Motion planning lll: sampling-based planners

Vojtéch Vonasek

Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague

FACULTY

Summary from last lecture Fo s

Sampling-based planning
v Robots of arbitrary shapes

o Robot shape is considered in collision detection
 Collision detection is used as a “black-box”
 Single-body or multi-body robots are allowed

v/ Robots with many-DOFs

o Because the search is realized directly in C-space
e Dimension of C is determined by the DOFs

v Kinematic, dynamic and task constraints can be considered
o It depends on the employed local planner

7{_.% qmlt ..goall

Questions

Draw Visibility graph + path from start to goal

start

Questions

@é v

ENGINEERIN G
CTU IN PRAGUE

Draw Horizontal cell decomposition + path from start to goal

start

[]
goal

Questions Fe s

Draw Visibility graph for circle robot of radius r + path from start to goal

[]
goal

start

Questions

Draw PRM

start

Questions

Draw RRT

start

, FACULTY

Lecture outline fos Siimen

CTU IN PRAGUE

e Examples of using RRT

o For robotic manipulators
o For car-like vehicles with Dubins maneuvers
o For general simulated system

e Performance analysis

e [ssues of sampling-based planning

e Basic modifications of RRT and PRM

Considering differential constraints ¥ e

e Let assume the transition equation

x = f(x,u)

where x € X is a state vector and u € U/ is an action x(0)
vector from action space U

e X is a state space, which may be X = C or a phase space

o Phase space is derived from C if dynamics is considered
o Similarly to C, X has X and Xyps

e f(x,u)is also called forward motion model
e Let i : [0, 00] — U is the action trajectory

e Action at time tis U(t) e U

e State trajectory is derived form (t) as

t
x(t) = x(0) + /0 F(x(t'), T(t')dt’

where x(0) is the initial state at t =0

Planning under differential constraints JoS Eiis

G
CTU IN PRAGUE

e Assume we have: world W, robot A, configuration space C, state-space
X and action space U/, start and goal states Xinii, Xeoat € Afree

¢ A system specified using x = f(x, u)

e The task is to compute the action trajectory & : [0, oo] — U that satisfies:
X(0) = Xinit, X(f) = Xgou fOr some t > 0, x(t) € Xgee, Where x(t) is given
by

x(t) = x(0) + /0 (), Bt

e This defines general motion planning under differential constraints

Planning under differential constraints el i

Types of differential constraints

e Kinematics, usually given by motion model x = f(x, u)

e Dynamics, e.9. |Xs| < Xs,max (€.9. to limit speed/acceleration)

e Task constraints, e.g. m — € < Xer < 7 + €, Where X is the rotation of
robotic arm effector

Example: robot measures an object using a sensor

e How end-effector moves depending on ¢+, 2, 3 (transformation
matrices) — kinematics constraints

e The sensor cannot move faster than v, — dynamic constraint
e The sensor must be at distance d from the object — task constraint

Useful motion models

o Differential drive: control inputs are speeds of
left/right wheel (u; and uy)

) r
X = §(U’ + us)cos e
) r .

y = §(U’ + u)sing
. r

Y = Z(Ur —uy)

e Car-like: control inputs are forward velocity us
and steering angle uy

X = UsCOSyp
y = UusSing
Us

n
Lta Uy

Car-like

e Similar to basic RRT

Expansion of the tree using motion model and
discretized input set U

1 initialize tree T with Xinit

2 fori=1,...,Inax do

3 Xeand = generate randomly in X

4 Xnear = find nearest node in 7 towards Xang
5 best = oo
6
7
8
9

Xnew = @

foreach u € U/ do

X = integrate f(x, u) from Xuear OVer time At

if x is feasible and x is collision-free and
o(X, Xana) < best then

10 Xnew = X

11 best = o(X, Xrand)

