Motion planning III: sampling-based planners

Vojtěch Vonásek

Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

Summary from last lecture

- ✓ Robots of arbitrary shapes
 - Robot shape is considered in collision detection
 - Collision detection is used as a "black-box"
 - Single-body or multi-body robots are allowed
- ✓ Robots with many-DOFs
 - Because the search is realized directly in C-space
 - Dimension of $\mathcal C$ is determined by the DOFs
- ✓ Kinematic, dynamic and task constraints can be considered
 - It depends on the employed local planner

Draw Visibility graph + path from start to goal

Draw Horizontal cell decomposition + path from start to goal

Draw Visibility graph for circle robot of radius r + path from start to goal

Draw PRM

Draw RRT

Lecture outline

- Examples of using RRT
 - For robotic manipulators
 - For car-like vehicles with Dubins maneuvers
 - For general simulated system
- Performance analysis
- Issues of sampling-based planning
- Basic modifications of RRT and PRM

Considering differential constraints

Let assume the transition equation

$$\dot{x}=f(x,u)$$

where $x \in \mathcal{X}$ is a state vector and $u \in \mathcal{U}$ is an action vector from action space \mathcal{U}

- \mathcal{X} is a state space, which may be $\mathcal{X} = \mathcal{C}$ or a phase space
 - Phase space is derived from C if dynamics is considered
 - Similarly to $\mathcal{C},\,\mathcal{X}$ has $\mathcal{X}_{\text{free}}$ and \mathcal{X}_{obs}
- f(x, u) is also called **forward motion model**
- Let $\tilde{u}:[0,\infty]\to\mathcal{U}$ is the action trajectory
- Action at time t is $\tilde{u}(t) \in \mathcal{U}$
- State trajectory is derived form $\tilde{u}(t)$ as

$$x(t) = x(0) + \int_0^t f(x(t'), \tilde{u}(t'))dt'$$

where x(0) is the initial state at t=0

Planning under differential constraints

- Assume we have: world W, robot A, configuration space C, state-space X and action space U, start and goal states $x_{\text{init}}, x_{\text{soal}} \in \mathcal{X}_{\text{free}}$
- A system specified using $\dot{x} = f(x, u)$
- The task is to compute the action trajectory $\tilde{u}:[0,\infty]\to\mathcal{U}$ that satisfies: $x(0)=x_{\text{init}},\ x(t)=x_{\text{goal}}$ for some $t>0,\ x(t)\in\mathcal{X}_{\text{free}}$, where x(t) is given by

$$x(t) = x(0) + \int_0^t f(x(t'), \tilde{u}(t'))dt'$$

This defines general motion planning under differential constraints

Planning under differential constraints

- Kinematics, usually given by motion model $\dot{x} = f(x, u)$
- Dynamics, e.g. $|\dot{x_6}| < x_{6,max}$ (e.g. to limit speed/acceleration)
- Task constraints, e.g. $\pi \epsilon \le x_{\it eff} \le \pi + \epsilon$, where $x_{\it eff}$ is the rotation of robotic arm effector

Example: robot measures an object using a sensor

- How end-effector moves depending on $\varphi_1, \varphi_2, \varphi_3$ (transformation matrices) \rightarrow kinematics constraints
- The sensor cannot move faster than v_y dynamic constraint
- The sensor must be at distance d from the object task constraint

Useful motion models

 Differential drive: control inputs are speeds of left/right wheel (u_l and u_r)

$$\dot{x} = \frac{r}{2}(u_l + u_r)\cos\varphi$$

$$\dot{y} = \frac{r}{2}(u_l + u_r)\sin\varphi$$

$$\dot{\varphi} = \frac{r}{L}(u_r - u_l)$$

 Car-like: control inputs are forward velocity u_s and steering angle u_φ

RRT for planning under diff. constr

- FACULTY
 OF ELECTRICAL
 MENGINEERING
 CTU IN PRAGUE
- MRS MULTI-ROBO SYSTEMS GROUP

- Similar to basic RRT
- Expansion of the tree using motion model and discretized input set \(\mathcal{U} \)

```
initialize tree \mathcal{T} with x_{init}
     for i = 1, \ldots, I_{max} do
             x_{\rm rand} = generate randomly in \mathcal{X}
             x_{\text{near}} = find nearest node in \mathcal{T} towards x_{\text{rand}}
             best = \infty
             x_{\text{new}} = \emptyset
             foreach u \in \mathcal{U} do
                     x = \text{integrate } f(x, u) \text{ from } x_{\text{near}} \text{ over time } \Delta t
                     if x is feasible and x is collision-free and
                        \varrho(x, x_{\rm rand}) < best then
10
                             X_{\text{new}} = X
                             best = \rho(x, x_{rand})
11
             if x_{\text{new}} \neq \emptyset then
12
                     \mathcal{T}.addNode(x_{new})
13
                     \mathcal{T}.addEdge(x_{\text{near}}, x_{\text{new}})
14
                     if \varrho(x_{\text{new}}, x_{\text{goal}}) < d_{\text{goal}} then
15
                             return path from x_{init} to x_{goal}
16
```


