Motion planning II: sampling-based planners

Vojtěch Vonásek

Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague

Motion/path planning

- Finding of collision-free trajectory/path for a robot
- Formulation using the configuration space \mathcal{C}
- C is continuous \rightarrow conversion to a discrete representation (graph) \rightarrow graph search
- Geometric-based methods (special cases)
- Require an explicit representation of $\mathcal{C}_{\text {obs }}$
- For point/disc robots (if \mathcal{C} is sames as \mathcal{W})
- Visibility graphs, Voronoi diagrams, ...

Motion planning

Continuous problem

\mathcal{C}-space specification,
$q_{\text {init }}, q_{\text {goal }}$

Discretization of \mathcal{C}

Explicit construction random/deterministic sampling of \mathcal{C}

Graph search

Dijkstra, A*, D*

Configuration space

- Configuration space \mathcal{C} has as many dimensions as DOFs of the robot
- Obstacles $\mathcal{C}_{\text {obs }}$ are given implicitly!

$$
\mathcal{C}_{\mathrm{obs}}=\{q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O} \neq \emptyset\}
$$

- $\mathcal{C}_{\text {obs }}$ depends both on robot and obstacles!

- Generally, explicit geometry/shape of $\mathcal{C}_{\text {obs }}$ is not available
- Problem of enumerating configurations in $\mathcal{C}_{\text {obs }}$
- Problem of enumerating "surface" configurations of $\mathcal{C}_{\text {obs }}$

Configuration space

Problem of enumerating "surface" configurations of $\mathcal{C}_{\text {obs }}$

- We cannot generally/easy/fast say, what are surface/boundary configurations of $\mathcal{C}_{\text {obs }}$
- This precludes Visibility Graphs, Voronoi diagrams, Cell-decompositions to be used for high-dimensional \mathcal{C}-space
- they require surface/boundary of $\mathcal{C}_{\text {obs }}$

Configuration space: example I

- Map: 1000×700 units
- Robot: rectangle $20 \times$ a units
- $q=(x, y, \varphi)$
- \mathcal{C} visualized for $0 \leq \varphi<2 \pi$
- $\varphi=0 \rightarrow \square \leftarrow \varphi=2 \pi$

Configuration space：example II

－Map： 2000×1600 units
－$q=(x, y, \varphi)$
－ \mathcal{C} visualized for $0 \leq \varphi<2 \pi$
－$\varphi=0 \rightarrow \square \leftarrow \varphi=2 \pi$

\mathcal{A} ：equilateral triangle，side 100 units （right－bottom＂hole＂caused by rendering clip）

Configuration space: example III

- Map: 5000×3000 units
- $q=(x, y, \varphi)$
- \mathcal{C} visualized for $0 \leq \varphi<2 \pi$
- $\varphi=0 \rightarrow \square \leftarrow \varphi=2 \pi$

Why is search in \mathcal{C}-space challenging

- Usually high-dimensional for practical applications
- Discretization not reasonable due to memory/time limits
- Non trivial mapping between the shape of robot \mathcal{A} and obstacles \mathcal{O}
- Simple obstacles in \mathcal{W} may be quite complex in \mathcal{C}
- Narrow passages (we will discuss later)

Early methods

- Designed for 2D/3D workspaces for point robots, complete, optimal (some), deterministic
- Limited only to special cases
- In late 1980s, these methods have became impractical

But general path/planning requires search in \mathcal{C}-space!

- If you are desperate, flip a coin \rightarrow randomization!

A bit of history I

- Randomized path planner (RPP), 1991
- Discrete workspace
- Several potential fields for different control points of the robot
- Gradient descend is performed for selected point
- If goal is reached, algorithm terminates
- Otherwise, different control point is selected and GD continues there
- Escape from local minimum is performed by random walk

- J. Barraquand and J.-C. Latombe. Robot motion planning: a distributed representation approach. International Journal on Robotics Research, 10(6):628-649, 1991.
- ZZZ planner (1990)
- Uses two planners: global and local
- Global planner randomly places random goals in $\mathcal{C}_{\text {free }}$
- Local planner uses potential field to connect these goals
- B. Glavina. Solving findpath by combination of goal-directed and randomized search. In IEEE International Conference on Robotics and Automation (ICRA), 1718-1723, 1990.

