# Motion planning II: sampling-based planners

## Vojtěch Vonásek

Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

## Summary of the last lecture







#### Motion/path planning

- Finding of collision-free trajectory/path for a robot
- Formulation using the configuration space C
- C is continuous  $\rightarrow$  conversion to a discrete representation (graph) → graph search
- Geometric-based methods (special cases)
  - Require an explicit representation of Cobs
  - For point/disc robots (if C is sames as W)
  - Visibility graphs, Voronoi diagrams, . . .









# Configuration space



- $\bullet$  Configuration space  ${\mathcal C}$  has as many dimensions as DOFs of the robot
- Obstacles Cobs are given implicitly!

$$\mathcal{C}_{\mathrm{obs}} = \{ q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O} \neq \emptyset \}$$

C<sub>obs</sub> depends both on robot and obstacles!



- Generally, explicit geometry/shape of  $C_{obs}$  is not available
- Problem of enumerating configurations in  $C_{obs}$
- Problem of enumerating "surface" configurations of  $\mathcal{C}_{obs}$

# Configuration space





#### Problem of enumerating "surface" configurations of $C_{obs}$

- We cannot generally/easy/fast say, what are surface/boundary configurations of  $\mathcal{C}_{\rm obs}$
- This precludes Visibility Graphs, Voronoi diagrams, Cell-decompositions to be used for high-dimensional *C*-space
  - they require surface/boundary of  $\mathcal{C}_{obs}$





# Configuration space: example I

- Map: 1000 × 700 units
- Robot: rectangle 20 × a units
- $q = (x, y, \varphi)$
- ${\cal C}$  visualized for  $0 \le \varphi < 2\pi$
- $\varphi = 0 \rightarrow \blacksquare \leftarrow \varphi = 2\pi$





# Configuration space: example II

OF ELECTRICAL MRS CTU IN PRAGUE



- Map: 2000 × 1600 units
- $q = (x, y, \varphi)$
- $\mathcal{C}$  visualized for  $0 \leq \varphi < 2\pi$
- $\varphi = 0 \rightarrow \bigcirc \leftarrow \varphi = 2\pi$









 $\mathcal{A}\colon$  equilateral triangle, side 100 units (right-bottom "hole" caused by rendering clip)

# Configuration space: example III

FACULTY
OF ELECTRICAL
ENGINEERING
CTU IN PRAGUE

- Map: 5000 × 3000 units
- $q = (x, y, \varphi)$
- $\mathcal{C}$  visualized for  $0 \le \varphi < 2\pi$
- $\varphi = 0 \rightarrow \blacksquare \leftarrow \varphi = 2\pi$







# Why is search in C-space challenging





- Usually high-dimensional for practical applications
  - Discretization not reasonable due to memory/time limits
- Non trivial mapping between the shape of robot  ${\mathcal A}$  and obstacles  ${\mathcal O}$ 
  - Simple obstacles in  ${\mathcal W}$  may be quite complex in  ${\mathcal C}$
- Narrow passages (we will discuss later)

## **Early methods**

- Designed for 2D/3D workspaces for point robots, complete, optimal (some), deterministic
- Limited only to special cases
- In late 1980s, these methods have became impractical

## But general path/planning requires search in C-space!

If you are desperate, flip a coin → randomization!

# A bit of history I



- Randomized path planner (RPP), 1991
  - Discrete workspace
  - Several potential fields for different control points of the robot
  - Gradient descend is performed for selected point
  - If goal is reached, algorithm terminates
  - Otherwise, different control point is selected and GD continues there
  - Escape from local minimum is performed by random walk



 J. Barraquand and J.-C. Latombe. Robot motion planning: a distributed representation approach. International Journal on Robotics Research, 10(6):628-649, 1991.

# A bit of history II



- ZZZ planner (1990)
  - Uses two planners: global and local
  - Global planner randomly places random goals in  $\mathcal{C}_{\text{free}}$
  - Local planner uses potential field to connect these goals

▼ B. Glavina. Solving findpath by combination of goal-directed and randomized search. In IEEE International Conference on Robotics and Automation (ICRA), 1718-1723, 1990.