RRT: example with car-like robot

Enabling/disabling backward motion of car-like

- Either by assuming $u_s \ge 0$ (for forward motion only)
- Or explicit validation of results from local planner

line 9: if x is feasible

- We have a car-like robot with broken steering mechanisms
- The robot can go either forward-only, or forward-and-left only
- Since robot is 2D and translation+rotation is required: C is 3D

State space: $\mathcal{X} = \mathcal{C}$

$$\dot{x}=u_{s}\cosarphi$$
 $\dot{y}=u_{s}\sinarphi$ $\dot{arphi}=rac{u_{s}}{L} an u_{\phi}$ $\dot{arphi}\geq0$

Practical implementation

Determine action variables:

$$u_{s, min} \leq u_{s} \leq u_{s, max}$$
 $u_{\phi, min} \leq u_{\phi} \leq u_{\phi, max}$

- Discretize each range, e.g. to m values $\rightarrow m^2$ combinations of $u_s \times u_\phi$
- For example: $\mathcal{U} = \{(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), \dots, (1, 1)\}$
- Apply all $u \in \mathcal{U}$ during tree expansion, cut off infeasible states

Example of RRT under diff. constraints

- We have a car-like robot with broken steering mechanisms
- The robot can go either forward-only, or forward-and-left only
- Since robot is 2D and translation+rotation is required: $\mathcal C$ is 3D
- State space: $\mathcal{X} = \mathcal{C}$

$$\dot{x}=u_s\cosarphi$$
 $\dot{y}=u_s\sinarphi$ $\dot{arphi}=rac{u_s}{L} an u_\phi$ $\dot{arphi}\geq 0$

RRT for manipulators I

OF ELECTRICAL ENGINEERING CTU IN PRAGUE

- $q = (\varphi_1, \ldots, \varphi_n)$, n joints
- x = position of the link/end-effector
- x can contain also rotation if needed
- Forward kinematics: x = FK(q)
- Inverse kinematics: q = IK(x)
- Collision detection needs joint coordinates!
 - We need $A_i(q)$ (position of link i at q)
 - Collision detection is between $\mathcal{A}_i(q)$ and \mathcal{O}
- Collision detection for end-effector pose x:
 - Compute q = IK(x)
 - Derive $A_i(q)$

Spaces:

- Workspace/Cartesian space/Operation space we plan path for end-effector (IK to joint space)
 - Joint-space we plan path by driving joints (FK to end-effector)

RRT for manipulators II

- We plan path of end-effector in workspace
- Naïve usage of RRT for manipulators
- \bullet Sampling, tree growth, nearest-neighbor s. in ${\cal W}$
- $x_{
 m rand}$ is generated randomly from ${\cal W}$
- \rightarrow $x_{\rm rand}$ is the position of end-effector!
 - x_{near} nearest in tree towards x_{rand}
- Make straigh-line from x_{near} to x_{rand} with resolution ε
- For each waypoint x on the line:
 - q = IK(x), check collisions at q
- Problem with singularities
 - line from x_{near} to x_{rand} may contain singularity
 - it may result in unwanted reconfiguration
- X Requires (fast) inverse kinematics
- Task/dynamic constraints difficult to evaluate

tree is in ${\cal W}$

RRT for manipulators III

Planning via forward kinematics

- We plan path in joint-space (=C)
- \bullet Sampling, tree growth and nearest-neighbor s. in ${\cal C}$
- Assume that joint i can change by $\pm \Delta_i$
- ullet $\mathcal U$ is set of possible changes of the joints, e.g.:

$$\mathcal{U} = \{(-\Delta_1, 0), (\Delta_1, 0), (0, -\Delta_2), (0, \Delta_2), \ldots\}$$

- q_{rand} is generated randomly in C
 q_{near} is its nearest neighbor in T
- Tree expansion: for each $u \in \mathcal{U}$:
 - Apply u to q_{near} : $q' = q_{\text{near}} + u$
 - Check collision of $A_i(q')$
 - add to tree such q' that is collision-free and minimizes distance to q_{rand}
- X Goal state needs to be defined in C!
- ✓ No issues with singularities
- / Task/dynamics constraints can be easily checked