A bit of history III

- Ariadne's clew algorithm (1998)
- Two phase tree-based planner
- Exploration phase: adds new configuration to tree rooted at $q_{\text {init }}$
- Search phase: attempts to connect known (tree) configuration to qgoal
- Both phases are solved using a genetic algorithm
- E. Mazer and J. M. Ahuactzin and P. Bessiere; The Ariadne's Clew Algorithm, Journal of Artificial Intelligence Research, vol 9, 1998, 295-316
- Horsch planner (1994)
- First roadmap-based approach: generate random samples in $\mathcal{C}_{\text {free }}$
- Connect samples by straight-line if possible
- If the roadmap is disconnected, random ray is shoot from one of its vertex
- Contact configuration is added to the roadmap and connected with nearest neighbors
- Horsch, T. and Schwarz, F. and Tolle, H.; Motion planning with many degrees of freedom-random reflections at C-space obstacles; IEEE International Conference on Robotics and Automation (ICRA), 1994

Sampling-based motion planning I

Main idea:

- \mathcal{C} is randomly sampled
- Each sample is a configuration $q \in \mathcal{C}$
- The samples are classified as free ($q \in \mathcal{C}_{\text {free }}$) or non-free ($q \in \mathcal{C}_{\text {obs }}$) using collision detection

- Free samples are stored and connected, if possible, by a "local planner"
- Result of sampling-based planning is a "roadmap" - graph
- The roadmap is the discretized image of $\mathcal{C}_{\text {free }}$
- Graph-search in the roadmap

- Sampling-based planning can solve any problem formulated using \mathcal{C}-space
\checkmark Robots of arbitrary shapes
- Robot shape is considered in collision detection
- Collision detection is used as a "black-box"
- Single-body or multi-body robots allowed
\checkmark Robots with many-DOFs
- Because the search is realized directly in \mathcal{C}-space
- Dimension of \mathcal{C} is determined by the DOFs
\checkmark Kinematic, dynamic and task constraints can be considered
- It depends on the employed local planner

Local planner

- Sampling-based planners rely on a "local planner"
- Given configurations $q_{a} \in \mathcal{C}_{\text {free }}$ and $q_{b} \in \mathcal{C}_{\text {free }}$, local planner attempts to find a path τ :

$$
\tau:[0,1] \rightarrow \mathcal{C}_{\text {free }}
$$

such that $\tau(0)=q_{a}$ and $\tau(1)=q_{b}$, and τ must be collision free!

Control-theory approach: special cases

- We can assume that q_{a} and q_{b} are "near" without obstacles
- Two-point boundary value problem (BVP)
- Local planner is designed as a controller
- But problems are with obstacles!

Generally:

- The definition of "local planning" is same as motion planning
\rightarrow same complexity as motion planning!

Local planners

Exact local planners

- For certain systems, BVP can be solved analytically
- Example: car-like without backward motions \rightarrow Dubins car

Approximate local planners

- Path τ connects q_{a} with $q_{\text {new }}$ that is near-enough from q_{b}
- Computation e.g. using forward motion model and integration over time Δt

Straight-line local planners

- Connects q_{a} and q_{b} by line-segment
- Check the collisions of the line-segment
- Connect q_{a} with the first contact configuration $q_{\text {new }}$ or with q_{b} if no collision occurs

Exact local planner

Approximate

Straight-line

- Suitable for systems without kinematic/dynamic constraints

Multi-query methods

- Can find paths between multi start/goal queries
- Requires to build a roadmap covering whole $\mathcal{C}_{\text {free }}$
- Probabilistic Roadmaps (PRM) + many derivates
\checkmark good for frequent planning and replanning
x sometimes slower construction

Single-query methods

Multi-query roadmap

- Roadmap is built only to answer a single start/goal query
- The search of \mathcal{C} ends as soon as the query can be answered
- Rapidly-exploring Random Trees (RRT), Expansive-space Tree (EST) + their variants
\checkmark Practically faster for single-query
x Any subsequent planning requires novel search of \mathcal{C}

Single-query roadmap
x Slow for multi-query planning

Probabilistic Roadmaps (PRM)

- Two-phase method: learning phase and query phase

Learning phase

- Random samples are generated in \mathcal{C}
- Samples are classified as free/non-free; free samples are stored
- Each sample is connected to its near neighbors by a local planner
- Final roadmap may contain cycles

Query phase:

Query phase

Path

- L. E. Kavraki, P. Svestka, et al., "Probabilistic roadmaps for path planning in high-dimensional configuration spaces,". IEEE Trans. on Robotics and Automation, 12(4), 1996.