# A bit of history III



- Ariadne's clew algorithm (1998)
  - Two phase tree-based planner
  - Exploration phase: adds new configuration to tree rooted at  $q_{\text{init}}$
  - Search phase: attempts to connect known (tree) configuration to  $q_{
    m goal}$
  - Both phases are solved using a genetic algorithm

▼ E. Mazer and J. M. Ahuactzin and P. Bessiere; The Ariadne's Clew Algorithm, Journal of Artificial Intelligence Research, vol 9, 1998, 295-316

# A bit of history IV



- Horsch planner (1994)
  - First roadmap-based approach: generate random samples in  $\mathcal{C}_{\text{free}}$
  - Connect samples by straight-line if possible
  - If the roadmap is disconnected, random ray is shoot from one of its vertex
  - Contact configuration is added to the roadmap and connected with nearest neighbors

→ Horsch, T. and Schwarz, F. and Tolle, H.; Motion planning with many degrees of freedom-random reflections at C-space obstacles; IEEE International Conference on Robotics and Automation (ICRA), 1994

# Sampling-based motion planning I



#### Main idea:

- ullet C is randomly sampled
- Each sample is a configuration  $q \in C$
- The samples are classified as free  $(q \in \mathcal{C}_{\text{free}})$  or non-free  $(q \in \mathcal{C}_{\text{obs}})$  using collision detection



- Free samples are stored and connected, if possible, by a "local planner"
- Result of sampling-based planning is a "roadmap" graph
- The roadmap is the discretized image of  $C_{free}$
- Graph-search in the roadmap



# Sampling-based motion planning II



- Sampling-based planning can solve any problem formulated using C-space
- Robots of arbitrary shapes
  - Robot shape is considered in collision detection
  - · Collision detection is used as a "black-box"
  - Single-body or multi-body robots allowed
- ✓ Robots with many-DOFs
  - Because the search is realized directly in C-space
  - Dimension of C is determined by the DOFs
- Kinematic, dynamic and task constraints can be considered
  - It depends on the employed local planner

## Local planner





- Sampling-based planners rely on a "local planner"
- Given configurations  $q_a \in \mathcal{C}_{\text{free}}$  and  $q_b \in \mathcal{C}_{\text{free}}$ , local planner attempts to find a path  $\tau$ :



$$\tau: [0,1] \rightarrow \mathcal{C}_{\text{free}}$$

such that  $\tau(0) = q_a$  and  $\tau(1) = q_b$ , and  $\tau$  must be collision free!

## Control-theory approach: special cases

- We can assume that  $q_a$  and  $q_b$  are "near" without obstacles
- Two-point boundary value problem (BVP)
- · Local planner is designed as a controller
- But problems are with obstacles!

## **Generally:**

- The definition of "local planning" is same as motion planning
- → same complexity as motion planning!

## Local planners







- For certain systems, BVP can be solved analytically
- $\bullet$  Example: car-like without backward motions  $\to$  Dubins car

## **Approximate local planners**

- Path  $\tau$  connects  $q_a$  with  $q_{\text{new}}$  that is near-enough from  $q_b$
- Computation e.g. using forward motion model and integration over time Δt

## Straight-line local planners

- Connects  $q_a$  and  $q_b$  by line-segment
- Check the collisions of the line-segment
- Connect q<sub>a</sub> with the first contact configuration q<sub>new</sub> or with q<sub>b</sub> if no collision occurs
- Suitable for systems without kinematic/dynamic constraints



Exact local planner



#### Approximate



Straight-line

# Single query vs. multi-query planning







- Can find paths between multi start/goal queries
- Requires to build a roadmap covering whole  $\mathcal{C}_{\text{free}}$
- Probabilistic Roadmaps (PRM) + many derivates
- ✓ good for frequent planning and replanning
- sometimes slower construction

