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Problems often formalised as MDP

States: x e R™ incomplete, noisy
Actions: u e R™ continuous high-dimensional
Model:  p(x'|x,u) inaccurate model

Rewards: r(x,u,x’) € R hard to engineer

Policy:  m(ulx) execution endanger the robot

Goal: " =argmax Jr  (e.g. Jr = @TNW{Z Ve )

T
T+~YT



Typical problems

Model identification: p(x'|x, u)

* glven some trajectories
estimate model

Model predictive control / Planning | 7™ = arg max y.
* given the model and reward —

r(x,u,x estimate optimal policy/plan

Reinforcement learning:
— | given rewards and trajectories,
r(x,u,x') estimate optimal policy

7 = argmax J,
7T

Inverse reinforcement learning:

/
— | ¢ given optimal trajectories rix,u,x) €R

estimate reward function
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Model identification:

* Build physical engine and identify physical quantities
e usually non-differentiable black-box model

* |earn (deep convolutional) network to predict
following state Xp+1 = po(Xk,ur) + N

- 2
argmin Y [Po(x, ur) — Xpr1
k
For example fully observable, time-discrete, linear system:

Xkp+1 = Axy, + Buy

'\\9

 More complex formulations: RNN or autoregressive model
such as PixelCNN++
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Model Predictive Control/Planning

* (Given model and reward function, the criterion can be explicitly formulated and
optimized

e YOu can either
 plan actions (BFS, Dijkstra, A*, RRT, ...)
or
» directly optimize policy, which generate actions (LQR)
e {0 maximize a reward function.



Planning actions

1. Collect trajectories  71,72,73,..., INni; 8 = rand w = rand
2. Estimate motion model

arg min ||x" — po(x,u)|
(x,u,x’)ET

3. Plan policy (sequence of actions) maximizing
the rewards on model-based trajectories

arg max {Z (e, k) | X1 = po (ke uy) |

Up,u1,...,UN—-1

> >

e typically non-convex => gradient optimization inefficient
e BFS, Dijkstra, A*, RRT, ... => open loop control



Learning policy

1. Collect trajectories  71,72,73,..., INni; 8 = rand w = rand
2. Estimate motion model

arg min ||x" — po(x,u)|
(x,u,x’)ET

3. Learn/plan policy maximizing the rewards on
model-based trajectories

argmax (Xkﬂlk) \ Xk+1 — p@(Xk,Hk)a U = '/‘w(Xk)}

e

 Especially: linear system + quadratic reward function
 LQR has closed form solution => closed loop control
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State-action value function
a D C
Q(x,u): X xU —- R
d C The best sum of rewards | can get,
when following action u in state X

and then controlling optimally

e Search for the Q, which satisfies Bellman equation

Q(x,u) = r(x,u,x') + max Q(x',u’)

* Once we find it, we can control optimally as follows:
1" (x) = argmax Q(x,u) = arg max J;

o Search without model is based on collecting trajectories
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TN\ 71 : (a,R,-1), (b,R,-1), (¢, R, 10)
state action reward next state
X1 [0 §] 1 X2
° Q(x1,u1) = 71 + 7 max Q(xz, )

Q(a,R) =—-1+0.9 max Q(b,u)

Q(X, 11) X XU —R Q(ba R) =—-14+0.9 ml?’XQ(Ca ll)
Q(c,R) =10

Having a trajectory, each
transition gives one equation
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LHS Q-values
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1 (a,R,-1), (b,R,-1), (¢, R,10)

N T

state action reward next state
X1 U] 1 X9

Q(Xh 111) =71+ ”le?XQ(Xza u)

(2) Repeat several ti
(searcn for the fixeg




Q-learning

- Collect transition [x,u,r,x’]
2 Solve Q(x,u) =r + Y max Q(x',u’)
3. Repeat from 1
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Q-learning

1. Collect transition [x,u,r,X]
2. Solve Q(x,u) =r+ Y max Q(x',u’)
3. Repeat from 1

e Curse of dimensionality
* Replace table ((x,u) by function Qg(x,u)
Approximate Q-learning (DQN)

1. Collect transition [x,u,r,x’]
- Estimate y =7+ ”ymaXQe(X u')
Update parameters by learning

arg min > 1Qo(x,u) —y|

X7u7y

W N

4. Repeat from 1



Mnih et al. Nature 2015

o 26000 atari games
o state space x : last four frames to capture dynamics
(e.g. RGB images in VGA resolution)
e action spaceu : 18 discrete joystic actions
(8 direction + 8 direction with button + neutral action + neutral with button)

QQ (X, U_)

Convolution Convolution Fully connected Fully connecte
v v v

o

i
w ..Té\umé&}a doooun

Why not to use u in the input?
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Q-learning

Collect transition
Solve Q(x,u) =r + Y max Q(x',u’)

. Repeat from 1

Curse of dimensionality
Replace table ()(x,u) by function Qg(x,u)

Approximate Q-learning (DQN)

. Collect transition [x,u, r, X]
 Estimate target y =7 WmaXQe X', U

Update parameters by ldarning

arg min > 1Qokx,u) =y

Repeat from 1

x7u7y

* Samples are strongly correlated !