Original PRM

- Simultaneous sampling + roadmap expansion
- $q_{\text {rand }}$ is connected to each graph component only once
- Roadmap is a tree structure

```
V=\emptyset;E=\emptyset
2 }G=(V,E
while |V|<n do
    qrand = generate random sample in }\mathcal{C
            if }\mp@subsup{q}{\mathrm{ rand }}{}\mathrm{ is collision-free then
                G.addVertex(qrand)
                foreach q\inV.neighborhood* ( }\mp@subsup{q}{\textrm{rand}}{})\mathrm{ do
                    if not G.sameComponent( }\mp@subsup{q}{\textrm{rand}}{},q)\wedge connect(q\textrm{qand},q) the
                    LG.addEdge(qrand
                    // vertices and edges
                            // empty roadmap
```

- neighborhood* returns q by increasing distance from $q_{\text {rand }}$
- L. E. Kavraki, P. Svestka, et al., "Probabilistic roadmaps for path planning in high-dimensional configuration spaces,". IEEE Trans. on Robotics and Automation, 12(4), 1996.

- Separate sampling and roadmap connection
- Each node is connected to it's nearest neighbors
- Roadmap can contains cycles
- Analysis of sPRM (completeness and optimality) is available

```
    V=\emptyset;E=\emptyset // vertices and edges
    while |V|<ndo // generating n collision-free samples
            qrand
            if }\mp@subsup{q}{\mathrm{ rand }}{}\mathrm{ is collision-free then
                LV}=V\cup{\mp@subsup{q}{\textrm{rand}}{}
    foreach v\inV do // connecting samples to roadmap
    Vn=V.neighborhood(v)
    8 foreach }u\in\mp@subsup{V}{n}{},u\not=v\mathrm{ do
    9 if connect(u,v) then
                        E=E\cup{(u,v)}
11 G=(V,E)
// final roadmap
```

10

- S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The international journal of robotics research 30.7 (2011): 846-894.

$20 / 74$

sPRM: variants and properties

- Behavior of sPRM is mostly influenced by V.neighborhood function
- Several variants were proposed an analyzed

k-nearest sPRM (aka k-sPRM)

- V.neighborhood provides k nearest neighbors from $q_{\text {rand }}$
- Probabilistically complete if $k \neq 1$
- Is not asymptotically optimal
- Usually $k=15$

Variable radius sPRM

- V.neighborhood returns nearest neighbors of $q_{\text {rand }}$ within a radius r
- The choice of r influences completeness and optimality of sPRM
- Most important - PRM* planner

sPRM example 3D \mathcal{W}

The wall contains one window, but no path found with 50k samples

sPRM example 3D \mathcal{W}

Ω

- Incremental search of \mathcal{C}
- Collision-free configurations are stored in tree \mathcal{T}
- \mathcal{T} is rooted at $q_{\text {init }}$
- Tree is expanded towards random samples $q_{\text {rand }}$
- The search terminates if tree is close enough to $q_{\text {goal }}$, or after $I_{\text {max }}$ iterations

Tree

Sampling

Tree extension

- LaValle:, S. M. Rapidly-exploring random trees: a new tool for path planning". Technical report, Iowa State University, 1998

RRT example in 2D \mathcal{W}

- 2D robot, rotation allowed $\rightarrow 3 \mathrm{C} \mathcal{C}$
- Why the tree does not "touch" the obstacles?

RRT example in 3D \mathcal{W}

- 3D Bugtrap benchmark parasol.tamu.edu/groups/amatogroup/benchmarks/
- 3D robot in 3D space $\rightarrow 6 \mathrm{C} \mathcal{C}$

- 3D Flange benchmark parasol.tamu.edu/groups/amatogroup/benchmarks/
- 3D robot in 3D space $\rightarrow 6 \mathrm{D} \mathcal{C}$

- Hedgehog in the cage
parasol.tamu.edu/groups/amatogroup/benchmarks/
- First appereance in end of 19th century
- Popularization in books about youth by J. Foglar
- 3D robot, free-flying in 3D space \rightarrow 6D \mathcal{C}
- Extremely difficult to solve (we will discuss later why)

Straight-line expansion: make the line-segment S from $q_{\text {near }}$ to $q_{\text {rand }}$

Variants:

A If S is collision-free, expand the tree only by
$q_{\text {new }}=q_{\text {rand }}$

- Creates long segments, fast exploration of \mathcal{C}
- Requires nearest-neighbor search to consider point-segment distance
- Requires connection in the middle of line-segment

B If S is collision-free, discretize S and expand the tree by all points on S

- Most used, enables fast nearest-neighbor search

C Find configuration $q_{\text {new }} \in S$ at the distance ε from $q_{\text {near }}$. Expand tree by $q_{\text {new }}$ if it's collision-free

- Basic RRT, slower growth than B
- Enables fast nearest-neighbor search

- RRT builds a tree \mathcal{T} of collision-free configurations
- \mathcal{T} is rooted at $q_{\text {init }}$
- \mathcal{T} is without cycles
- Path from $q_{\text {init }}$ to $q_{\text {goal }}$:

- Find nearest node $q_{\text {goal }}^{\prime} \in \mathcal{T}$ towards $q_{\text {goal }}$
- Start at $q_{\text {goal }}^{\prime}$ and follow predecessors to $q_{\text {init }}$
- Existing \mathcal{T} can answer queries starting at $q_{\text {init }}$
- if goal is not in/near current \mathcal{T}, \mathcal{T} is further grown

- Non-optimal
- Probabilistically complete

- Why the tree does not grow to itself?
- Why does it "rapidly" explore the \mathcal{C}-space?
... because of Voronoi bias!
- RRT prefers to expand \mathcal{T} towards unexplored areas of \mathcal{C}
- This is caused by Voronoi bias:
- $q_{\text {rand }}$ is generated uniformly in \mathcal{C}
- \mathcal{T} is expanded from nearest node in \mathcal{T} towards
 $q_{\text {rand }}$
- The probability that a node $q \in \mathcal{T}$ is selected for the expansion is proportional to the area/volume of it's Voronoi cell
- Voronoi bias is implicit (caused by the nearest-rule selection)

- RRT prefers to expand \mathcal{T} towards unexplored areas of \mathcal{C}
- This is caused by Voronoi bias:
- $q_{\text {rand }}$ is generated uniformly in \mathcal{C}
- \mathcal{T} is expanded from nearest node in \mathcal{T} towards

$q_{\text {rand }}$
- The probability that a node $q \in \mathcal{T}$ is selected for the expansion is proportional to the area/volume of it's Voronoi cell
- Voronoi bias is implicit (caused by the nearest-rule selection)

- RRT prefers to expand \mathcal{T} towards unexplored areas of \mathcal{C}
- This is caused by Voronoi bias:
- $q_{\text {rand }}$ is generated uniformly in \mathcal{C}
- \mathcal{T} is expanded from nearest node in \mathcal{T} towards

$q_{\text {rand }}$
- The probability that a node $q \in \mathcal{T}$ is selected for the expansion is proportional to the area/volume of it's Voronoi cell
- Voronoi bias is implicit (caused by the nearest-rule selection)

- Nearest-neighbors/Voronoi bias do not respect obstacles!
- If a node having large Voronoi cells is near an obstacle \rightarrow tree expansion is blocked at this node

iteration 10, tree size 10

iteration 70 , tree size ~ 60
- Tree grows well until iteration 70
- Yellow: areas with high prob. of being selected for expansion
- Green: areas that show be selected for expansion so the tree can escape the obstacle
- The tree does not expand much until iteration 300 !
- Nearest-neighbors/Voronoi bias do not respect obstacles!
- If a node having large Voronoi cells is near an obstacle \rightarrow tree expansion is blocked at this node

iteration 70, tree size ~ 60

iteration 300, tree size ~ 100
- Tree grows well until iteration 70
- Yellow: areas with high prob. of being selected for expansion
- Green: areas that show be selected for expansion so the tree can escape the obstacle
- The tree does not expand much until iteration 300 !