-
N

if Xpew # 0 then

13 T .addNode(Xnew)
14 T.addEdge(Xnear, Xnew)
15 if g(Xnew; Xgoal) < dgoal then

16 | return path from Xpi; t0 Xgou

RRT: example with car-like robot

Car-like, forward only Car-like forward+backward motion

Enabling/disabling backward motion of car-like
e Either by assuming us > 0 (for forward motion only)
e Or explicit validation of results from local planner

line 9: if x is feasible

Example of RRT under diff. constraints Jo&S e

CTU IN PRAGUE

* We have a car-like robot with broken steering mechanisms ~, |,
e The robot can go either forward-only, or forward-and-left only \s
e Since robot is 2D and translation+rotation is required: C is 3D (L‘))‘\Iﬁ;
e State space: X =C i
X =UsCOSp y=UsSiNy o= Ltanu,
>0
Practical implementation

e Determine action variables:
Us,min < Us < Us, max

Ug.min < Up < Up max

« Discretize each range, e.g. to m values — m? combinations of us x U
e For example: U = {(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),...,(1,1)}
e Apply all u € U during tree expansion, cut off infeasible states

Example of RRT under diff. constraints & &

* We have a car-like robot with broken steering mechanisms
e The robot can go either forward-only, or forward-and-left only \s
e Since robot is 2D and translation+rotation is required: C is 3D (1’0)‘\%:)
e State space: X =C i
X =UsCOSp y=UsSiNy o= Ltanu,
¢=>0

RRT for manipulators | § B,

* g=(¢1,...,¢n), Njoints

e x = position of the link/end-effector (x,y)
~—
e x can contain also rotation if needed y 0
e Forward kinematics: x = FK(q) 2
e Inverse kinematics: g = IK(x)
L)

Collision detection needs joint coordinates!

o We need A;(q) (position of link i at q) A . X
« Collision detection is between A;(q) and O o

joint 2

Collision detection for end-effector pose x:

end-effector

o Compute g = IK(x) joint 1

« Derive Ai(q) S R —

. Two arms
Spaces: links A and Ay

e Workspace/Cartesian space/Operation space —
we plan path for end-effector (IK to joint space)

e Joint-space — we plan path by driving joints (FK to
end-effector)

RRT for manipulators Il o

CTU IN PRAGUE

Planning via inverse kinematics

e We plan path of end-effector in workspace Xrand
e Naive usage of RRT for manipulators \(X/)
e Sampling, tree growth, nearest-neighbor s. in W Y k¢2
® X.ng IS generated randomly from W
— Xand 1S the position of end-effector! o (p1
® X, Nearestin tree towards X.nqg X
e Make straigh-line from Xyear 10 Xana With resolution e X=(x,y) W
e For each waypoint x on the line:
« g = IK(x), check collisions at g ini J @
near goal
X Problem with singularities _ °
e line from Xue.r 10 Xng May contain singularity Xfew "-._xrand £
e it may result in unwanted reconfiguration oo is in WV

X Requires (fast) inverse kinematics
X Task/dynamic constraints difficult to evaluate

FAcuLry

oS B
ﬂ'll IN PRACUE

RRT for manipulators Il

Planning via forward kinematics
e We plan path in joint-space (=C)
e Sampling, tree growth and nearest-neighbor s. in C
e Assume that joint / can change by £A,
e U/ is set of possible changes of the joints, e.g.:
U = {(~01,0),(51,0), (0, ~Az), (0, Az), ...}
® Qrng IS generated randomly in C
® Q.car IS its Nearest neighbor in 7
e Tree expansion: for each u € U:
o Apply U 10 Ghear! @' = Ghear + U
» Check collision of A;(q’)
o add to tree such ¢’ that is collision-free and
minimizes distance to Grung
X Goal state needs to be defined in C!
v No issues with singularities
v Task/dynamics constraints can be easily checked

q=(p1,p2) €C
treeisinC

X
(p2 \e) _Az

X
U—(O Ag
q = (p1+0,02 — Ap)

RRT for manipulators 1V o

CTU IN PRAGUE

Planning with the task-space bias

e Combination of the two previous approaches Xrand)
e Sampling in W (task-space), tree growth in C (joint y
space) \e)
e Each nodeinthetreeis (q,x),geC, x e W LN
e g-part is used for the tree expansion £ X
o x-part is used for the nearest-neighbor search q=(¢1,02)
Cis2D