* Samples are strongly correlated !

Solution: ReplayMemory => minibatch sampled at random
(decorrelates samples to be “more i.i.d”)

Transition = namedtuple( "Transition’,
(‘'state’, 'action’, 'next_state’, reward’))

class ReplayMemory(object):
def push(seli, *args):
if len(seli.memory) < .capacity:
.memory.append(None)
.memory[self.position] = Transition(*args)
Jposition = (self.position + 1) % .capacity

def sample(self, batch_size):
return random.sample(self.memory, batch_size)

hitps://pytorch.org/tutorials/intermediate/reinforcement._g_learning.html


https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
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Q-learning

Collect transition
Solve Q(x,u) =r + Y max Q(x',u’)

. Repeat from 1

Curse of dimensionality
Replace table ()(x,u) by function Qg(x,u)

Approximate Q—\eaming (DQN)

- Collect

~ Estimaté targe §=T vmaXQe(X u')

Update parameters by \armng (assumes I.i.d+n.n.)

arg min > 1Qolx,u) —y|

Repeat from 1

x7u7y

* Samples are strongly correlated !



Q-learning

1. Collect transition [x,u,r, x|
2. Solve Q(x,u) =1+ Y max Q(x',u’)
3. Repeat from 1

e Curse of dimensionality
* Replace table ((x,u) by function Qg(x,u)

Approximate Q-learning (DQN)
Collectjtransition |x,u,r, x'|=> ReplayMemory
Sample transition(s) at random from Rep ayemory
Estimate target(s) y =r + Y max Qo(x',u’)

Update parameters by \eammg (assumes i.i.d+n.n.)

arg min > Qo(x,u) —y|

X7u7y

* Samples are strongly correlated !

=~ W=

Repeat from 1

On



Q-learning

1. Collect transition [x,u,r, x|
2. Solve Q(x,u) =1+ Y max Q(x',u’)
3. Repeat from 1

e Curse of dimensionality
* Replace table ((x,u) by function Qg(x,u)

Approximate Q-learning (DQN)
Collect transition [x, u, r, x'|=> ReplayMemory

Sample transition(s) at random from Rela Memory
Estimate target(s) y = r + vma

Update parameters by \eammg (as mes ..d+n.n.)

=~ W=

On

Repeat 'om 1 x Approximated/Q-learning does not
have to converge to a fixed point.



* Approximated Q-learning does not

have to converge to a fixed point.
Solution: Two Q-networks:

» Target net Q7(x,u)
(slowly updated, used for estimating targets)
 Policy net  Qu(x,u)
(regularly updated after each transition,
used for exploration)

hitps://pytorch.org/tutorials/intermediate/reinforcement._g_learning.html
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Q-learning

1. Collect transition [x,u,r,X]
2. Solve Q(x,u) =r+ Y max Q(x',u’)
3. Repeat from 1

e Curse of dimensionality
* Replace table ((x,u) by function Qg(x,u)

Approximate Q-learning (DQN)
Collect transition [x, u, r, x'|=> ReplayMemory

Sample transition(s) at random from Re\a Memory
Estimate target(s) y = r + ’ymax

Update parameters by \earmng assumes ..d+n.n.)

arg min D> Re(x, w) -yl

X, U,y

=~ W=

Repeat from 1

On
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=~ W=

=2

Q-learning

Collect transition [x,u,r, x|
Solve Q(x,u) =r + Y max Q(x',u’)

. Repeat from 1

Curse of dimensionality
Replace table ()(x,u) by function Qg(x,u)

Approximate Q-learning (DQN)
Collect transition [x, u, r, x'|=> ReplayMemory

Sample transition(s) at random from Re\a Memory
Estimate target(s) y = r + ’ymax

Update parameters by \earmng assumes ..d+n.n.)

arg min D> Re(x, w) -yl

X, U,y

Update target network 0 := af + (1 — )0
Repeat from 1



Mnih et al. Nature 2015

o 26000 atari games
o state space x : last four frames to capture dynamics
(e.g. RGB images in VGA resolution)
e action spaceu : 18 discrete joystic actions
(8 direction + 8 direction with button + neutral action + neutral with button)

QQ (X, U_)

Convolution Convolution Fully connected Fully connecte
v v v

o

i
nwu ..Té\umé&}a doooun




Mnih et al. Nature 2015

e replay buffer (decorrelates samples to be "more i.1.d")
e two Q-networks (suppress oscilations)

 collection of control tasks: https://gym.openai.com



https://gym.openai.com

Mnih et al. Nature 2015

Video Pinball |
Boxing |
Breakout |

Star Gunner |
Robotank |
Atlantis |

Crazy Climber |
Gopher |

Demon Attack |
Name This Game |
Krull |

Assault |

Road Runner |
Kangaroo |
James Bond |
Tennis |

Pong |

Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |

Time Pilot |
Enduro |

Fishing Derby |
Up and Down |
Ice Hockey |
Q*bert |
H.E.R.O. |
Asterix |

Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist |
River Raid |
Zaxxon |

Amidar |

Alien |

Venture |
Seaquest |
Double Dunk |
Bowling |

Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |

Private Eye |
Montezuma's Revenge |

\

At human-level or above

Below human-level

“""*'*“'""'wmulll\mm

X
N
o~

DQN

2% .
Best linear learner
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I I I I I 0| I
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Hessel et. al Rainbow DQN, 2017
Ensemble of DQN (average of different implementations)

