
Motion planning II: sampling-based planners

Vojtěch Vonásek

Department of Cybernetics
Faculty of Electrical Engineering

Czech Technical University in Prague

1 / 74

Summary of the last lecture
Motion/path planning

• Finding of collision-free trajectory/path for a robot
• Formulation using the configuration space C
• C is continuous→ conversion to a discrete

representation (graph)→ graph search
• Geometric-based methods (special cases)

• Require an explicit representation of Cobs
• For point/disc robots (if C is sames asW)
• Visibility graphs, Voronoi diagrams, . . .

2 / 74

Configuration space

• Configuration space C has as many dimensions as DOFs of the robot
• Obstacles Cobs are given implicitly!

Cobs = {q ∈ C | A(q) ∩ O 6= ∅}

• Cobs depends both on robot and obstacles!

• Generally, explicit geometry/shape of Cobs is not available
• Problem of enumerating configurations in Cobs

• Problem of enumerating “surface” configurations of Cobs

3 / 74

Configuration space

Problem of enumerating “surface” configurations of Cobs

• We cannot generally/easy/fast say, what are surface/boundary
configurations of Cobs

• This precludes Visibility Graphs, Voronoi diagrams, Cell-decompositions
to be used for high-dimensional C-space

• they require surface/boundary of Cobs

4 / 74

Configuration space: example I

• Map: 1000× 700 units
• Robot: rectangle 20× a units
• q = (x , y , ϕ)

• C visualized for 0 ≤ ϕ < 2π
• ϕ = 0→ ← ϕ = 2π

x
y

ϕ

a = 1 a = 60 a = 100

5 / 74

Configuration space: example II

• Map: 2000× 1600 units
• q = (x , y , ϕ)

• C visualized for 0 ≤ ϕ < 2π
• ϕ = 0→ ← ϕ = 2π

x
y

ϕ

A: rectangle 20× 100 units A: equilateral triangle, side 100 units
(right-bottom “hole” caused by rendering clip)

6 / 74

Configuration space: example III

• Map: 5000× 3000 units
• q = (x , y , ϕ)

• C visualized for 0 ≤ ϕ < 2π
• ϕ = 0→ ← ϕ = 2π

x
y

ϕ

A: rectangle 20× 100 units A: “u”-robot

7 / 74

Why is search in C-space challenging

• Usually high-dimensional for practical applications

• Discretization not reasonable due to memory/time limits

• Non trivial mapping between the shape of robot A and obstacles O
• Simple obstacles inW may be quite complex in C

• Narrow passages (we will discuss later)

Early methods

• Designed for 2D/3D workspaces for point robots, complete, optimal
(some), deterministic

• Limited only to special cases
• In late 1980s, these methods have became impractical

But general path/planning requires search in C-space!

• If you are desperate, flip a coin→ randomization!

8 / 74

A bit of history I

• Randomized path planner (RPP), 1991
• Discrete workspace
• Several potential fields for different control points of the robot
• Gradient descend is performed for selected point
• If goal is reached, algorithm terminates
• Otherwise, different control point is selected and GD continues

there
• Escape from local minimum is performed by random walk

* J. Barraquand and J.-C. Latombe. Robot motion planning: a distributed representation
approach. International Journal on Robotics Research, 10(6):628-649, 1991.

9 / 74

A bit of history II

• ZZZ planner (1990)

• Uses two planners: global and local
• Global planner randomly places random goals in Cfree
• Local planner uses potential field to connect these goals

* B. Glavina. Solving findpath by combination of goal-directed and randomized search. In IEEE
International Conference on Robotics and Automation (ICRA), 1718-1723, 1990.