RRT for manipulators IV

Planning with the task-space bias

- Combination of the two previous approaches
- Sampling in W (task-space), tree growth in C (joint space)
- Each node in the tree is (q, x), $q \in C$, $x \in W$
 - q-part is used for the tree expansion
 - x-part is used for the nearest-neighbor search
- x_{rand} is generated randomly from \mathcal{W} ,
- x_{near} is nearest node from \mathcal{T} towards x_{rand} measured in \mathcal{W}
- Get joint angles: $q_{\text{rand}} = IK(x_{\text{rand}})$ and $q_{\text{near}} = IK(x_{\text{near}})$
- q_{new} = straight-line expansion from q_{near} to q_{rand} (in C)
- add q_{new} and $FK(q_{\text{new}})$ to the tree if it's collision-free
- ✓ Advantages: no problem with singularities, can handle task/dynamic constraints, the goal can be specified only in task space

Local planner: Dubins curves

 Let's assume a simplified Car-like car moving by a constant forward speed u_s = 1:

$$\begin{array}{rcl} \dot{x} & = & \cos \varphi \\ \dot{y} & = & \sin \varphi \\ \dot{\varphi} & = & u \end{array}$$

- control input (turning): $u = [-\tan \phi_{max}, \tan \phi_{max}]$
- Assume a RRT planner
- How to connect q_{near} to q_{rand}
- Naïve approach
 - try several u
 - use such u that minimizes distance to q_{rand}
- Or use Dubins vehicle!
- L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal position and tangents, American Journal of Mathematics, 79 (3): 497–516, 1957.

Local planner: Dubins curves

 Let's assume a simplified Car-like car moving by a constant forward speed u_s = 1:

$$\dot{x} = \cos \varphi$$
 $\dot{y} = \sin \varphi$
 $\dot{\varphi} = u$

Dubins curves

- Six optimal Dubins curves: LRL, RLR, LSL, LSR, RSL, RSR; S-straight, L-left, R-right
- Any two configurations can be optimally connected by these curves
- Useful as optimal "local-planner"
- L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal position and tangents, American Journal of Mathematics, 79 (3): 497–516, 1957.

Random question

Is PRM better than RRT?

Performance measurement

Which planner is the best?

- Many planners, many modifications, many parameters
- No free lunch theorem!
- Selection of planner/parameters depends on the instance
- We cannot rely on literature/web
- Time complexity analysis does not always help
- We have to measure performance by ourself

Typical indicators:

- Path quality (length, time-to-travel, smoothness)
- Runtime & memory requirements
- Randomized planners: all above (statistically) + success rate curve

Good practice

- Testing setup should be as similar as possible to real situation
- Don't trust the test routine!, verify it first!!

Planner analysis: time complexity

- k is the number of collision detection queries
- m_A and m_W is the number of geometric objects describing A and W
- NN is the complexity of nearest-neighbor search
- CD is the complexity of collision detection

```
initialize tree \mathcal{T} with q_{\text{init}}
for i=1,\dots,I_{\text{max}} do

q_{\text{rand}} = \text{generate randomly in } \mathcal{C}
q_{\text{near}} = \text{nearest node in } \mathcal{T} \text{ towards } q_{\text{rand}}
for q_{\text{new}} = \text{localPlanner } q_{\text{near}} \rightarrow q_{\text{rand}}
for q_{\text{new}} = \text{localPlanner } q_{\text{near}} \rightarrow q_{\text{rand}}
for q_{\text{near}} = \text{localPlanner } q_{\text{near}} \rightarrow q_{\text{near}}
for q_{\text{near}} = \text{localPlanner } q_{
```

Time complexity of one iteration of RRT with n nodes

$$\mathcal{O}(NN(n) + k \cdot CD(m_{\mathcal{A}}, m_{\mathcal{W}}))$$

 Assuming KD-tree for nearest-neighbor and hierarchical collision detection:

$$\mathcal{O}(\log n + k \log(m_{\mathcal{A}} + m_{\mathcal{W}}))$$

General approach, valid for all methods

Planner analysis: cumulative probability

- Cumulative distribution function F(x)
- *x* is usually number of iterations (or runtime)
- \rightarrow probability that a plan is found in less than x iterations (or in time < x)

- For randomized planners only
- Results depend on tested scenario

Planner analysis: cumulative probability

- Cumulative distribution function F(x)
- *x* is usually number of iterations (or runtime)
- \rightarrow probability that a plan is found in less than x iterations (or in time < x)

- For randomized planners only
- Results depend on tested scenario

Comparison of algorithms

We have two algorithms to use. How do we select better one?