DQN

DDQN

Prioritized DDQN

Dueling DDQN , /
200% A3C

Distributional DQN
Noisy DQN

Rainbow f

100%

Median human-normalized score
N
-
+
5%
0%
g,i
{
%‘3’

| /:I A
//
0 s i | J
0% 7 44 100 200

Millions of frames
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Approximate Q-learning (DQN)

set of discrete
actions

tinuous X
mensional

Collect transition [x, u, r, x'|=> ReplayMemory
Sample transition(s) at random from Rep\ayl\/lemory
Estimate target(s) y = + 7 max Q7 (x",u’)

Update parameters by \eammg (assumes i.i.d+n.n.)

argmin » [ Qo(x,u) — |

X, U,y
Update target network 0 := af 4 (1 — a0
Repeat from 1




Approximate Q-learning (DQN)

continuous X
high-dimensional

Collect transition [x, u, r, x'|=> ReplayMemory
Sample transition(s) at random from Rep\ayl\/lemory
Estimate target(s) y = + 7 max Q7 (x",u’)

Update parameters by \eammg (assumes i.i.d+n.n.)

argmin » [ Qo(x,u) — |

X, U,y
Update target network 0 := af 4 (1 — a0
Repeat from 1
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Approximate Q-learning (DQN)

continuous X
high-dimensional

Collect transition [x, u, r, x'|=> ReplayMemory
Sample transition(s) at random from Rep\ayl\/lemory
Estimate target(s) y = + 7 max Q7 (x",u’)

Update parameters by \eammg (assumes i.i.d+n.n.)

argmin » [ Qo(x,u) — |

X, U,y
Update target network 0 := af 4 (1 — a0
Repeat from 1

>~ W=

On

=2



Approximate Q-learning (DQN)

continuous %
high-dimensional |Qg(x, ul= scalar Q-value
u

Collect transition [x, u, r, x'|=> ReplayMemory
Sample transition(s) at random from Rep\ayl\/lemory
Estimate target(s) y = + 7 max Q7 (x",u’)

Update parameters by \eammg (assumes i.i.d+n.n.)

argmin » [ Qo(x,u) — |

X, U,y
Update target network 0 := af 4 (1 — a0
Repeat from 1

>~ W=

On

=2



Approximate Q-learning (DQN)

continuous
high-dimensional

Collect transition [x, u, r, x'|=> ReplgyMemory
Sample transition(s) at random fromw¥ieplayMemory

Estimate target(s) y =r + 7

Update parameters by learnifg(c

argmin » [ Qo(x,u) — |

X, U,y
Update target network 0 := af 4 (1 — a0
Repeat from 1

>~ W=

1.d+n.n.)

On

=2
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Deep Deterministic Policy Gradient (DDPGQG)

tinuous *
mensional Ko (X, u= Q ......... critic (Q—va\ue net)
u

tinuous -
| | X 15 A actor (policy net
mensional (policy net)

Collect transition [x, u, r, x'|=> ReplayMemory
Sample transition(s )at random from ReplayMemory

Estimate target(s) y =r + 7

Update parameters by learnMg(aSSUME

arg min > Qe (x,u) —y|

X, U,y

Update target network 9@ .= 9% + (1 — a)6?
Repeat from 1
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Deep Deterministic Policy Gradient (DDPGQG)

tinuous *
mensional Ko (X, u= Q ......... critic (Q—va\ue net)
u

tinuous -
| | X 15 A actor (policy net
mensional (policy net)

Collect transition [x, u, r, x'|=> ReplayMemory

|
Sample transition(s ) at random from Repl\/lemory
a’}

Estimate target(s) y = r + Y max QQQ(
Update parameters by \eammg (assumes .1.d

arg min > Qpe(x,u) — v

X, U,y

Update target network 9@ .= 0% + (1 — )9%

Repeat from 1

n.n.)
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Deep Deterministic Policy Gradient (DDPGQG)

tinuous *
mensional Ko (X, u= Q ......... critic (Q—va\ue net)
u

tinuous -
| | X 15 A actor (policy net
mensional (policy net)

Collect transition [x, u, r, x'|=> ReplayMemory

|
Sample transition(s ) at random from ReplayMemory

Estimate target(s) y = r + Q5o (X', [rg=(X')
Update parameters by \eaming (assumes I.1.d

arg min > Qpe(x,u) — v

X, U,y

Update target network 9@ .= 0% + (1 — )9%

Repeat from 1

n.n.)