10 / 74

A bit of history III

• Ariadne’s clew algorithm (1998)

• Two phase tree-based planner
• Exploration phase: adds new configuration to tree rooted at qinit
• Search phase: attempts to connect known (tree) configuration to

qgoal
• Both phases are solved using a genetic algorithm

* E. Mazer and J. M. Ahuactzin and P. Bessiere; The Ariadne’s Clew Algorithm, Journal of
Artificial Intelligence Research, vol 9, 1998, 295-316

11 / 74

A bit of history IV

• Horsch planner (1994)

• First roadmap-based approach: generate random samples in Cfree
• Connect samples by straight-line if possible
• If the roadmap is disconnected, random ray is shoot from one of its

vertex
• Contact configuration is added to the roadmap and connected with

nearest neighbors

* Horsch, T. and Schwarz, F. and Tolle, H.; Motion planning with many degrees of
freedom-random reflections at C-space obstacles; IEEE International Conference on Robotics
and Automation (ICRA), 1994

12 / 74

Sampling-based motion planning I
Main idea:

• C is randomly sampled
• Each sample is a configuration q ∈ C
• The samples are classified as free (q ∈ Cfree) or

non-free (q ∈ Cobs) using collision detection

qinit goalq

robot

W−space

• Free samples are stored and connected, if possible, by a “local planner”
• Result of sampling-based planning is a “roadmap” — graph
• The roadmap is the discretized image of Cfree

• Graph-search in the roadmap

→

qinit goalq

→

qinit goalq

Sampling Roadmap Path
13 / 74

Sampling-based motion planning II

• Sampling-based planning can solve any problem formulated using
C-space

3 Robots of arbitrary shapes

• Robot shape is considered in collision detection
• Collision detection is used as a “black-box”
• Single-body or multi-body robots allowed

3 Robots with many-DOFs

• Because the search is realized directly in C-space
• Dimension of C is determined by the DOFs

3 Kinematic, dynamic and task constraints can be considered

• It depends on the employed local planner

14 / 74

Local planner

• Sampling-based planners rely on a “local planner”
• Given configurations qa ∈ Cfree and qb ∈ Cfree, local

planner attempts to find a path τ :

τ : [0,1]→ Cfree

qa

q
bτ

such that τ(0) = qa and τ(1) = qb, and τ must be collision free!

Control-theory approach: special cases

• We can assume that qa and qb are “near” without obstacles
• Two-point boundary value problem (BVP)
• Local planner is designed as a controller
• But problems are with obstacles!

Generally:

• The definition of “local planning” is same as motion planning
→ same complexity as motion planning!

15 / 74

Local planners
Exact local planners

• For certain systems, BVP can be solved analytically
• Example: car-like without backward motions→ Dubins

car

Approximate local planners

• Path τ connects qa with qnew that is near-enough from qb

• Computation e.g. using forward motion model and
integration over time ∆t

Straight-line local planners

• Connects qa and qb by line-segment
• Check the collisions of the line-segment
• Connect qa with the first contact configuration qnew or

with qb if no collision occurs
• Suitable for systems without kinematic/dynamic

constraints

qa

q
bτ

Exact local planner

qa

τ
qnew

q
b

Approximate

qa

q
bnewq

Straight-line

16 / 74

Single query vs. multi-query planning
Multi-query methods

• Can find paths between multi start/goal queries
• Requires to build a roadmap covering whole Cfree

• Probabilistic Roadmaps (PRM) + many derivates
3 good for frequent planning and replanning
7 sometimes slower construction

Single-query methods

• Roadmap is built only to answer a single start/goal query
• The search of C ends as soon as the query can be

answered
• Rapidly-exploring Random Trees (RRT),

Expansive-space Tree (EST) + their variants
3 Practically faster for single-query
7 Any subsequent planning requires novel search of C
7 Slow for multi-query planning

q
goal

initq

Multi-query
roadmap

q
goal

initq

Single-query
roadmap

17 / 74

Probabilistic Roadmaps (PRM)
• Two-phase method: learning phase and query phase

Learning phase

• Random samples are generated in C
• Samples are classified as free/non-free; free samples

are stored
• Each sample is connected to its near neighbors by a

local planner
• Final roadmap may contain cycles

Query phase:

