ARO

Name: \qquad

Camera and stereo examples

1. 3D PCL \Rightarrow RGB: Consider a perspective camera with the following intrinsic camera parameters K, camera rotation matrix R, and translation vector t :

$$
\mathbf{K}=\left[\begin{array}{ccc}
500 & 0 & 500 \\
0 & 500 & 250 \\
0 & 0 & 1
\end{array}\right], \mathbf{R}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \mathbf{t}=\left[\begin{array}{c}
-2 \\
0 \\
-1
\end{array}\right]
$$

a) Construct camera projection matrix $\mathbf{P} \in \mathcal{R}^{3 \times 4}$:
$\mathbf{P}=$
b) Project point

$$
\mathbf{q}=\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]
$$

into the camera. What are pixel coordinates $\mathbf{u} \in \mathcal{R}^{2}$ of the projection?

$$
\begin{aligned}
& u_{1}= \\
& u_{2}=
\end{aligned}
$$

2. RGBD \Rightarrow 3D PCL: Consider the RGBD perspective camera with the previously defined parameters:

$$
\mathbf{K}=\left[\begin{array}{ccc}
500 & 0 & 500 \\
0 & 500 & 250 \\
0 & 0 & 1
\end{array}\right], \mathbf{R}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \mathbf{t}=\left[\begin{array}{c}
-2 \\
0 \\
-1
\end{array}\right]
$$

You are given pixel coordinates $\mathbf{u}=[500 ;-50]$. Depth estimated at this coordinates by the RGBD sensor is $D(\mathbf{u})=3$. What is corresponding 3D point $\mathbf{q} \in \mathcal{R}^{3}$?
Hint: Start working in camera coordinate frame (i.e. ignore provided \mathbf{R} and \mathbf{t}) and find point \mathbf{p} such that $p_{z}=D(\mathbf{u})$ and its projection is \mathbf{u}. Then transform point \mathbf{p} to world c.f. \mathbf{q} such that $\mathbf{p}=\mathbf{R q}+\mathbf{t}$. You can easily verify that projection of \mathbf{q} to the given yields provided pixel \mathbf{u}.
3. Stereo reconstruction from 2D-2D correspondences: Consider a stereo pair created from two perspective cameras with the following intrinsic camera parameters \mathbf{K}, camera rotation matrices $\mathbf{R}_{1}, \mathbf{R}_{2}$ and translation vectors $\mathbf{t}_{\mathbf{1}}, \mathbf{t}_{\mathbf{2}}$:

$$
\mathbf{K}=\left[\begin{array}{ccc}
500 & 0 & 500 \\
0 & 500 & 250 \\
0 & 0 & 1
\end{array}\right], \mathbf{R}_{\mathbf{1}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \mathbf{R}_{\mathbf{2}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \mathbf{t}_{\mathbf{1}}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \mathbf{t}_{\mathbf{2}}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

You are given one 2D-2D correspondence $\mathbf{u}=[1200,250]^{\top}$ (pixel coordinates in the first camera \mathbf{P}), $\mathbf{v}=[2200,250]^{\top}$ (pixel coordinates in the second camera \mathbf{S}). Estimate position of the corresponding 3D point $\mathbf{q} \in \mathcal{R}^{3}$.
a) Construct camera projection matrix of both matrices $\mathbf{P}, \mathbf{S} \in \mathcal{R}^{3 \times 4}$:
$\mathbf{P}=$
$\mathrm{S}=$
b) Formulate the problem of the 3D reconstruction as a solution of the following set of linear equations $\mathbf{A}_{[4 \times 3]} \mathbf{q}_{[3 \times 1]}=\mathbf{b}_{[4 \times 1]}$
$\mathbf{A}=$
$\mathrm{b}=$
c) Use arbitrary language or tool (e.g. python/linalg, matlab, $\mathrm{C} / \mathrm{C}++$, mathematica) to solve the problem
$\mathrm{q}=$
d) Check that backprojection of computed point lies in provided pixel coordinates \mathbf{u}, \mathbf{v}.
4. Stereo epipolar line: Consider the same stereo pair created from two perspective cameras \mathbf{P}, \mathbf{S} with the same previously specified parameters.

$$
\mathbf{K}=\left[\begin{array}{ccc}
500 & 0 & 500 \\
0 & 500 & 250 \\
0 & 0 & 1
\end{array}\right], \mathbf{R}_{\mathbf{1}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \mathbf{R}_{\mathbf{2}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \mathbf{t}_{\mathbf{1}}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \mathbf{t}_{\mathbf{2}}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

Verify if these two pixel coordinates can create 2D-2D correspondence $\mathbf{u}=[1000,750]^{\top}$ (pixel coordinates in camera $\mathbf{P}), \mathbf{v}=[1000,250]^{\top}$ (pixel coordinates in camera \mathbf{S}).
a) Estimate relative pose of camera \mathbf{S} wrt camera \mathbf{P} :

$$
\mathbf{R}=
$$

$$
\mathrm{t}=
$$

b) Compute fundamental matrix.

$$
\text { Hint: }(\mathbf{t} \times \mathbf{R})=\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x} \\
-t_{y} & t_{x} & 0
\end{array}\right] \cdot \mathbf{R}
$$

$$
\mathbf{F}=
$$

c) Check if point \mathbf{v} lies in the epipolar line generated by point \mathbf{u}

YES - these two points can create 2D-2D correspondence (they correspond to a single 3D point).

NO - they cannot create 2D-2D correspondence
5. Lidar calibration: Given set of 3D-3D correspondences $\left\{\left(\mathbf{p}_{i}, \mathbf{q}_{i}\right), \mid i=1 \ldots N\right\}$ between two lidar scans. Suggest a suitable optimization problem, which estimates rotation \mathbf{R} and translation \mathbf{t}, between these two lidars. Specify also domain of \mathbf{R} and \mathbf{t}.
Hint: Do not copy it from slides, just think about it and you will figure it out.