Theorist

We decide using complexity analysis O()...

Engineer

We measure average runtime, memory, ..., and see

Expert and student of ARO

- Not easy question, we need to consider:
 - What is the main criteria?
 - Range of scenarios/instances to be (typically) solved
 - Computational constraints (runtime limits, memory) limits, ...)
 - Robustness, implementation, dependencies

RRT vs Magic RRT: intro

Basic RRT

```
1 initialize tree \mathcal{T} with q_{\text{init}}
2 for i = 1, ..., I_{max} do
            q_{\rm rand} = generate randomly in C
5
             q_{\text{near}} = nearest node in \mathcal{T} towards q_{\text{rand}}
             q_{\text{new}} = \text{localPlanner } q_{\text{near}} \rightarrow q_{\text{rand}}
            if canConnect(q_{near}, q_{new}) then
                    \mathcal{T}.addNode(q_{new})
                    \mathcal{T}.addEdge(q_{\text{near}}, q_{\text{new}})
10
                    if \varrho(q_{\text{new}}, q_{\text{goal}}) < d_{qoal} then
                             return path from q_{init} to q_{goal}
```

$$\mathcal{O}(\log n + k \log(m_{\mathcal{A}} + m_{\mathcal{W}}))$$

Magic RRT

```
initialize tree \mathcal{T} with q_{\text{init}}
     for i = 1, \ldots, I_{max} do
             q_{\rm rand} = generate randomly in C
             if i < 3 then
 5
                     q_{\rm rand} = q_{\rm goal}
             q_{\text{near}} = nearest node in \mathcal{T} towards q_{\text{rand}}
             q_{\text{new}} = \text{localPlanner } q_{\text{near}} \rightarrow q_{\text{rand}}
             if canConnect(q_{near}, q_{new}) then
                     \mathcal{T}.addNode(q_{new})
                     \mathcal{T}.addEdge(q_{near}, q_{new})
10
                     if \varrho(q_{\text{new}}, q_{\text{goal}}) < d_{\text{goal}} then
11
                             return path from q_{init} to q_{goal}
12
```

$$\mathcal{O}(\log n + k \log(m_{\mathcal{A}} + m_{\mathcal{W}}))$$

- Both methods have the same time complexity
- ...but do they behave same?

RRT vs Magic RRT: scenario

RRT vs Magic RRT: sample results

• What is obvious difference between these two methods?

RRT vs Magic RRT: cum. probability

- Can you explain why Magic RRT is better?
- Is it true for all scenarios?
- Can you design a scenario where RRT will be better than Magic RRT?

RRT vs Magic RRT: cum. probability

RRT vs Magic RRT: conclusion

- In our scenario, RRT is worse than Magic RRT
- Above is true only for parameters used in the comparison!
- There are other scenarios with opposite behavior
- There are other scenarios where RRT is same (statistically) as Magic RRT
- Other parameters of RRT/Magic RRT, may lead to different results

One may consider sampling-based planning as a "magic" tool
 ... but that's not true at all!

Sampling-based planners have many issues

- Narrow passage problem
 - Difficulty of sampling small region in $\mathcal{C}_{\text{free}}$ surrounded by \mathcal{C}_{obs}
 - Problematic if (all) solutions have to pass that region
- Sensitivity to metric & parameters
 How to measure distance in C?
 - Selecting a good metric is as difficult as motion planning!
 - Many methods have "too many" parameters
 - Some parameters are hidden (or not well described)
 - How to tune the parameters?
- Supporting functions
 - Collision detection & nearest-neighbor search
 - Fast and reliable implementation

How do we recognize the issue? → performance measurement!

Narrow passage problem

Narrow passage (NP)

- A region $\mathcal{R} \subseteq \mathcal{C}_{\text{free}}$ with a small volume $vol(\mathcal{R}) < vol(\mathcal{C})$
- Probability that a random sample falls to $\mathcal R$ is $\sim \textit{vol}(\mathcal R)/\textit{vol}(\mathcal C)$
- NP are problematic if their removal changes connectivity of $\mathcal{C}_{\text{free}}$
- NP are regions in $\mathcal{C} o$ they are given implicitly
- Location/size/volume/shape of NPs is not known!

Consequences of having NP

- ullet PRM builds unconnected roadmaps o no solution
- RRT/EST cannot enter NP → no solution
- Number of samples must be significantly increased
- Runtime is increased

narrow passage (NP)

PRM & NP

RRT/EST & NP

Narrow passage & RRT

- Narrow passages are in ${\cal C}$
- Sometimes, we cannot (easily) see/estimate them from workspace!
- What makes the narrow passage in the Alpha-puzzle benchmark?