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|l iInear classifier and neuron

Labels RGB images
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Computational graph of linear classifier
def cIassify(E):

w1
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# | Inear classifier

X = vec( E ) az/v® /!
p=o0 (WTX) w2 ®_>‘_>

return p zvz/v®
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Example |: given trained neuron, and input, what is output?
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Example |: given trained classifier, and input, what is output?
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Relation to biological neuron

Dendrites

Axon
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Modeling dynamic neuron behaviour

o Membrane Potential
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Example |: given trained neuron, and input, what is output?
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Example |: given trained classifier, and input, what is output?
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Example Il: Given training sample, how do you learn weights?
Wy =-1
|\ y=-+1

\@ :

xl:/ \ 1 _- 027 L=057
\
/

DO D~ —
- @ 2o =1

Lo = =+1
network (classitier) t

arg min ( — log [U(yz’ f (i, W))] )

W
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Example Il: Given training sample, how do you learn weights?
wi=-1
\ Y=+

®\2; |
®-
@ 2o=1

=-1 027 £=0.57
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loss function

\/ i/

Lo = =+
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Example Il: Given training sample, how do you learn weights?
Wy =-1

\y=+1
w1>®\ -1 vy v=-1___p=027_L£=0.57
— 9 O D>

o=+ - 8_ =-3.7

Tg=+ Local gradient:

oL  O(—log(p)) 1

op Op p
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Example Il: Given training sample, how do you learn weights?
Wy =-1

|\ y=-+1
\@ B
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Tg=+ Local gradient:

Op Oo(v)
270 o)1~ ofw)
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Example Il: Given training sample, how do you learn weights?

Sigmoid Function Derivative of Sigmoid
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Local gradient:
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Example Il: Given training sample, how do you learn weights?
Wy =-1

\\\\\\* \y=+1
<:> —_D
‘”Fﬁ/ S g=1 % v=1__p=0p7 L£=057
<:%M %:)——ﬂ.l'ka(jngqu>
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Tg=+ Local gradient:
ov  0(yq)
g  Og
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Example Il: Given training sample, how do you learn weights?
w1:-1

:E1:M —_1 v =-1 p=0.27__ L=0.57
Lo >®—>0—>@g D

Local gradient:
8q 8(21 -+ 22)

e — p— ]_
821 621
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Example Il: Given training sample, how do you learn weights?
w1:-1

|\ y=-+1
» -1 vy v=-1___p=027_L£=0.57
1 @ >®—>‘—>®g (pD —
—02-—-87
v Op

Local gradient:
% 8(w1x1)

— — ajl
321]1 5’w1
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Example Il: Given training sample, how do you learn weights?
”LU1:—1

7] |\ y=-+1
%ﬁk‘@ o
‘Elzﬁ/ \ =1 Yy v=-1__ p=027 _L£=0.57
. @ @w@g D —
w9 N —=-3.7
/ 2’2 q 8?] 8]9

Lo = =+

0L 0L JpOdv 0q Oz

— = =-3.770.2"1*1*2 =-1.4
Ow1 Op Ov 0q 0z1 0w, 3170 .
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Example Il: Given training sample, how do you learn weights?
”LU1:—1

7] |\ y=-+1
%ﬁk‘@ o
‘Elzﬁ/ \ =1 Yy v=-1__ p=027 _L£=0.57
. @ @w@g D —
w9 N —=-3.7
/ 2’2 q 8?] 8]9

Lo = =+

0L 0L JpOdv 0q Oz

Ow;  Op Ov Oq Dz1 Owy

W, = w —aﬁﬁ 0.48
1 — W1 8w1_+'
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Example Il: Given training sample, how do you learn weights?

w1 =+0.48 1

<

oL 0L Jp dv 0g\0z

ow; Op Ov 0q 0z1 w1

W, = w —aaﬁ 0.48
1 — W1 (9w1_+'
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Example Il: Given training sample, how do you learn weights?

w1 =+0.48 L=+ 1

@ 21=+0.96

Ti=4 \ —1+1.96) v=+1 96p 0.87 £ 0.06

oL 0L Jp dv 0g\0z

ow; Op Ov 0q 0z1 w1

w; = W —aaﬁ 0.48
1 = Wy (9w1_+'
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Example lll: vector representation

To =+
'niNg Mmeans:
Y=-1 teratively change all weights w to minimize £
OL(w)] ! oL  [oL OC
W=W-—o ) — _ where 8_w:_8w1’8w2"”
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Computational graph of the learning

| inear function

\® Y1=-2

r1=+ ~. p=0.73___ £=0.13
OO — @ -~T>
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Computational graph of the learning

@ y1=-2
T1=+ SN p=0.73 __ £=0.13
O KD~ @D~

Loss layer — log(o(yz))
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Backprop in vector representation

@ y1=-2

Loss layer — log(o(yz))

This is the logistic loss!