# q init

Multi-query roadmap

## Single-query methods

- Roadmap is built only to answer a single start/goal query
- $\bullet$  The search of  ${\mathcal C}$  ends as soon as the query can be answered
- Rapidly-exploring Random Trees (RRT),
   Expansive-space Tree (EST) + their variants
- ✓ Practically faster for single-query
- $oldsymbol{\mathsf{X}}$  Any subsequent planning requires novel search of  $\mathcal C$
- X Slow for multi-query planning



Single-query roadmap

# Probabilistic Roadmaps (PRM)





Two-phase method: learning phase and query phase

#### **Learning phase**

- Random samples are generated in C
- Samples are classified as free/non-free; free samples are stored
- Each sample is connected to its near neighbors by a local planner
- Final roadmap may contain cycles

## Query phase:

- Answers path/motion planning from  $q_{ ext{init}} \in \mathcal{C}_{ ext{free}}$  to  $q_{ ext{goal}} \in \mathcal{C}_{ ext{free}}$
- q<sub>init</sub> and q<sub>goal</sub> are connected to their nearest neighbors in the roadmap (using local planner)
- · Graph-search of the roadmap



Learning phase



# Query phase



Path

▼ L. E. Kavraki, P. Svestka, et al., "Probabilistic roadmaps for path planning in high-dimensional configuration spaces,". IEEE Trans. on Robotics and Automation, 12(4), 1996.

18/74

# Original PRM







- Simultaneous sampling + roadmap expansion
- q<sub>rand</sub> is connected to each graph component only once
- · Roadmap is a tree structure

```
1 V=\emptyset; E=\emptyset // vertices and edges 2 G=(V,E) // empty roadmap 3 while |V|< n do 4 q_{\rm rand}= generate random sample in \mathcal C if q_{\rm rand} is collision-free then G.addVertex(q_{\rm rand}) foreach q\in V.neighborhood*(q_{\rm rand}) do if not G.sameComponent(q_{\rm rand}, q) \wedge connect(q_{\rm rand}, q) then 9 G.addEdge(q_{\rm rand}, q)
```



L. E. Kavraki, P. Svestka, et al., "Probabilistic roadmaps for path planning in high-dimensional configuration spaces,". IEEE Trans. on Robotics and Automation, 12(4), 1996.







# Simplified PRM (sPRM)







- Separate sampling and roadmap connection
- Each node is connected to it's nearest neighbors
- Roadmap can contains cycles
- Analysis of sPRM (completeness and optimality) is available

```
1 V = \emptyset; E = \emptyset
                                              // vertices and edges
2 while |V| < n \, do // generating n collision-free samples
        q_{\rm rand} = generate random sample in C
        if q<sub>rand</sub> is collision-free then
             V = V \cup \{q_{\text{rand}}\}
   foreach v \in V do
                               // connecting samples to roadmap
        V_n = V.\text{neighborhood}(v)
        foreach u \in V_n, u \neq v do
             if connect(u, v) then
                                                     // local planner
                  E = E \cup \{(u, v)\}
10
11 G = (V, E)
                                                      // final roadmap
```

S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The international journal of robotics research 30.7 (2011): 846-894.



# sPRM: variants and properties



- Behavior of sPRM is mostly influenced by V.neighborhood function
- Several variants were proposed an analyzed

#### k-nearest sPRM (aka k-sPRM)

- V.neighborhood provides k nearest neighbors from  $q_{rand}$
- Probabilistically complete if  $k \neq 1$
- Is not asymptotically optimal
- Usually k = 15

#### Variable radius sPRM

- ullet *V.neighborhood* returns nearest neighbors of  $q_{
  m rand}$  within a radius r
- The choice of r influences completeness and optimality of sPRM
- Most important PRM\* planner

