter

Sector

Top and bottom
Surfaces

Head
Spindle Track

Shaft
Arm

Source: U. Ramachandran and W. D. Leahy Jr.: An Integrated Approach to Architecture and Operating Systems , 2008

109B35APO Computer Architectures

Disk Storage

Cylinder X: Track X

from all 12 surfaces

(2 per platter)

Each circle represents

two tracks: one for top surface

and one for bottom surface

Source: U. Ramachandran and W. D. Leahy Jr.: An Integrated Approach to Architecture and Operating Systems , 2008

110B35APO Computer Architectures

Sequential v.s. Random

A sequential access
• Seek to the right track
• Rotate to the right sector
• Transfer

A random access of the same amount of data
• Seek to the right track
• Rotate to the right sector
• Transfer
• Repeat

Since seek and rotate are slow, sequential access is much
faster than random access

111B35APO Computer Architectures

Examples of HD Parameters

Barracuda 180 Cheetah X15 36LP

Capacity 181GB 36.7GB

Disk/Heads 12/24 4/8

Cylinders 24247 18479

Sectors/track ~609 ~485

Speed 7200 RPM 15000 RPM

Rotational latency (ms) 4.17 2.0

Avg seek (ms) 7.4 3.6

Track-2-track(ms) 0.8 0.3

Table source: Junfeng Yang

112B35APO Computer Architectures

Maximum RPM

Sonar boom - source: U.S. Navy/Travis K. Mendoza

Diameter RPM

3.5 inch 73105

2.5 inch 102347

The sound velocity at
the HDD circuit is
reached at RPM

But RPM also
increases spinning

and centrifugal power

http://www.navy.mil/view_single.asp?id=102144
http://www.navy.mil/view_single.asp?id=102144
http://www.navy.mil/view_single.asp?id=102144
http://www.navy.mil/view_single.asp?id=102144

113B35APO Computer Architectures

IOPS

IOPS=1 / (Average Seek Time + Average Latency)

IOPS stands for input/output operations per second

Pameter HD SSD

IOPS 55-180 3000-40000

IOPS/Watt 10-30 2000-60000

$/GB $0.02 - $0.04 $0.25-$0.50

Data retention
if unplugged

10 - 60 years 1 - ?100? years / 25 °C
SSD are used for short
time, reliable data are
unknown yet

Backblaze Hard Drive Stats
https://www.backblaze.com/b2/hard-drive-test-data.html

https://www.backblaze.com/b2/hard-drive-test-data.html

114B35APO Computer Architectures

SSD vs HDD

Google test of SSD:
The annual replacement rates of hard disk drives have previously been

reported to be 2-9%, which is high compared to the 4-10% of flash drives we
see being replaced in a 4 year period.

However, flash drives are less attractive when it comes to their error rates.
More than 20% of flash drives develop uncorrectable errors in a four year
period, 30-80% develop bad blocks and 2-7% of them develop bad chips.

In comparison, previous work [1] on HDDs reports that only 3.5% of
disks in a large population developed bad sectors in a 32 months period
– a low number when taking into account that the number of sectors on a
HDD is orders of magnitudes larger than the number of either blocks or chips
on a SSD, and that sectors are smaller than blocks, so a failure is less severe.

[1] An analysis of latent sector errors in disk drives. BAIRAVASUNDARAM, L. N.,
GOODSON, G. R., PASUPATHY, S., AND SCHINDLER, JIn Proceedings of the 2007 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’07, ACM, pp. 289–300.

http://0b4af6cdc2f0c5998459-c0245c5c937c5dedcca3f1764ecc9b2f.r43.cf2.rackcdn.com/23105-fast16-papers-schroeder.pdf

115B35APO Computer Architectures

RAID 0

● RAID – Redundant Array of
Inexpensive/Independent Disks

● Can be used to achieve higher
performance/throughput of the
hard disks

● Method called stripping
● Raw bandwidth up to two times

higher
● Capacity is sum of the both

devices

Images source: Wikipedia

116B35APO Computer Architectures

RAID 1

● Each data block exists in two
copies, each on one of two
independent disks

● The total capacity is same as of a
single disk

● Data reliability is much higher,
probability of coincidence of two
independent events (disk failures) is
much much lower than for single
device