Deep Deterministic Policy Gradient (DDPGQG)

continuous  *
high-dimensional (2 0Q (X, ul>» ) ......... critic (Q-value net)
u
continuous .
. . , X u actor (policy net
high-dimensional (policy net)

Collect transition [x, u, r, x'|=> ReplayMemory
Sample transition(s) at random from ReplayMemory

Estimate target(s) y = r + Q4o (X', 7T@_W(X,))
Update critic argmm Z Qo (x,u) — |

- Update actor ;. n%axZQgQ X, Tom (X))

6. Update target networ 00— af" + (1 — )0«

07 := af™ + (1 — a)O™

>~ W=

/. Repeat from 1



Deep Deterministic Policy Gradient (DDPGQG)

Update critic

X u ¢

x,u,r,x'|=> ReplayMemory
. Sample transition(s )at random from ReplayMemory

1
2
3. Estimate target(s) y = r + 7Qza (X', mg= (X))
4

. Collect transition

. Update critic arg Ig%n Z ||Q9Q (X, 11) _ yH

0. Update actor argn%aXZQe@ (x, Tor (%))

o. Update target network };_Q — af® + (1 — )@
07 := af™ + (1 — )07

/. Repeat from 1



Deep Deterministic Policy Gradient (DDPGQG)

Updaate actor

X u ?

. Collect transition [x, u, r, x'|=> ReplayMemory
. Sample transition(s )at random from ReplayMemory

1
2

3. Estimate target(s) y = r + 7Qza(x’, mg=(x"))
4. Update critic arg mm Z Qo (x. 1) — v

X,a,y

. Upaate actor argmaXZQeQ X, Tor (X))

0. Up0adlE argelnmework g« =

/. Repeat from 1



Deep Deterministic Policy Gradient (DDPQG) variants

Taking maximum in target equation often overestimates
y =71 +17Qe (X, mg=(x"))

* [Fujimoto, 2018] Twin Delayed DDPG (TD3)
https://arxiv.org/pdf/1802.094 77 .pdf

e [earn two Q functmns and take minimum of its outputs

e Delayed pollcy updates upd & Q 2x more frequently)

 Add noise to policy actions


https://arxiv.org/pdf/1802.09477.pdf

Summary
DQN and DDPG are oft-policy algorithms (can learn from transitions collected by a
different policy)
=> Can use ReplayMemory
=> Can use deterministic policy (exploration by synth.noise)

set of discrete
actions

DQN: continuous  x
high-dimensional

X
DDPG:
continuous . () scalar
X
high-dimensional

continuous
high-dimensional



Summary

 DQN and DDPG are off-policy algorithms (can learn from transitions collected by a
different policy)

=> Can use ReplayMemory

=> Can use deterministic policy (exploration by synth.noise)

 Replay memory helps to decorrelate samples.

 Exploration with a slowly updating target network
suppresses oscillations.

 Ensemble of different algorithms helps a lot.

* Next: On-policy methods with stochastic gradient



Deterministic vs stochastic policy

Deterministic policy for _’>—>u
continuous control:
Te(ulx) =



Deterministic vs stochastic policy

Deterministic policy for — » —u
continuous control:

Te(ulx) =
Stochastic policy for » —
continuous control:

me(ulx) = C - exp (92



Deterministic vs stochastic policy

Deterministic policy for _’>—>u
continuous control:
Te(ulx) =

—
Stochastic policy for y —
continuous control; ’

Stochastic policy for * W _,a
discrete control:



REINFORCE
Stochastic policy for _, _,a
discrete control:
To(u|X) =

1. Initialize policy me(u|x) = f(x,0)
2. Collect trajectories 7 with policy 7o

. L 1
3. Define criterion:  J(0) = E;wr,{ Z V) A N ZT(T)

T+~ T T

N\’
r(7)

4. Optimize criterion: 9 := 0 + o 0.J(0)
00

. Repeat from 2

@)



REINFORCE
Stochastic policy for _, _,a
discrete control:
To(u|X) =

1. Initialize policy
2. Collect trajectories 7 with policy 7o

. L 1
3. Define criterion:  J(0) = E;wr,{ Z V) A N ZT(T)

T+~ T T

N\’
r(7)

4. Optimize criterion: ¢ := ¢ + o 8}])(99) What is the gradient???

. Repeat from 2

@)



What is the gradient???

e REINFORCE theorem:

0J(0) _ 0log(mg(ulx))
T T

(u,x)EeT



What is the gradient???

e REINFORCE theorem:

0J(0) Olog(my(ulx))
0 - (u%éfr 8? ( )

Gradient is the weighted sum of direcions (in @¢space), which
iINncreases probability of performed ACtions.

The weights are sum of rewards along the resulting trajectory.
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What is the gradient???

e REINFORCE theorem:

0J(0) Olog(my(ulx))
0 - (u%GT 87 ( )

Gradient is the weighted sum of direcions (in @¢space), which
increases probability of performed aCtions.

The weights are sum of rewards along the resulting trajectory.

Learning means increasing probability of predicting actions,
that have yielded high sum of rewards.