# sPRM example 2D ${\mathcal W}$







# sPRM example 3D ${\cal W}$





The wall contains one window, but no path found with 50k samples

# sPRM example 3D ${\mathcal W}$





# Rapidly-exploring Random Tree (RRT)





- Incremental search of  $\mathcal C$
- $\hbox{ \begin{tabular}{l} {\bf Collision-free configurations} \\ {\bf are stored in tree} \ {\bf \mathcal{T}} \\ \end{tabular}$
- T is rooted at q<sub>init</sub>
- Tree is expanded towards random samples q<sub>rand</sub>
- The search terminates if tree is close enough to q<sub>goal</sub>, or after I<sub>max</sub> iterations

```
initialize tree \mathcal{T} with q_{\text{init}}

for i=1,\ldots,I_{max} do

q_{\text{rand}}= generate randomly in \mathcal{C}

q_{\text{near}}= find nearest node in \mathcal{T} towards q_{\text{rand}}

q_{\text{new}}= localPlanner from q_{\text{near}} towards q_{\text{rand}}

if canConnect(q_{\text{near}},q_{\text{new}}) then

\mathcal{T}.addNode(q_{\text{new}})

\mathcal{T}.addEdge(q_{\text{near}},q_{\text{new}})

if \varrho(q_{\text{new}},q_{\text{goal}}) < d_{goal} then

\varrho(q_{\text{new}},q_{\text{goal}}) < d_{goal} then

\varrho(q_{\text{new}},q_{\text{goal}}) < d_{goal} then
```



 LaValle:, S. M. Rapidly-exploring random trees: a new tool for path planning". Technical report, Iowa State University, 1998

# RRT example in 2D ${\cal W}$





- 2D robot, rotation allowed  $\to$  3D  ${\mathcal C}$
- Why the tree does not "touch" the obstacles?

# RRT example in 3D ${\cal W}$





- 3D Bugtrap benchmark parasol.tamu.edu/groups/amatogroup/benchmarks/
- 3D robot in 3D space  $\rightarrow$  6D  ${\cal C}$

# RRT example in 3D $\mathcal{W}$





- 3D Flange benchmark
   parasol.tamu.edu/groups/amatogroup/benchmarks/
- 3D robot in 3D space ightarrow 6D  ${\cal C}$

# RRT example in 3D $\mathcal{W}$





- Hedgehog in the cage parasol.tamu.edu/groups/amatogroup/benchmarks/
- First appereance in end of 19th century
- Popularization in books about youth by J. Foglar
- 3D robot, free-flying in 3D space ightarrow 6D  $\mathcal C$
- Extremely difficult to solve (we will discuss later why)

# RRT: tree expansion types







Straight-line expansion: make the line-segment S from

 $q_{\text{near}}$  to  $q_{\text{rand}}$ 

#### Variants:

A If S is collision-free, expand the tree only by

 $q_{\text{new}} = q_{\text{rand}}$ 

• Creates long segments, fast exploration of  $\mathcal{C}$ 

Requires nearest-neighbor search to consider

- point-segment distance
- Requires connection in the middle of line-segment
- by all points on S Most used, enables fast nearest-neighbor search

B If S is collision-free, discretize S and expand the tree

- C Find configuration  $q_{\text{new}} \in S$  at the distance  $\varepsilon$  from  $q_{\text{near}}$ . Expand tree by  $q_{\text{new}}$  if it's collision-free
  - Basic RRT, slower growth than B
    - Enables fast nearest-neighbor search





## RRT: properties





- RRT builds a tree  $\mathcal{T}$  of collision-free configurations
- T is rooted at q<sub>init</sub>
- T is without cycles
- Path from  $q_{\text{init}}$  to  $q_{\text{goal}}$ :
  - ullet Find nearest node  $q_{ ext{goal}}' \in \mathcal{T}$  towards  $q_{ ext{goal}}$
  - Start at  $q_{
    m goal}'$  and follow predecessors to  $q_{
    m init}$
- ullet Existing  ${\mathcal T}$  can answer queries starting at  $q_{
  m init}$ 
  - if goal is not in/near current  $\mathcal{T}$ ,  $\mathcal{T}$  is further grown
- Non-optimal
- Probabilistically complete
- Why the tree does not grow to itself?
- Why does it "rapidly" explore the C-space?
  - ... because of Voronoi bias!