● Method is called mirroring
● Write has some overhead against

single device. Reads can be
optimized for less head movement

117B35APO Computer Architectures

RAID 10

● It is combination of both previous techniques
● RAID 0 is created first on two (or more) devices and all

data are copied on the second set of devices (same as
for RAID1)

● RAID 10 contributes to both – reliability and performance
● Disadvantage – at least 4 drives with same capacity are

required.
● Total capacity T, disk capacity D, number of drives n

n=2⋅ceil(T
2⋅D)RAID 0 n=2⋅ceil  T

D RAID 1

n=4⋅ceil(T
2⋅D)RAID 10

118B35APO Computer Architectures

RAID 5

● The data blocks are
distributed over n-1 drives (for
each disk LBA) and last block
represents parity (XOR for
example) of previous blocks

● But disk used for parity is
chosen sequentially for each
disk LBA – it balances
number of rewrites and speed
gain for degraded mode

● It speeds-up reads, single
block write is slower because
of checksum computation
overhead

n=ceil  T
D 1

119B35APO Computer Architectures

RAID 6

● Uses two parity blocks on
different disks for given
disk LBA. Each parity is
computed different way.

● It is resistant to two
concurrent disk failures

● The read is speed similar
to RAID 5, write is more
demanding/complex

n=ceil  T
D 2

120B35APO Computer Architectures

RAID Discs Failure Probability for 2 Disks

RAID1 2-way

single disk

RAID0 2 disks

single disc survival probability

w
h
o
l
e

a
r
r
a
y

s
u
r
v
i
v
a
l

p
r
o
b
a
b
i
l
i
t
y

Use of 2 same disks
● RAID0

T = 2D
● RAID1

T = D

121B35APO Computer Architectures

RAID Discs Failure Probability for 4 Disks

RAID1 4-way

RAID6 2+2

RAID5 3+1

RAID0 4 diskd

single disc survival probability

w
h
o
l
e

a
r
r
a
y

s
u
r
v
i
v
a
l

p
r
o
b
a
b
i
l
i
t
y

Use of 4 same disks
● RAID0

T = 4D
● RAID1

T = D
● RAID5

T = 3D
● RAID6

T = 2D

122B35APO Computer Architectures

RAID Discs Failure Probability for 6 Disks

RAID1 6-way

RAID6 4+2

RAID5 5+1

RAID0 6 disks

single disc survival probability

w
h
o
l
e

a
r
r
a
y

s
u
r
v
i
v
a
l

p
r
o
b
a
b
i
l
i
t
y

Use of 6 same disks
● RAID0

T = 6D
● RAID1

T = D
● RAID5

T = 5D
● RAID6

T = 4D

	I/O Subsystem Part 1
	Picture of the Day - Pine near Houska Castle
	Lecture outline
	John von Neumann's Computer Architecture
	Data Path, Control and Memory from Our CPU Design
	Signals to Connect CPU to External Memory and Peripherals
	Classification of Input/Output Devices/Peripherals
	Diversity of Use and Needs of IO Devices
	Layers of the I/O Software System
	Linux Storage Stack Diagram (Simplified but Complex Still)
	Memory-mapped I/O
	Address Decoder – Idea
	Address Decoder – Central or on Addon Boards
	Example: Speech Synthesizer – Hardware
	Example: Speech Synthesizer – Integration
	Example: Speech Synthesizer – Driver
	Example: Speech Synthesizer – Driver on MIPS
	Serial Port – UART, The First Chance to Say Hello for CPU
	QtMips Serial Port Addresses
	QtMips Write Hello World to Serial Port
	QtMips Serial Port – Single Cycle
	QtMips Serial Port – Pipelined
	QtMips – Simple I/O Peripherals
	QtMips Peripherals Documentation and Frame Buffer