REINFORCE

— 0
Stochastic policy for 2 Hp(u | %)
discrete control: p(u = 2|x)

1. Initialize policy mo(ulx) = f(x,6)
2. Collect trajectories 7 with policy mg(u|x)

4. Update policy (actor):

0J(0) 0 log(mg(ulx))
TR 06 r(7)

(u,x)ET

0J(0)
00
5. Repeat from 2

0 := 60+ «




trajectory:

- 01 x arameters: 0
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Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics




trajectory:

policy: 7T9(11|X) — S (

computational graph of logmg(u|x):
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s (z) 0log(p)
0z op
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Czech Technical University in Prague

Faculty of Electrical Engineering, Department of Cybernetics




% 2X2 2X2

X4

0 log gy (u|x)
00

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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trajectory: ® 2/\‘ 2 7 - *

Direction in 4D 6#-space which
iIncreases prob. of choosing control u =1

alOgWQ(U‘X) B ﬁlog(p) aS(Z) OZ

00 op 0z 00
X2 2Xx2 2x4 2X4

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics




trajectory: # 2/\‘ ® 7 - *
Xp = 2 X1 = 1 X9 = 0

Direction in 4D 6#-space which
increases prob. of choosing control u = 2

dlogme(ulx)  Olog(p) Is(z) 0z

o0 op Oz 00
o2x? 2X2 2x4

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics




trajectory: » - 2 i

By substituting actigns and states from f[he trajectory
INto the policy gradgient

8](6’) o 810gﬂ'9

0|Xo) |
06 o | T(T) | ols,

=_gfxo) |7 _g&) |-r(n)+...

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

0log 7rg(u1|x1) |




frajectory: ? - ) - 2 - 8 _ L
Xp = 3 X1 = 1 X9 = _ O _

By substituting controls and states from the trajectory
INnto the policy gradient

0J(0) 0Ologmg(up|xop) 0log mp(u1|x1)

S0 = o r(7) A Y;
— 1T(XO) - r(7) gQT(X1) r(7T) + ...

we obtain 7(7)-weighted mean of directions in g¢-space.

f trajectories are good, then r(7)weights are big and this direction in 4D
IS more preferred.

Consequently, policy parameters are changed in the direction,
which generates good trajectories

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics



REINFORCE

— 0
Stochastic policy for 2 Hp(u | %)
discrete control: p(u = 2|x)

1. Initialize policy mo(ulx) = f(x,6)
2. Collect trajectories 7 with policy mg(u|x)

4. Update policy (actor):

0J(0) 0 log(mg(ulx))
TR 06 r(7)

(u,x)ET \
0 .= 60+ a@J(Q)

00 Several equivalent ways to express
5. Repeat from 2 the quality of trajectory




Advantage Actor Critic (A2C)

Stochastic policy for _, _,a
discrete control:

1. Initialize policy mo(ulx) = f(x,6)
2. Collect trajectories 7 with policy mg(u|x)

4. Update policy (actor):

9J(0) > Ologmo(ufx) (7" YV (x') — V(X))

00
00 (u,x,x’)ET N —— e’

0J(0)
00
5. Repeat from 2

0 := 60+ «




Advantage Actor Critic (A2C)

Stochastic policy for _, _,a
discrete control:

1. Initialize policy me(u|x) =

2. Collect trajectories T with pohcy mg(u|x)
3. Update value function (critic): Vi (x) < r +yV,(x')

(3‘(7" + YV, (x") — Vw(x))Q

Ow
4. Update policy (actor):

0J(0) > Ologmo(ujx) (7" YV (x") — V(X))

00
00 (u,x,x’)ET N—

0J(0)
00
5. Repeat from 2

W .= W —

0 := 60+ «




Advantage Actor Critic (A2C)

Paper: https://arxiv.org/abs/1602.01783

Implementation: https://stable-baselines.readthedocs.io/en/master/modules/a2c.html

Explanation: https://towardsdatascience.com/understanding-actor-critic-
methods-93109/7bodi3f



https://arxiv.org/abs/1602.01783
https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f
https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f

Known successes of RL

e Computer games controlled from pixel inputs
o Atari 2D platformers
e Doom 2 - VizDoom [Wydemuch 2018]
https://arxiv.org/abs/1809.034 /0
Quake Il - Arena capture the flag
DOTA 2 openAl+ bot https://blog.openai.com/dota-2/
Starcratft |l
AlphaGo
AlphaZero



http://www.apple.com/uk
https://blog.openai.com/dota-2/

Known successes of RL - Starcraft |

o Starcraft Il (Deepmind AlphaStart beaten top-end
orofessional human gamers 5:0)
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https://medium.com/mimemoirs/deepminds-ai-alphastar-showcases-significant-

progress-towards-agi-93810c94tbe9



https://medium.com/mlmemoirs/deepminds-ai-alphastar-showcases-significant-progress-towards-agi-93810c94fbe9
https://medium.com/mlmemoirs/deepminds-ai-alphastar-showcases-significant-progress-towards-agi-93810c94fbe9

Known successes of RL - Starcraft |

o Starcraft Il game

® NO single best strateqgy

e mperfect information (unlike fully observable chess)

e |ongterm planning (significantly delayed rewards for

upgrades)

e realtime (unlike traditional board games)