## RRT: Voronoi bias I





- ullet RRT prefers to expand  ${\mathcal T}$  towards unexplored areas of  ${\mathcal C}$
- This is caused by Voronoi bias:
  - $q_{
    m rand}$  is generated **uniformly** in  ${\cal C}$
  - $\mathcal{T}$  is expanded from **nearest** node in  $\mathcal{T}$  **towards**  $q_{\text{rand}}$
  - The probability that a node  $q \in \mathcal{T}$  is selected for the expansion is proportional to the area/volume of it's Voronoi cell







## RRT: Voronoi bias I





- RRT prefers to expand  $\mathcal T$  towards unexplored areas of  $\mathcal C$
- This is caused by Voronoi bias:
  - $q_{
    m rand}$  is generated **uniformly** in  ${\cal C}$
  - $\mathcal{T}$  is expanded from **nearest** node in  $\mathcal{T}$  **towards**  $q_{\text{rand}}$
  - The probability that a node  $q \in \mathcal{T}$  is selected for the expansion is proportional to the area/volume of it's Voronoi cell



Voronoi bias is implicit (caused by the nearest-rule selection)



## RRT: Voronoi bias I





- ullet RRT prefers to expand  ${\mathcal T}$  towards unexplored areas of  ${\mathcal C}$
- This is caused by Voronoi bias:
  - $q_{
    m rand}$  is generated **uniformly** in  ${\cal C}$
  - $\mathcal{T}$  is expanded from **nearest** node in  $\mathcal{T}$  **towards**  $q_{\text{rand}}$
  - The probability that a node  $q \in \mathcal{T}$  is selected for the expansion is proportional to the area/volume of it's Voronoi cell





Voronoi bias is implicit (caused by the nearest-rule selection)



## RRT: Voronoi bias II



- Nearest-neighbors/Voronoi bias do not respect obstacles!
- If a node having large Voronoi cells is near an obstacle  $\rightarrow$  tree expansion is blocked at this node



- Tree grows well until iteration 70
- Yellow: areas with high prob. of being selected for expansion
- Green: areas that show be selected for expansion so the tree can escape the obstacle
- The tree does not expand much until iteration 300!

## RRT: Voronoi bias II



- Nearest-neighbors/Voronoi bias do not respect obstacles!
- If a node having large Voronoi cells is near an obstacle  $\to$  tree expansion is blocked at this node



- Tree grows well until iteration 70
- Yellow: areas with high prob. of being selected for expansion
- Green: areas that show be selected for expansion so the tree can escape the obstacle
- The tree does not expand much until iteration 300!

# Expansive-space tree (EST)



- Builds two trees  $\mathcal{T}_i$  and  $\mathcal{T}_q$  (from  $q_{\text{init}}$  and  $q_{\text{goal}}$ )
- Weight w(q) can be computed for each configuration q
- Nodes are selected for expansion with probability  $w(q)^{-1}$
- Expansion of one tree  $\mathcal{T}$ :
  - q' = select node from T with probability  $w(q)^{-1}$
  - Q = k random points around  $q' : Q = \{q \in C \mid \varrho(q, q') < d\}$ foreach  $q \in Q$  do
- w(q) = compute weight of the sample qif  $rand() < w(q)^{-1}$  and connect(q, q') then  $\mathcal{T}$ .addNode(q)
- $\mathcal{T}$ .addEdge(q', q)
- w(q) is the number of nodes in  $\mathcal{T}$  around q
- Both  $\mathcal{T}_i$  and  $\mathcal{T}_a$  grow until they approach each other
- Trees are connected using local planner between their
- nearest nodes

D. Hsu, J.-C. Latomber et al. Path planning in expansive configuration



 $\mathcal{T}_i$  and  $\mathcal{T}_a$ 



q', samples Q



connected, ignored



pairs for tree

spaces. Int. Journal of Comp. Geometry and Applications, 9(4-5), 1999 connection34/74

#### Asymptotically optimal RRT\*and PRM\*



- PRM/RRT/EST do not consider any optimality criteria
- Only sPRM is asymptotically optimal
- PRM\* and RRT\* are new planners for which asymptotic optimality was proven



• S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The international journal of robotics research 30.7 (2011): 846-894.