• Answers path/motion planning from qinit ∈ Cfree to
qgoal ∈ Cfree

• qinit and qgoal are connected to their nearest neighbors in
the roadmap (using local planner)

• Graph-search of the roadmap

Learning phase
qinit goalq

Query phase
qinit goalq

Path
* L. E. Kavraki, P. Svestka, et al., "Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,". IEEE Trans. on Robotics and Automation, 12(4), 1996. 18 / 74

Original PRM

• Simultaneous sampling + roadmap expansion
• qrand is connected to each graph component only once
• Roadmap is a tree structure

1 V = ∅; E = ∅ // vertices and edges
2 G = (V ,E) // empty roadmap
3 while |V | < n do
4 qrand = generate random sample in C
5 if qrand is collision-free then
6 G.addVertex(qrand)
7 foreach q ∈ V .neighborhood∗(qrand) do
8 if not G.sameComponent(qrand, q) ∧ connect(qrand,q) then
9 G.addEdge(qrand, q)

• neighborhood∗ returns q by increasing distance from qrand

* L. E. Kavraki, P. Svestka, et al., "Probabilistic roadmaps for path planning
in high-dimensional configuration spaces,". IEEE Trans. on Robotics and
Automation, 12(4), 1996.

q
rand

q
rand

q
rand

q
rand

19 / 74

Simplified PRM (sPRM)

• Separate sampling and roadmap connection
• Each node is connected to it’s nearest neighbors
• Roadmap can contains cycles
• Analysis of sPRM (completeness and optimality) is

available
1 V = ∅; E = ∅ // vertices and edges
2 while |V | < n do // generating n collision-free samples
3 qrand = generate random sample in C
4 if qrand is collision-free then
5 V = V ∪ {qrand}

6 foreach v ∈ V do // connecting samples to roadmap
7 Vn = V .neighborhood(v)
8 foreach u ∈ Vn, u 6= v do
9 if connect(u, v) then // local planner

10 E = E ∪ {(u, v)}

11 G = (V ,E) // final roadmap

* S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal
motion planning." The international journal of robotics research 30.7 (2011):
846-894.

v

v

20 / 74

sPRM: variants and properties

• Behavior of sPRM is mostly influenced by V .neighborhood function
• Several variants were proposed an analyzed

k -nearest sPRM (aka k -sPRM)

• V .neighborhood provides k nearest neighbors from qrand

• Probabilistically complete if k 6= 1
• Is not asymptotically optimal
• Usually k = 15

Variable radius sPRM

• V .neighborhood returns nearest neighbors of qrand within a radius r
• The choice of r influences completeness and optimality of sPRM
• Most important — PRM* planner

21 / 74

sPRM example 2DW

22 / 74

sPRM example 3DW

start/goal n = 100 n = 700

n = 1500 n = 8000 n = 50000

The wall contains one window, but no path found with 50k samples

23 / 74

sPRM example 3DW

start/goal n = 100 n = 1000

n = 2100 n = 4100 solution

24 / 74

Rapidly-exploring Random Tree (RRT)
• Incremental search of C
• Collision-free configurations

are stored in tree T
• T is rooted at qinit

• Tree is expanded towards
random samples qrand

• The search terminates if tree
is close enough to qgoal, or
after Imax iterations

1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4 qnear = find nearest node in T towards qrand
5 qnew = localPlanner from qnear towards qrand
6 if canConnect(qnear, qnew) then
7 T .addNode(qnew)
8 T .addEdge(qnear, qnew)
9 if %(qnew, qgoal) < dgoal then

10 return path from qinit to qgoal

init
q

goal
q

init
q

goal
q

q
near

q
rand init

q

goal
q

q
near

new
q q

rand

Tree Sampling Tree extension

* LaValle:, S. M. Rapidly-exploring random trees: a new tool for path planning". Technical
report, Iowa State University, 1998

25 / 74

RRT example in 2DW

• 2D robot, rotation allowed→ 3D C
• Why the tree does not “touch” the obstacles?