® Xung iS generated randomly from W, ekl
* Xpear iS N€Arest node from 7~ towards X..q measured in W | o (] 4y
e Get joint angles: Grana = /K (Xiana) @Nd Grear = 1K (Xuear) : @

® Quew = Straight-line expansion from Guear 10 Grana (in C) | Yiew drand]
e add g,.w and FK(Q..w) o the tree if it's collision-free

v/ Advantages: no problem with singularities, can handle
task/dynamic constraints, the goal can be specified only
in task space

Local planner: Dubins curves

e Let’'s assume a simplified Car-like car moving by a
constant forward speed us = 1:

X = CoSsp
y = singp
¢ = u

control input (turning): u = [—tan ¢max, tan dmax]

Assume a RRT planner
How to connect Guear 10 Grand
Naive approach

e try several u
e use such u that minimizes distance t0 Quuna

e Or use Dubins vehicle!

@ L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal position and tangents, American Journal of Mathematics, 79 (3):
497-516, 1957.

Local planner: Dubins curves

e Let's assume a simplified Car-like car moving by a

constant forward speed us = 1:

e control input (turning): u = [—tan ¢max, tan Gmax]

Dubins curves

e Six optimal Dubins curves: LRL, RLR, LSL, LSR, RSL,

X
y
¢

cos ¢
sing
u

RSR; S-straight, L-left, R-right

e Any two configurations can be optimally connected by

these curves

e Useful as optimal “local-planner”

@ L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal position and tangents, American Journal of Mathematics, 79 (3):

497-516, 1957.

Random question

Is PRM better than RRT?

Performance measurement

Which planner is the best?

Many planners, many modifications, many parameters
No free lunch theorem!

Selection of planner/parameters depends on the instance
We cannot rely on literature/web

Time complexity analysis does not always help

We have to measure performance by ourself

Typical indicators:

e Path quality (Iength, time-to-travel, smoothness)

e Runtime & memory requirements

e Randomized planners: all above (statistically) + success rate curve
Good practice

e Testing setup should be as similar as possible to real situation
e Don't trust the test routine!, verify it first!!

e k is the number of collision 1 initialize tree T with Ging
detection queries 2 fori=1,..., Imax do _
. 3 Qrand = generate randomly in C
e my and myy is the number of Qhear = Nea@rest node in 7 towards Qrang
geometric objects describing s Ghew = localPlanner Gnear — Grana
and W 6 if canConnect(Qnear, Gnew) then
A . . 7 T .addNode(Gnew)
e NN is the complexity of 8 T .addEdge(Gnear; Gnew)
nearest-neighbor search 9 if 0(Ghew, Ggoar) < Ggoas then
. . 0 | return path from ginic t0 Ggour
e CD is the complexity of

collision detection
e Time complexity of one iteration of RRT with n nodes

O(NN(n) + k - CD(m_4, my))

e Assuming KD-tree for nearest-neighbor and hierarchical collision
detection:
O(log n+ klog(m4 + my))

e General approach, valid for all methods

Planner analysis: cumulative probability /& fifas | o s

CTU IN PRAGUE GROUP

e Cumulative distribution function F(x)
e x is usually number of iterations (or runtime)
— probability that a plan is found in less than x iterations (or in time < x)

100
90

80

70 //
60 /
50

40

30 /
20

10 /
0

0 2000 4000 6000 8000 10000 12000 14000 16000
iterations

probability of finding solution

e For randomized planners only
e Results depend on tested scenario

Ml

Planner analysis: cumulative probability

e Cumulative distribution function F(x)
e x is usually number of iterations (or runtime)
— probability that a plan is found in less than x iterations (or in time < x)

100

S B (SIQ]
ENGINEERING U
CTU IN PRAGUE

80

-

/

v

/

/

60

40

/

/

20

|

/

probability of finding solution

Planner 1
Planner 2
Elanne[3

0

L/

5000 10000 15000 20000 25000 30000 35000 40000

e For randomized planners only
e Results depend on tested scenario

iterations

LTI-ROBOT
SYSTEMS.
GROUP

Comparison of algorithms

We have two algorithms to use. How do we select better one?