* |arge action space (hundreds of buildings and possible

ocations, units and commands, upgrades)

o Starcraft Il client + dataset of anonymised game plays:

o Nhttps://githulb.com/Blizzard/s2client-proto#replay-packs

e [DeepMind + Blizzard 2017] joint paper:
https://kstatic.googleusercontent.com/files/
8tbc4bi2caot2dc1944e86te852ecta’20/72cc3/29cebbaf4ddc
8430/7/2939b60ac8915c82ead4e/e4d4862d0436a8a329a6f
06a4d538b741219e85¢c207¢c5e04162



https://github.com/Blizzard/s2client-proto#replay-packs
https://kstatic.googleusercontent.com/files/8f5c46f2ca6f2dc1944e86fe852ecfa2072cc3729ceb6af4dc84307a939b60ac8915c82ead4e7e4d4862d0436a8a329a6f06a4d538b741219e85c207c5e04f62
https://kstatic.googleusercontent.com/files/8f5c46f2ca6f2dc1944e86fe852ecfa2072cc3729ceb6af4dc84307a939b60ac8915c82ead4e7e4d4862d0436a8a329a6f06a4d538b741219e85c207c5e04f62
https://kstatic.googleusercontent.com/files/8f5c46f2ca6f2dc1944e86fe852ecfa2072cc3729ceb6af4dc84307a939b60ac8915c82ead4e7e4d4862d0436a8a329a6f06a4d538b741219e85c207c5e04f62
https://kstatic.googleusercontent.com/files/8f5c46f2ca6f2dc1944e86fe852ecfa2072cc3729ceb6af4dc84307a939b60ac8915c82ead4e7e4d4862d0436a8a329a6f06a4d538b741219e85c207c5e04f62

Known successes of RL - Starcraft |
Minigames allows for traing small RL agents
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Known successes of RL - Starcraft |

_earning consists of two phases:

e Supervised learning from anonymised human games
(performance: (1) humans - gold level, (ii) Al - elite level

e Reinforcement learning:. 14 days playing against two
grand masters (TLO, MaNa)

e Constrained Activities per Minute (APM) - Alpha Star uses
significantly less APM than human players.

e Response time 350ms (approx moderate human player)

e AlphaStar does not move camera (uses zoomed out), however
haze of war Is used.

hitps://medium.com/mimemoirs/deepminds-ai-alphastar-showcases-significant-

progress-towards-agi-93810c94tbe9



https://medium.com/mlmemoirs/deepminds-ai-alphastar-showcases-significant-progress-towards-agi-93810c94fbe9
https://medium.com/mlmemoirs/deepminds-ai-alphastar-showcases-significant-progress-towards-agi-93810c94fbe9

Known successes of RL

» AlphaGo/Alpha Zero https://en.wikipedia.org/wiki/AlphaZero
o Searchlrees has no chance in huge state-action spaces
e AlphaGo:
* peat professional Go player
e O dan professional ranking
* Alpha Zero: Top Chess Engine Championship 2017
e Oh of self-play, no openingbooks nor endgames tables
* 1 minute per move, 1GB RAM
e 28 wins, 72 withdraws
« AutoML https://cloud.google.com/automl/
o [Zoph 2016] REINFORCE learns RCNN policy which
generates deep CNN architectures.



https://en.wikipedia.org/wiki/AlphaZero
https://cloud.google.com/automl/

Known successes of RL - locomotion in simulation
|Heess 2017 https://arxiv.or 1/707.02286

This agent, trained on several terrain types, has
never seen the "see-saw" terrain.

*
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https://arxiv.org/abs/1707.02286

[Levine [JRR 2017] https://arxiv.org/abs/1603.02199

manipulator+ RGB camera



https://arxiv.org/abs/1603.02199

[Levine [URR 2017] https://arxiv.org/abs/1603.02199

|»-'r

Source: Peter/Pasto#



https://arxiv.org/abs/1603.02199

No visual inputs + flat terrain => simple domain transter

S

q-

|[Hwangbo, ETH Zurich, Science Robotics, 2018]



Motion and compliance control of tlippers
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Boston dynamics - Atlas - NO RL AT ALL




- Haston Dyrimie:




Typical problems

Model identification: p(x'|x, u)

* glven some trajectories
estimate model

Model predictive control / Planning | 7™ = arg max y.
* given the model and reward —

r(x,u,x estimate optimal policy/plan

Reinforcement learning:
— | given rewards and trajectories,
r(x,u,x') estimate optimal policy

7 = argmax J,
7T

Inverse reinforcement learning:

/
— | * given optimal trajectories rx,u,x) €R

estimate reward function




Rewards engineering

e Sparse rewards are easier to design correctly
 Dense rewards are easler to learn

e Half cheetah:
e sparse rewards (for reaching the goal position fast)
e dense rewards (for velocity)




Rewards engineering

e Sparse rewards are easier to design correctly
 Dense rewards are easler to learn
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Rewards engineering

e Sparse rewards are easier to design correctly
* Dense rewards are easier to learn
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Rewards engineering

e Sparse rewards are easier to design correctly

e Dense rewards are easler to learn




Rewards engineering

e Sparse rewards are easier to design correctly
 Dense rewards are easler to learn

sparse rewards
A



Rewards engineering

e Sparse rewards are easier to design correctly
 Dense rewards are easler to learn

T well-chosen dense rewards
W



Rewards engineering

e Sparse rewards are easier to design correctly
 Dense rewards are easler to learn

] pbadly chosen dense rewards




Rewards engineering

* Dense reward allows to easier find the corresponding
action but they are more likely to introduce bias.