26 / 74

RRT example in 3DW

• 3D Bugtrap benchmark
parasol.tamu.edu/groups/amatogroup/benchmarks/

• 3D robot in 3D space→ 6D C

27 / 74

parasol.tamu.edu/groups/amatogroup/benchmarks/

RRT example in 3DW

• 3D Flange benchmark
parasol.tamu.edu/groups/amatogroup/benchmarks/

• 3D robot in 3D space→ 6D C

28 / 74

parasol.tamu.edu/groups/amatogroup/benchmarks/

RRT example in 3DW

• Hedgehog in the cage
parasol.tamu.edu/groups/amatogroup/benchmarks/

• First appereance in end of 19th century
• Popularization in books about youth by J. Foglar
• 3D robot, free-flying in 3D space→ 6D C
• Extremely difficult to solve (we will discuss later why)

29 / 74

parasol.tamu.edu/groups/amatogroup/benchmarks/

RRT: tree expansion types
Straight-line expansion: make the line-segment S from
qnear to qrand

Variants:

A If S is collision-free, expand the tree only by
qnew = qrand

• Creates long segments, fast exploration of C
• Requires nearest-neighbor search to consider

point-segment distance
• Requires connection in the middle of

line-segment

B If S is collision-free, discretize S and expand the tree
by all points on S

• Most used, enables fast nearest-neighbor search

C Find configuration qnew ∈ S at the distance ε from
qnear. Expand tree by qnew if it’s collision-free

• Basic RRT, slower growth than B
• Enables fast nearest-neighbor search

init
q

goal
q

qrand

q
near

init
q

goal
q

q

q
near

A

rand =q
new

init
q

goal
q

new
q qrand ε

q
near

B

init
q

goal
q

qrand
ε

q
near

newq

C

30 / 74

RRT: properties

• RRT builds a tree T of collision-free configurations
• T is rooted at qinit

• T is without cycles
• Path from qinit to qgoal:

• Find nearest node q′goal ∈ T towards qgoal
• Start at q′goal and follow predecessors to qinit

• Existing T can answer queries starting at qinit

• if goal is not in/near current T , T is further grown

• Non-optimal
• Probabilistically complete

• Why the tree does not grow to itself?
• Why does it “rapidly” explore the C-space?

. . . because of Voronoi bias!

init
q

goal
q

qrand

q
near

31 / 74

RRT: Voronoi bias I

• RRT prefers to expand T towards unexplored areas of C
• This is caused by Voronoi bias:

• qrand is generated uniformly in C
• T is expanded from nearest node in T towards

qrand
• The probability that a node q ∈ T is selected for the

expansion is proportional to the area/volume of it’s
Voronoi cell

init
q

goal
q

qrand

q
near

• Voronoi bias is implicit (caused by the nearest-rule selection)

32 / 74

RRT: Voronoi bias I

• RRT prefers to expand T towards unexplored areas of C
• This is caused by Voronoi bias:

• qrand is generated uniformly in C
• T is expanded from nearest node in T towards

qrand
• The probability that a node q ∈ T is selected for the

expansion is proportional to the area/volume of it’s
Voronoi cell

init
q

goal
q

qrand

q
near

• Voronoi bias is implicit (caused by the nearest-rule selection)

32 / 74

RRT: Voronoi bias I

• RRT prefers to expand T towards unexplored areas of C
• This is caused by Voronoi bias:

• qrand is generated uniformly in C
• T is expanded from nearest node in T towards

qrand
• The probability that a node q ∈ T is selected for the

expansion is proportional to the area/volume of it’s
Voronoi cell

init
q

goal
q

qrand

q
near

• Voronoi bias is implicit (caused by the nearest-rule selection)

32 / 74

RRT: Voronoi bias II
• Nearest-neighbors/Voronoi bias do not respect obstacles!
• If a node having large Voronoi cells is near an obstacle→ tree

expansion is blocked at this node

iteration 10, tree size 10 iteration 70, tree size ∼ 60

• Tree grows well until iteration 70
• Yellow: areas with high prob. of being selected for expansion
• Green: areas that show be selected for expansion so the tree can

escape the obstacle
• The tree does not expand much until iteration 300!