L(y, z) = —log(o(yz)) = log(1 + exp(—y2))
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Backprop in vector representation

‘\\\\\\\\‘<:>

| inear function

Y1=-2

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

30



Backprop in vector representation

wy=-1 Linear function

T1=+2 L £=0.13
> wx  S>IsC —loglo(yz) >
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Backprop in vector representation

vectorized
iINnputs

Y =1

g
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Backprop in vector representation

oL

Ow
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Backprop in vector representation

Ow oL

w=[-1+1] 5, X

£=0.13

2=-

\
w X — —log(o(yz))
/( S>—C g(o(y

8_[1 B oL 0z
Y=-1 ow Oz Ow
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Backprop in vector representation

9
5 4xo

Ow oL

W=[-1,+1] 5, X

\ ye £ =0.13
WX e ) D
X=[+2,+1]

oL OL 0z
Y= ow 0z Ow

Learning from multiple training samples means summing up
the gradient over all samples
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Fully connected neural network

neuron o(w; X)

L1 S @WI@ S
L2
L3

g
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L1

Fully connected neural network

g

. @wj@ .
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Fully connected neural network

. @wj@ .
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Fully connected neural network
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Fully connected neural network
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Fully connected neural network
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Fully connected neural network
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Fully connected neural network

layer 1
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Fully connected neural network

layer 2

u
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Fully connected neural network

layer 3

Gt xD A Colva ?) u'z D
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Fully connected neural network

(i xD R (v )
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Fully connected neural network

loss layer

V1 y
sScaore
\ )

(o(wi xD) & (o (vi y)D)— (1" D) Clog(o(yg))
*Colws XD Al @/

Y
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Fully connected neural network

U(WlTX) ’ g V1 y)
\ El’e
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Fully connected neural network
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1.

Learning of fully connected neural network

Estimate gradient

oL Xis W), Y,
S (f(aw ) Yi)

1

2. Update weights:

W= W — &Z 8£(f(>;:VW)>%)

3. Optionally update learning rate «
4. Repeat until convergence

g
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Learning of fully connected neural network

> @WI@ V1 y) \
@W; @ V2 — —(_ log(o >
*ColwixD A=l @/

layer o(Wx)

Y
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Learning of fully connected neural network

T
CCD <@V; @B@i@g(g(y@f
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layer o(Wx)

Y
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Learning of fully connected neural network

Z q £
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Learning of fully connected neural network

w = vec(W) v = vec(V)

W

AN NN

- D —— D~ Dl

Y

g
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W

Learning of fully connected neural network

Derivative wrt u : 8_£ ’

NN\
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Learning of fully connected neural network

Derivative wrt u : 8_£ 0L 0q

ou 0Oq Ou

W

NN

- D — D)~ el
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Dimensionality of the gradient???

Y
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Learning of fully connected neural network

Derivative wrt u 8_£ 0L O0q
ou 0Jqg Ou
W Vv 8q u1X4 1x1 1x4

O\ T

- D — D)~ el

aq

Dimensionality of the gradient???

Y
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Learning of fully connected neural network

Derivative wrtv ; 8_£ 0L 0q 0z

ov  0q 0z Ov

W

N\ a"\ N

D — D - el

Oz dq

Dimensionality of the gradient???

Y
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Learning of fully connected neural network

Derivative wrtv ; 8_£ 0L 0q 0z

ov  0q 0z Ov
w u 1X1 1x3 3x12
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D — D - el

Oz dq

Dimensionality of the gradient???

Y
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Learning of fully connected neural network

Derivative wrtw ; 0L _ 0L 0q 0z Jy
"Ow  Oq 0z Oy Ow
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Dimensionality of the gradient???
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Learning of fully connected neural network

Derivative wrtw ; 0L _ 0L 0q 0z Jy
0 " Ow  Oq 0z Oy Ow
y

—Y W 1x1)(1x3)(3%x3)(3x12)

% u (
OwW
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Y
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Learning of fully connected neural network

1. Estimate all required local gradients
2. Update weights:

cap T
9L 0L q S———
(9_11_5’qau :au:_l_
OL 0L dq 0z vev_al%
v Oq 0z Ov A
L  OL dq dz Oy ral
ow  9q 9z Oy Ow W:W_O‘_a_w_

3. Optionally update learning rate «
4. Repeat until convergence
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Neural nets summary

* Neural net is a function created as concatenation of simplier
functions (e.g. neurons or layers of neurons)

* (Gradient optimization of the neural net is called
backpropagation

* Neural net frameworks has many predefined layers

* Spoiler alert: It does not work (on images) at all - why?
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Neural nets summary

* Neural net is a function created as concatenation of simplier
functions (e.g. neurons or layers of neurons)

* (Gradient optimization of the neural net is called
backpropagation

* Neural net frameworks has many predefined layers

* Spoiler alert: It does not work (on images) at all - why?

Linear classifier NN convNet
MNIST

https://benchmarks.ai
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Dataset Learned weights of linear classitier Error
= .
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Error
Linear NN ConvNet
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Dataset Error
Linear NN ConvNet
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Competencies required for the test T1

e Ability to draw a computational graph.
 Compute edge gradients/jacobians.
* Perform one step of backpropagation in a vectorized form
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W

w* = argmin (Z — log(p(wXuW))) + (= logp(w))

1

loss function prior/regulariser

* Class of function represented by a NN is too general.

* Naive regulariser helps a bit, but dimensionality/wildness is
huge => curse-of-dimensionality, overtfitting, ...

 What is number of weights between two 1000-neuron layers?

* Next lecture: study animal cortex to find a stronger prior on
the class of suitable functions.

* Spoiler alert 2:
reduce very general class of functions "neuron layer” to very
specific sub-class of functions “convolution layer”
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Competencies required for the test T1

e Ability to draw a computational graph.
 Compute edge gradients/jacobians.
* Perform one step of backpropagation in a vectorized form
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