#### PRM\*: overview



- PRM\* is an improved version of sPRM
- PRM\* uses "optimal" radius r for searching the nearest neighbors depending on the actual number of nodes n:

$$egin{split} r &= \gamma_{PRM} igg(rac{\log(n)}{n}igg)^{rac{1}{d}} \ \gamma_{PRM} &> \gamma_{PRM}^* = 2igg(1+rac{1}{d}igg)^{rac{1}{d}}igg(rac{\mu(\mathcal{C}_{ ext{free}})}{\zeta_d}igg)^{rac{1}{d}} \end{split}$$

- d is the dimension of C
- $\mu(\mathcal{C}_{\text{free}})$  is the volume of  $\mathcal{C}_{\text{free}}$
- $\zeta_d$  is the volume of the unit ball in the d-dimensional Euclidean space
- r decays with n
- r depends also on the problem instance! why?

#### PRM\* algorithm

Same as for sPRM, just the line 7 is changed to:

$$V_n = V.neighborhood(v, r(n))$$
, where  $n = |V|$ 



• Variant of PRM\* that uses k-nearest neighbors definitions

$$k = k_{PRM} \log(n)$$

$$k_{PRM} > k_{PRM}^* = e\left(1 + \frac{1}{d}\right)$$

- The constant  $k_{PRM}^*$  depends only on d and not on the problem instance (compare it to  $\gamma_{PRM}^*$ )
- k<sub>PRM</sub> = 2e is a valid choice for all problem instances

#### k-nearest PRM\* algorithm (aka k-PRM\*)

• Same as for sPRM, just the line 7 is changed to:  $V_n = k$ -nearest neighbors from V,  $k = k_{PRM} \log(n)$ 

#### RRT\*: overview



- Optimal version of RRT
- For each node, a cost of the path from q<sub>init</sub> to that node is established
- RRT\* has improved tree expansion and nearest-neighbor search
- Tree expansion by node q<sub>new</sub>
  - Parent of q<sub>new</sub> is optimized to minimize cost at q<sub>new</sub>
  - After  $q_{\text{new}}$  is connected to tree, node it its vicinity are "rewired" via  $q_{\text{new}}$  if it improves their cost
- Nearest-neighbor search
  - Number of nearest-neighbors varies similarly to PRM\*



S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The international journal of robotics research 30.7 (2011): 846-894.

#### RRT\*: algorithm



```
initialize tree \mathcal{T} with q_{\text{init}}
    for i = 1, ..., I_{max} do
          q_{\rm rand} = generate randomly in C
          q_{\text{near}} = find nearest node in \mathcal{T} towards q_{\text{rand}}
          q_{\text{new}} = \text{localPlanner from } q_{\text{near}} \text{ towards } q_{\text{rand}}
          if q<sub>new</sub> is collision-free then
                Q_{near} = \mathcal{T}.neighborhood(q_{new}, r)
 7
                \mathcal{T}.\mathsf{addNode}(q_{\mathsf{new}}) // new node to tree
                q_{\text{best}} = q_{\text{near}} // best parent of q_{\text{new}} so far
                c_{best} = cost(q_{near}) + cost(line(q_{near}, q_{new}))
10
                foreach q \in Q_{near} do
11
                      c = cost(q) + cost(line(q, q_{new}))
12
                      if canConnect(q, q_{new}) and c < c_{best} then
13
14
                             q_{best} = q // new parent of q_{new} is q
                            c_{best} = c
                                                                           // its cost
15
                \mathcal{T}.\mathsf{addEdge}(q_{\mathsf{best}}, q_{\mathsf{new}}) // tree connected to q_{\mathsf{new}}
16
                foreach q \in Q_{near} do
17
                                                                           // rewiring
                       c = cost(q_{new}) + cost(line(q_{new}, q))
18
                      if canConnect(q_{new}, q) and c < cost(q) then
19
                            change parent of q to q_{new}
20
```