33 / 74

RRT: Voronoi bias II
• Nearest-neighbors/Voronoi bias do not respect obstacles!
• If a node having large Voronoi cells is near an obstacle→ tree

expansion is blocked at this node

iteration 70, tree size ∼ 60 iteration 300, tree size ∼ 100

• Tree grows well until iteration 70
• Yellow: areas with high prob. of being selected for expansion
• Green: areas that show be selected for expansion so the tree can

escape the obstacle
• The tree does not expand much until iteration 300!

33 / 74

Expansive-space tree (EST)
• Builds two trees Ti and Tg (from qinit and qgoal)
• Weight w(q) can be computed for each configuration q
• Nodes are selected for expansion with probability w(q)−1

• Expansion of one tree T :

1 q′ = select node from T with probability w(q)−1

2 Q = k random points around q′ : Q = {q ∈ C | %(q, q′) < d}
3 foreach q ∈ Q do
4 w(q) = compute weight of the sample q
5 if rand() < w(q)−1 and connect(q, q′) then
6 T .addNode(q)
7 T .addEdge(q′, q)

• w(q) is the number of nodes in T around q
• Both Ti and Tg grow until they approach each other
• Trees are connected using local planner between their

nearest nodes

* D. Hsu, J.-C. Latomber et al. Path planning in expansive configuration
spaces. Int. Journal of Comp. Geometry and Applications, 9(4-5), 1999

init
q

qgoal

Ti and Tg

q
init

q′, samples Q

init
q

connected,ignored

goalq
init

q

pairs for tree
connection34 / 74

Asymptotically optimal RRT∗and PRM∗

• PRM/RRT/EST do not consider any optimality criteria
• Only sPRM is asymptotically optimal
• PRM∗ and RRT∗ are new planners for which asymptotic optimality was

proven

RRT RRT∗

* S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The
international journal of robotics research 30.7 (2011): 846-894.

35 / 74

PRM∗: overview
• PRM∗ is an improved version of sPRM
• PRM∗ uses “optimal” radius r for searching the nearest neighbors

depending on the actual number of nodes n:

r = γPRM

(
log(n)

n

) 1
d

γPRM > γ∗PRM = 2
(

1 +
1
d

) 1
d
(
µ(Cfree)

ζd

) 1
d

• d is the dimension of C
• µ(Cfree) is the volume of Cfree

• ζd is the volume of the unit ball in the d−dimensional Euclidean space
• r decays with n
• r depends also on the problem instance! — why?

PRM∗ algorithm

• Same as for sPRM, just the line 7 is changed to:
Vn = V .neighborhood(v , r(n)), where n = |V |

36 / 74

k -nearest PRM∗

• Variant of PRM∗ that uses k -nearest neighbors definitions

k = kPRM log(n)

kPRM > k∗PRM = e
(

1 +
1
d

)
• The constant k∗PRM depends only on d and not on the problem instance

(compare it to γ∗PRM)
• kPRM = 2e is a valid choice for all problem instances

k -nearest PRM∗ algorithm (aka k -PRM∗)

• Same as for sPRM, just the line 7 is changed to:
Vn = k−nearest neighbors from V , k = kPRM log(n)

37 / 74

RRT∗: overview

• Optimal version of RRT
• For each node, a cost of the path from qinit to that node is

established
• RRT∗ has improved tree expansion and

nearest-neighbor search
• Tree expansion by node qnew

• Parent of qnew is optimized to minimize cost at qnew
• After qnew is connected to tree, node it its vicinity are

“rewired” via qnew if it improves their cost

• Nearest-neighbor search

• Number of nearest-neighbors varies similarly to
PRM∗

init
q

q
new

rand
q

init
q

q
new

rand
q

init
q

q
new

init
q

q
new

* S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The
international journal of robotics research 30.7 (2011): 846-894.