Expansive-space tree (EST)

- Builds two trees \mathcal{T}_{i} and \mathcal{T}_{g} (from $q_{\text {init }}$ and $q_{\text {goal }}$)
- Weight $w(q)$ can be computed for each configuration q
- Nodes are selected for expansion with probability $w(q)^{-1}$
- Expansion of one tree \mathcal{T} :
$q^{\prime}=$ select node from \mathcal{T} with probability $w(q)^{-1}$
$Q=k$ random points around $q^{\prime}: Q=\left\{q \in \mathcal{C} \mid \varrho\left(q, q^{\prime}\right)<d\right\}$
foreach $q \in Q$ do
$w(q)=$ compute weight of the sample q if $\operatorname{rand}()<w(q)^{-1}$ and $\operatorname{connect}\left(q, q^{\prime}\right)$ then
\mathcal{T}.addNode(q)
\mathcal{T}.addEdge $\left(q^{\prime}, q\right)$
- $w(q)$ is the number of nodes in \mathcal{T} around q
- Both \mathcal{T}_{i} and \mathcal{T}_{g} grow until they approach each other
- Trees are connected using local planner between their nearest nodes
- D. Hsu, J.-C. Latomber et al. Path planning in expansive configuration spaces. Int. Journal of Comp. Geometry and Applications, 9(4-5), 1999

\mathcal{T}_{i} and \mathcal{T}_{g}

connected,ignored

pairs for tree connection $34 / 74$

Asymptotically optimal RRT*and PRM*

- PRM/RRT/EST do not consider any optimality criteria
- Only sPRM is asymptotically optimal
- PRM* and RRT* are new planners for which asymptotic optimality was proven

RRT

RRT*

- S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The international journal of robotics research 30.7 (2011): 846-894.
- PRM^{*} is an improved version of sPRM
- PRM* uses "optimal" radius r for searching the nearest neighbors depending on the actual number of nodes n :

$$
\begin{gathered}
r=\gamma_{\text {PRM }}\left(\frac{\log (n)}{n}\right)^{\frac{1}{d}} \\
\gamma_{\text {PRM }}>\gamma_{P R M}^{*}=2\left(1+\frac{1}{d}\right)^{\frac{1}{d}}\left(\frac{\mu\left(\mathcal{C}_{\text {free }}\right)}{\zeta_{d}}\right)^{\frac{1}{d}}
\end{gathered}
$$

- d is the dimension of \mathcal{C}
- $\mu\left(\mathcal{C}_{\text {free }}\right)$ is the volume of $\mathcal{C}_{\text {free }}$
- ζ_{d} is the volume of the unit ball in the d-dimensional Euclidean space
- r decays with n
- r depends also on the problem instance! - why?

PRM* algorithm

- Same as for sPRM, just the line 7 is changed to: $V_{n}=V$. neighborhood $(v, r(n))$, where $n=|V|$
- Variant of PRM* that uses k-nearest neighbors definitions

$$
\begin{gathered}
k=k_{P R M} \log (n) \\
k_{P R M}>k_{P R M}^{*}=e\left(1+\frac{1}{d}\right)
\end{gathered}
$$

- The constant $k_{P R M}^{*}$ depends only on d and not on the problem instance (compare it to $\gamma_{P R M}^{*}$)
- $k_{P R M}=2 e$ is a valid choice for all problem instances
k-nearest PRM* algorithm (aka k-PRM ${ }^{*}$)
- Same as for sPRM, just the line 7 is changed to: $V_{n}=k-$ nearest neighbors from $V, k=k_{\text {PRM }} \log (n)$
- Optimal version of RRT
- For each node, a cost of the path from $q_{\text {init }}$ to that node is established
- RRT* has improved tree expansion and nearest-neighbor search
- Tree expansion by node $q_{\text {new }}$
- Parent of $q_{\text {new }}$ is optimized to minimize cost at $q_{\text {new }}$
- After $q_{\text {new }}$ is connected to tree, node it its vicinity are "rewired" via $q_{\text {new }}$ if it improves their cost
- Nearest-neighbor search
- Number of nearest-neighbors varies similarly to PRM*