 Boat racing (bad dense rewards):
* sparse rewards (winning the race)
* dense rewards (collecting powerups, checkpoints ...)

i
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_earning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.
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e |mitation learning setup



_earning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

e |mitation learning setup
1. Collect expert trajectories 7,753,753, .-

2. Find policy argmin " [Ime(xi) — a3

(X’i, 7ai)€7-*



_earning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

e |Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 7,753,753, .-

2. Find policy argmin " [Ime(xi) — a3

(X’i, 7a_-i)€7-*

* |nverse reinforcement learning setup



_earning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

e |Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 7,753,753, .-

2. Find policy argmin " [Ime(xi) — a3

(X’i, 7a_-i)€7-*

* |nverse reinforcement learning setup

1. Collect expert trajectories 7,753,753,
2. Find reward function 7y

arg min || w5
W

subject to: Z re(x,u,x’) < Z re(X,u,x)

(x,u,x")e{T\7*} (x,u,x’)eT*




_earning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

e |Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 7,753,753, .-

2. Find policy argmin " [Ime(xi) — a3

(X’i, 7a_-i)€7-*

* |nverse reinforcement learning setup

1. Collect expert trajectories 7,753,753,
2. Find reward function 7y

arg min || w5
W

subject to: ReLU( Z re(x,u,x) — Z I (X, u,x’))=0

(x,u,x")e{T\7*} (x,u,x’)eT*




_earning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

e |Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 7,753,753, .-

2. Find policy argmin " [Ime(xi) — a3

(X’i, 7a_-i)€7-*

* |nverse reinforcement learning setup

1. Collect expert trajectories 7,753,753,
2. Find reward function 7y

argm“ifn||W||%+ReLU( Z re(X,u,X') — Z rw (X, u,x’))

(x,u,x’")e{T\7*} (x,u,x’)eT*




_earning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

e |Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 7,753,753, .-

2. Find policy argmin " [Ime(xi) — a3

(X’i, 7a_-i)€7-*

* |nverse reinforcement learning setup

1. Collect expert trajectories 7,753,753,
2. Find reward function 7y

argm“ifn||W||%+ReLU( Z rew(X,u,X') — Z rw (X, u,x’))

(x,u,x’")e{T\7*} (x,u,x’)eT*




_earning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

e |Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 7,753,753, .-

2. Find policy argmin " [Ime(xi) — a3

(X’i, 7a_-i)€7-*

* |nverse reinforcement learning setup

1. Collect expert trajectories 7,753,753,
2. Find reward function 7y

argm“i’n||W||%+ReLU(Z raw(X, 1, x’) — Z rw (X, u,X/))

(x,u,x’)eTbest (x,u,x")eT*




_earning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

e |Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 7,753,753, .-

2. Find policy argmin " [Ime(xi) — a3

(X’i, 7a_-i)€7-*

* |nverse reinforcement learning setup

1. Collect expert trajectories 71,759,753,
2. Find reward function 7w

argm“i’n||W||%+ReLU(Z raw(X, 1, x’) — Z rw (X, u,X/))

(x,u,x’)eTbest (x,u,x")eT*

3. Solve underlying RL/control task



Abbeel et al. IURR 2010

* |nverse reinforcement learning

o state space: angular and euclidean position,
velocity, acceleration

e action space: motor torques

e |earning reward function from expert pilot

fb\‘\ \
=



Abbeel et al. IURR 2010
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Silver et al. [JRR 2010

Similar to recent DARPA RACER
hitp://www.dtic.mil/dtic/tr/fulltext/u2/a525288.pdf




Silver et al. [URR 2010

input image (state) learned reward function
(traversability map)

hitp://www.dtic.mil/dtic/tr/fulltext/u2/a525288.pdf



Going back to DARPA
o Should we keep building pipelines or should we rather train all-in-once”??
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Going back to DARPA
o Should we keep building pipelines or should we rather train all-in-once”??

panoramic Images motor torques

_|_
detected objects




PROS all-in-one approach

|Held and Hein, J. of Comparative Psychology, 1963]

Self-actuated movement is necessary in order to
develop normal perception.

=> independent training of components is bad idea

FiG. 1. Apparatus for equating motion and consequent visual feedback for an actively moving (A)
and a passively moved (P) S.



CONS all-in-one approach

- RL is sample inefficient (>=200M transitions required for atari games)

- Real robot can easily break.

- Learning from simulator suffers from simulation bias (e.g. vision)

-+ Even if you learn a all-in-one network, the behaviour not interpretable.



[NVidia, CVPR, 2016]
hitps://images.nvidia. com/content/tegra/automotlve/lmages/ZO1 o/solutions/pdf/end-

to-end-dl-using-px.pdf
Straightforward driving of autonomous car by a deep net?

Human driver
>k

L 2-l0SS

) = £(x,0)

- Reliable? Explainable? Managable?