lines 17-20

See next slide for explanation of functions/variables

#### RRT\* with variable neighborhood



- $cost(line(q_1, q_2))$  is cost of path from  $q_1$  to  $q_2$  (path by the local planner)
- $cost(q), q \in \mathcal{T}$  is cost of the path from  $q_{init}$  to q (path in  $\mathcal{T}$ )
- nearest neighbors Q<sub>near</sub> are searched within radius r depending on the number of nodes n in the tree:

$$r = min \left\{ \gamma_{RRT}^* \left( rac{\log(n)}{n} 
ight)^{rac{1}{d}}, \eta 
ight\}$$
  $\gamma_{RRT}^* = 2 \left( 1 + rac{1}{d} 
ight)^{rac{1}{d}} \left( rac{\mu(\mathcal{C}_{ ext{free}})}{\zeta_d} 
ight)^{rac{1}{d}}$ 

- d is the dimension of C
- $\mu(\mathcal{C}_{\text{free}})$  is the volume of  $\mathcal{C}_{\text{free}}$
- $\zeta_d$  is the volume unit ball in the d-dimensional Euclidean space
- ullet  $\eta$  is constant given by the used local planner
- r decays with n
- r depends also on the problem instance

#### RRT\*with variable *k*-nearest neighbors





#### Alternative *k*-nearest RRT\* (aka *k*-RRT\*)

k-nearest neighbors are selected for parent search and rewiring

$$k = k_{RRT} \log(n)$$

$$k_{RRT} > k_{RRT}^* = e\left(1 + \frac{1}{d}\right)$$

- n is the number of nodes in T
- k-RRT\* has same implementation as RRT\* just line 7 is changed to  $Q_{near}$  = find k nearest neighbors in  $\mathcal{T}$  towards  $q_{new}$

# RRT\*: example in 2D ${\mathcal W}$





Rectangle robot, rotation allowed  $\rightarrow$  3D  $\mathcal C$ 

# RRT\*: example in 2D ${\mathcal W}$





2D rectangle robot  $\to$  3D  $\mathcal{C}$ . The colormap shows the path length from  $q_{\text{init}}$ . But is it really good?

### RRT\*: example in 2D ${\cal W}$





2D rectangle robot  $\to$  3D  ${\cal C}$  Depicted path demonstrates the slow convergence of the path quality

### RRT\*: example in 2D ${\mathcal W}$





### Overview of sampling-based planners



| Algorithm     | Probabilistic completeness | Asymptotic optimality |
|---------------|----------------------------|-----------------------|
| RRT           | Yes                        | No                    |
| PRM           | Yes                        | No                    |
| sPRM          | Yes                        | Yes                   |
| k-sPRM        | No if $k=1$                | No                    |
| PRM* / k-PRM* | Yes                        | Yes                   |
| RRT* / k-RRT* | Yes                        | Yes                   |

- If you don't need optimal solution, stay with RRT/PRM
- RRT is faster than RRT\*
- RRT is way easier for implementation than RRT\* (if we need an efficient implementation)
- Path quality of RRT can be improved by fast post-processing
- Asymptotic optimality is just asymptotic!
- → slow convergence of path quality

#### Lecture summary



- ullet Sampling-based planning randomly samples  ${\mathcal C}$
- Samples are classified as free/non-free, free samples are stored
- Multi-query vs. single-query planners
- PRM/RRT/EST and their optimal variants PRM\* and RRT\*