7.
Theorist 7 é?
e We decide using complexity analysis O(). .. %
Engineer (l

e We measure average runtime, memory, ..., and see

Expert and student of ARO

e Not easy question, we need to consider:

What is the main criteria?
Range of scenarios/instances to be (typically)

solved
o Computational constraints (runtime limits, memory
limits, ...)

Robustness, implementation, dependencies

RRT vs Magic RRT: intro

a B W N =

© o N o

Basic RRT

initialize tree T with gy
fori=1,..., Imax do
Grand = generate randomly in C

Ghear = Nearest node in 7 towards Grang
Qnew = localPlanner gnear — Grand
if canConnect(Quear, Gnew) then
T .addNode(gnew)
T .addEdge(QGnear, Gnew)
if o(Ghew, qgoal) < dgoal then
L return path from @iyt t0 Geoal

O(log n+ klog(m4 + my))

Magic RRT

initialize tree T with gy
fori=1,..., Inax do

Qrand = generate randomly in C
if i < 3 then

L Qrand = Qgoal

Ghear = Nearest node in 7 towards Grand
Ghew = localPlanner Guear — Grand
if canConnect(Quear, Gnew) then
T .addNode(gnew)
T .addEdge(Qgnear, Gnew)
if o(new, ngal) < dgoal then
| return path from gini t0 Ggou

O(log n+ klog(m4 + my))

e Both methods have the same time complexity

e ...but do they behave same?

RRT vs Magic RRT: scenario

goal | start

RRT vs Magic RR mple results

e What is obvious difference between these two methods?

RRT vs Magic RRT: cum. probability M e | 1S s

CTU IN PRAGUE houp

RRT Magic RRT

100 e faa I
90 o : |

80 :
70 // ~ =

60 y / Rean IE
50

40 y 4
30

0l /

10 / ~ RRT ——
Magic RRT —

0Ok 20k 40k 60k 80k 100k 120k 140k 160k
iterations

probability of finding solution

0

e Can you explain why Magic RRT is better?
e Is it true for all scenarios?
e Can you design a scenario where RRT will be better than Magic RRT?

RRT vs Magic RRT: cum. probability itmen | S

T IN PRACUE

probabiliy of finding solution

10 RRT —— -
Magic RRT ——

Ok 20k 40k 60k 8Ok 100k 120k 140k 160K
iterations

RRT vs Magic RRT: conclusion ¥ e

In our scenario, RRT is worse than Magic RRT
Above is true only for parameters used in the comparison!
There are other scenarios with opposite behavior

There are other scenarios where RRT is same (statistically) as Magic
RRT

Other parameters of RRT/Magic RRT, may lead to different results

>

Known issues of sampling-based planning & s | mts s

e One may consider sampling-based planning as a “magic” tool
... but that’s not true at all!

Sampling-based planners have many issues

e Narrow passage problem

o Difficulty of sampling small region in Cge. Surrounded by Cops
o Problematic if (all) solutions have to pass that region

e Sensitivity to metric & parameters

e How to measure distance in C ?

Selecting a good metric is as difficult as motion planning!
Many methods have “too many” parameters

Some parameters are hidden (or not well described)
How to tune the parameters?

e Supporting functions

 Collision detection & nearest-neighbor search
o Fast and reliable implementation

How do we recognize the issue? — performance measurement!

Narrow passage problem

Narrow passage (NP)
e Aregion R C Cgee With a small volume
vol(R) < vol(C)
e Probability that a random sample falls to R is
~ Vvol(R)/vol(C)
e NP are problematic if their removal changes
connectivity of Ceee

e NP are regions in C — they are given implicitly

e Location/size/volume/shape of NPs is not known!
Consequences of having NP

e PRM builds unconnected roadmaps — no solution

e RRT/EST cannot enter NP — no solution

e Number of samples must be significantly increased
e Runtime is increased

RRT/EST & NP

FACULTY

rrow passage & PRM S 8@

CTU IN PRAGUE GROUP

S
R

Narrow passage & RRT

N
|

k,

!

, FACULTY

Narrow passage Fo s,

e Narrow passages are in C
e Sometimes, we cannot (easily) see/estimate them from workspace!
e What makes the narrow passage in the Alpha-puzzle benchmark?