Interpretable motion planning
|Zeng,.. Urtasun from Uber, CVPR, 2019]

Lidar scans t=1

lanes
+
traffic signs
+
traffic lights

http://www.cs.toronto.edu/~wenijie/



Interpretable motion planning
|Zeng,.. Urtasun from Uber, CVPR, 2019]

Lidar scans t=1

LOSSdet—}-pred

lanes
+
traffic signs
+
traffic lights

http://www.cs.toronto.edu/~wenijie/



Interpretable motion planning
|Zeng,.. Urtasun from Uber, CVPR, 2019]

Lidar scans

Lossdet-{—pred

costmap

lanes
+
traffic signs
+
traffic lights

http://www.cs.toronto.edu/~wenijie/



Interpretable motion planning
|Zeng,.. Urtasun from Uber, CVPR, 2019]

Lidar scans

Lossdet-{—pred

costmap

lanes
+
traffic signs
+
traffic lights

Planning

http://www.cs.toronto.edu/~wenijie/



Interpretable motion planning
’ |Zeng,.. Urtasun, CVPR, 2019]

*

) »* COSttrajectory =Ci1+Cy+ - -+CT

http://www.cs.toronto.edu/~wenijie/



Interpretable motion planning
|Zeng,.. Urtasun from Uber, CVPR, 2019]
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Trajectory g aen® XN

costmap
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Planning

http://www.cs.toronto.edu/~wenijie/



Interpretable motion planning
|Zeng,.. Urtasun from Uber, CVPR, 2019]

Det/Pred |

LOSSdet-}—pred

costmap

Trajectory
Sampler

Planning

http://www.cs.toronto.edu/~wenijie/



Interpretable motion planning
|Zeng,.. Urtasun from Uber, CVPR, 2019]

Det/Pred |

Lossdet-f—pred

costmap

Higher cost
~ u

Losspian

™ Lower cost

Planning

http://www.cs.toronto.edu/~wenijie/



Interpretable motion planning
|Zeng,.. Urtasun, CVPR, 2019]

http://www.cs.toronto.edu/~wenijie/



Interpretable motion planning
|Zeng,.. Urtasun, CVPR, 2019]

m

http://www.cs.toronto.edu/~wenijie/



Trolley problem

lllllilli | IIIIIIIIH

https://www.nature.com/articles/s41586-018-0637-6
[Moral Machine Experiment, Nature, 2018]




Trolley problem
estimated preference (normalized rewards) for life saving

Pregnant N ﬁ ......................................
Male doctor _.* ..................................................
Female doctor - * ..................................................

Fe”lale athlete - .- 2‘ .........................................................

Executive female - ‘ ..........................................................

Male athlete - el
Executive male - * ..........................................................
Large woman - * ...........................................................

Large man - * .........................................................
Homeless - ‘ ........................................................

Old man - ﬁ .......................................................
Old woman - ﬁ ......................................................

Dog e
Criminal - k ........

Cat {)ppe--
| | | |
-0.2 -0.1 No +0.1 +0.2

https://www.nature.com/articles/s41586-018-0637-6
[Moral Machine Experiment, Nature, 2018]




Trolley problem
spatial distribution of life-saving preferences

nezasahovat
lide
chodec
vyssi | 'giena
pocet
Age distribution of MM respondents
mlady it
>
= Gender
g B Male ! .
g RGones BV
= ” vy$si status dodrzuje predpisy
zapadni 1 vychodni jizni

https://www.moralmachine.net

https://www.nature.com/articles/s41586-018-0637-6
[Moral Machine Experiment, Nature, 2018]



https://www.moralmachine.net

summary

e |f accurate differentiable motion model and reward functions
are known, than optimal control is straightforward
optimization problem (efficiently tackled by MPC)

o State-action value function is dual variable wrt policy. It
serves as auxiliary function in the policy optimization:

e actor-critic methods

* heuristic in planning methods (LQR trees)

- Well engineered piece-wise architecture
(object detection=> tracking=> planning/control) seems
to be a better solution for typical robotic applications
(explainable & manageable)

 Domain transfer is main bottleneck for real
application !!!!




Regularization & overfitting

» Best regularization is using the right structure of the network

141



Regularization & overfitting

» Best regularization is using the right structure of the network
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Regularization & overfitting

* Best regularization is using the right structure of the network

image

theta

localization afflne _grid

1mage
grid_sample
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Regularization & overfitting

» Best regularization is using the right structure of the network

Lk4+1 o

image Yk+-1

144



Regularization & overfitting

» Best regularization is using the right structure of the network

Lk41 o

image v, 0

Tipi1 = Tk + vCcosl

Yk+1 = Yr + vSinf

145



Regularization & overfitting
» Best regularization is using the right structure of the network

e |2, L1 norms on weights
e avoids overfitting and exploding gradient
 Implemented via weight_decay parameter in Py lorch

optimizer = torch.optim.Adam(model.parameters(), lr=1le-3,
weight_decay=1e-4)
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Regularization & overfitting

* Training set augmentation (jittering, mirroring, occlusions, brightness/contrast/color
variations)

» |_earn augmentation policy (AutoAugment, PBA), which provides good generalizatiol
https://arxiv.org/pdf/1905.05393.pdf
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Regularization & overfitting

* Training set augmentation (jittering, mirroring, occlusions, brightness/contrast/color
variations)

* [earn augmentation policy (AutoAugment, PBA), which provides good generalizatic

https://arxiv.org/pdf/1905.05393.pdf
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