- S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The international journal of robotics research 30.7 (2011): 846-894.

```
initialize tree }\mathcal{T}\mathrm{ with q}\mp@subsup{q}{\mathrm{ init}}{
for i=1,\ldots, Imax do
qrand
qnear = find nearest node in }\mathcal{T}\mathrm{ towards }\mp@subsup{q}{\mathrm{ rand}}{
qnew = localPlanner from q}\mp@subsup{q}{\mathrm{ near towards }\mp@subsup{q}{\mathrm{ rand }}{}}{
if }\mp@subsup{q}{\mathrm{ new }}{}\mathrm{ is collision-free then
Qnear }=\mathcal{T}.\mathrm{ neighborhood( }\mp@subsup{q}{\mathrm{ new }}{},r
T.addNode( }\mp@subsup{q}{\mathrm{ new }}{}\mathrm{ ) // new node to tree
q}\mp@subsup{q}{\mathrm{ best }}{}=\mp@subsup{q}{\mathrm{ near }}{
cbest }=\operatorname{cost}(\mp@subsup{q}{\mathrm{ near }}{})+\operatorname{cost}(line(q(quar , quew )
foreach q\in Qnear do
    c=\operatorname{cost}(q)+\operatorname{cost}(line(q, qnew)
    if canConnect(q, q(new) and c<c
        q}\mp@subsup{q}{\mathrm{ best }}{=}q\quad// new parent of q qnew is q
        cbest }=c\quad// its cos
T.addEdge( }\mp@subsup{q}{\mathrm{ best }}{},\mp@subsup{q}{\mathrm{ new }}{}) // tree connected to qnew
foreach q\in Qnear do // rewiring
    c=\operatorname{cost}(\mp@subsup{q}{\mathrm{ new }}{})+\operatorname{cost(line( (qnew},q))
    if canConnect(qnew},q) and c<\operatorname{cost}(q) the
                                change parent of q}\mathrm{ to }\mp@subsup{q}{\mathrm{ new}}{
```


lines 3-5

line 7

lines 10-16

lines 17-20

- See next slide for explanation of functions/variables
- $\operatorname{cost}\left(\right.$ line $\left(q_{1}, q_{2}\right)$ is cost of path from q_{1} to q_{2} (path by the local planner)
- $\operatorname{cost}(q), q \in \mathcal{T}$ is cost of the path from $q_{\text {init }}$ to q (path in \mathcal{T})
- nearest neighbors $Q_{\text {near }}$ are searched within radius r depending on the number of nodes n in the tree:

$$
\begin{gathered}
r=\min \left\{\gamma_{R R T}^{*}\left(\frac{\log (n)}{n}\right)^{\frac{1}{d}}, \eta\right\} \\
\gamma_{R R T}^{*}=2\left(1+\frac{1}{d}\right)^{\frac{1}{d}}\left(\frac{\mu\left(\mathcal{C}_{\text {free }}\right)}{\zeta_{d}}\right)^{\frac{1}{d}}
\end{gathered}
$$

- d is the dimension of \mathcal{C}
- $\mu\left(\mathcal{C}_{\text {free }}\right)$ is the volume of $\mathcal{C}_{\text {free }}$
- ζ_{d} is the volume unit ball in the d-dimensional Euclidean space
- η is constant given by the used local planner
- r decays with n
- r depends also on the problem instance
- k-nearest neighbors are selected for parent search and rewiring

$$
\begin{gathered}
k=k_{R R T} \log (n) \\
k_{R R T}>k_{R R T}^{*}=e\left(1+\frac{1}{d}\right)
\end{gathered}
$$

- n is the number of nodes in \mathcal{T}
- k-RRT* has same implementation as RRT* just line 7 is changed to
$Q_{\text {near }}=$ find k nearest neighbors in \mathcal{T} towards $q_{\text {new }}$

RRT＊：example in 2D \mathcal{W}

Rectangle robot，rotation allowed \rightarrow 3D \mathcal{C}

2 D rectangle robot $\rightarrow 3 \mathrm{D} \mathcal{C}$. The colormap shows the path length from $q_{\text {init }}$ But is it really good?

2D rectangle robot \rightarrow 3D \mathcal{C}
Depicted path demonstrates the slow convergence of the path quality

RRT*: example in 2D \mathcal{W}

- 88 FACULTY OF ELECTRICAL CTU IN PRAGUE

MRS

Overview of sampling-based planners

Algorithm
RRT
PRM
sPRM
k-sPRM
PRM $^{*} / k$-PRM
RRT $^{*} / k-$ RRT *

Probabilistic Asymptotic completeness optimality

- If you don't need optimal solution, stay with RRT/PRM
- RRT is faster than RRT*
- RRT is way easier for implementation than RRT* (if we need an efficient implementation)
- Path quality of RRT can be improved by fast post-processing
- Asymptotic optimality is just asymptotic!
\rightarrow slow convergence of path quality

Lecture summary

- Sampling-based planning randomly samples \mathcal{C}
- Samples are classified as free/non-free, free samples are stored
- Multi-query vs. single-query planners
- PRM/RRT/EST and their optimal variants PRM^{*} and RRT*