38 / 74

RRT∗: algorithm

1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4 qnear = find nearest node in T towards qrand
5 qnew = localPlanner from qnear towards qrand
6 if qnew is collision-free then
7 Qnear = T .neighborhood(qnew, r)
8 T .addNode(qnew) // new node to tree
9 qbest = qnear // best parent of qnew so far

10 cbest = cost(qnear) + cost(line(qnear, qnew))
11 foreach q ∈ Qnear do
12 c = cost(q) + cost(line(q, qnew)
13 if canConnect(q, qnew) and c < cbest then
14 qbest = q // new parent of qnew is q
15 cbest = c // its cost

16 T .addEdge(qbest , qnew) // tree connected to qnew
17 foreach q ∈ Qnear do // rewiring
18 c = cost(qnew) + cost(line(qnew, q))
19 if canConnect(qnew, q) and c < cost(q) then
20 change parent of q to qnew

• See next slide for explanation of functions/variables

init
q

q
new

rand
q

lines 3–5

init
q

q
new

Qnear

line 7

init
q

q
new

lines 10–16

init
q

q
new

lines 17–20

39 / 74

RRT∗ with variable neighborhood

• cost(line(q1, q2) is cost of path from q1 to q2 (path by the local planner)
• cost(q), q ∈ T is cost of the path from qinit to q (path in T)
• nearest neighbors Qnear are searched within radius r depending on the

number of nodes n in the tree:

r = min

{
γ∗RRT

(
log(n)

n

) 1
d

, η

}

γ∗RRT = 2
(

1 +
1
d

) 1
d
(
µ(Cfree)

ζd

) 1
d

• d is the dimension of C
• µ(Cfree) is the volume of Cfree

• ζd is the volume unit ball in the d−dimensional Euclidean space
• η is constant given by the used local planner
• r decays with n
• r depends also on the problem instance

40 / 74

RRT∗with variable k -nearest neighbors
Alternative k -nearest RRT∗ (aka k -RRT∗)

• k -nearest neighbors are selected for parent search and rewiring

k = kRRT log(n)

kRRT > k∗RRT = e
(

1 +
1
d

)
• n is the number of nodes in T
• k -RRT∗ has same implementation as RRT∗ just line 7 is changed to

Qnear = find k nearest neighbors in T towards qnew

41 / 74

RRT∗: example in 2DW

Rectangle robot, rotation allowed→ 3D C
42 / 74

RRT∗: example in 2DW

2D rectangle robot→ 3D C. The colormap shows the path length from qinit.
But is it really good?

43 / 74

RRT∗: example in 2DW

2D rectangle robot→ 3D C
Depicted path demonstrates the slow convergence of the path quality 44 / 74

RRT∗: example in 2DW

45 / 74

Overview of sampling-based planners

Algorithm Probabilistic Asymptotic
completeness optimality

RRT Yes No
PRM Yes No
sPRM Yes Yes
k -sPRM No if k = 1 No
PRM∗ / k -PRM∗ Yes Yes
RRT∗ / k -RRT∗ Yes Yes

• If you don’t need optimal solution, stay with RRT/PRM
• RRT is faster than RRT∗

• RRT is way easier for implementation than RRT∗ (if we need an efficient
implementation)

• Path quality of RRT can be improved by fast post-processing
• Asymptotic optimality is just asymptotic!
→ slow convergence of path quality

46 / 74

Lecture summary

• Sampling-based planning randomly samples C

• Samples are classified as free/non-free, free samples are stored

• Multi-query vs. single-query planners

• PRM/RRT/EST and their optimal variants PRM∗ and RRT∗

47 / 74