	Generalized Summary Based on Example
	Use of Buses for Input/Output on Real Systems
	Motivation to Use and Study Buses
	Motivation – Intel – Only as an Example
	Personal Computer Motherboard
	Main Task of I/O Subsystem
	Some Other Examples and Solutions
	Serial ATA – Solution Used Today
	Interfacing Terminology – Important Terms
	Reminder: bus x point-to-point connection
	Synchronous Parallel Data Transfer
	Asynchronous Bus
	Asynchronous Parallel Data Transfer by Strobing
	PC Architecture (cca 2000+) … Based on PCI
	PCIe Architecture - Bus is Replaced by Shared Switch
	PCI Bus – Peripheral Component Interconnect
	PCI Signals – 32-bit Version
	PCI Devices Examples
	PCI 32-bit Bus Signals
	PCI 64-bit Signals
	PCI - Architecture
	PCI terms and definitions I.
	PCI terms and definitions II.
	PCI terms and definitions III.
	Reduce Bus/Signal Lines Number – Share/Multiplexing
	Bus Cycle Kind/Direction – Command – Specified by C/BE
	A read operation on the PCI bus
	A Read Operation on the PCI Bus 2
	A Read Operation on the PCI Bus 3
	A Read Operation on the PCI Bus 4
	A Read Operation on the PCI Bus 5
	A Read Operation on the PCI Bus 6
	A Read Operation on the PCI Bus 7
	Some Remarks and Observations
	PCI Bus Memory Write Timing
	PCI Bus Memory Read Timing
	Interrupt Acknowledge Cycle
	Interrupt Acknowledge Cycle Timing
	Some More Details About Standard PC PIC IRQ Routing
	Standard PC PIC Interrupt Vectors Assignment
	Message Signaled Interrupt
	Recapitulation of the Bus Description Steps
	PCI Bus Timing Laboratory Exercise
	Some more notes regarding the bus hardware realization
	How Signals are Transferred
	Typical Signaling Levels and Some Speed Considerations
	PCIe – Peripheral Component Interconnect Express
	PCIe Architecture
	PCIe Topology and Components
	Why Switch to Serial Data Transfer
	RC Delay in Wire
	Deformation of Signals
	High Speed Serial Link
	High Speed Serial Link Reality
	PCIe Transfers Signaling, PCIe Lanes 1
	PCIe Slot Signals
	PCIe Transfers Signaling, PCIe Lanes
	PCIe Physical Layer Model
	PCIe Characteristics
	PCI and PCIe Slots on the PC Motherboard
	ExpressCard
	The PCIe board DB4CGX15 example
	PCIe Communication Protocol – HW and SW Layers
	Data Packet Structure and Transport Layers
	PCIe Packet Format
	USB-C, Alternative Modes, PCIe and Thunderbolt
	USB-C Signals
	PCI(e) I/O Bandwidth Expectations and Reality
	PCI-signal Bandwidth in Numbers
	PCI/PCIe Programmer/Operating System Model
	Computer Startup Procedure (from PCI perspective)
	PCI Bus Hierarchy
	PCI BUS Address Space(s)
	PCI Configuration Space Address and Access
	PCI Device Header
	PCI Device Header Type 0 – End-point device
	PCI Device Header Type 1 – Bus Bridges
	PCI BARs Mapping
	PCI BARs Mapping to Virtual Addresses
	Linux /proc/bus/pci Directory
	Linux /proc/bus/pci Directory – Command lspci -vb
	Disk – Another Critical Memory Hierarchy Component
	Hard Drive
	Disk Storage
	Disk Storage 1
	Sequential v.s. Random
	Examples of HD Parameters
	Maximum RPM
	IOPS
	SSD vs HDD
	RAID 0
	RAID 1
	RAID 10
	RAID 5
	RAID 6
	RAID Discs Failure Probability for 2 Disks
	RAID Discs Failure Probability for 4 Disks
	RAID Discs Failure Probability for 6 Disks

