Learning for vision II Neural networks

Karel Zimmermann

http://cmp.felk.cvut.cz/~zimmerk/

Vision for Robotics and Autonomous Systems https://cyber.felk.cvut.cz/vras/

Center for Machine Perception https://cmp.felk.cvut.cz

Department for Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

Outline

- Neuron+ computational graph
- Fully connected neural network

Linear classifier and neuron

Labels

RGB images

def classify():

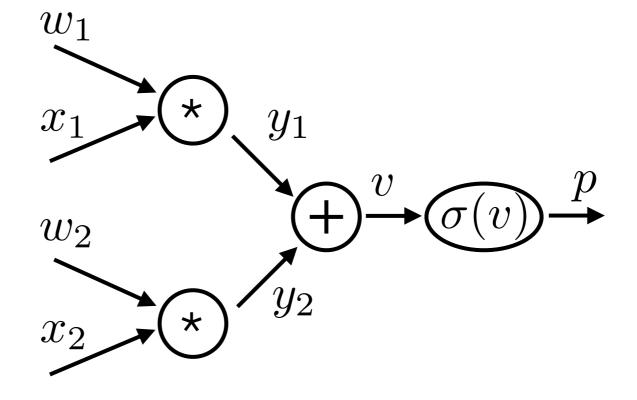
Linear classifier

$$\mathbf{x} = \text{vec}($$

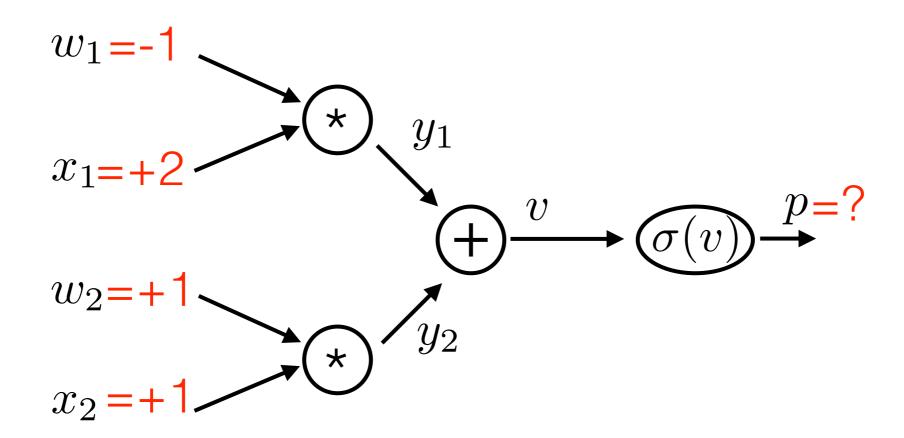
$$p = \sigma\left(\mathbf{w}^{\top}\mathbf{x}\right)$$

return P

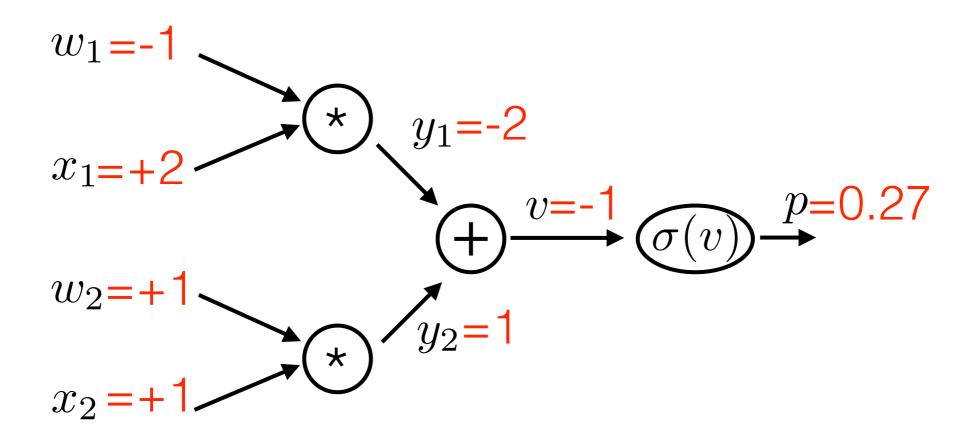
Computational graph of linear classifier



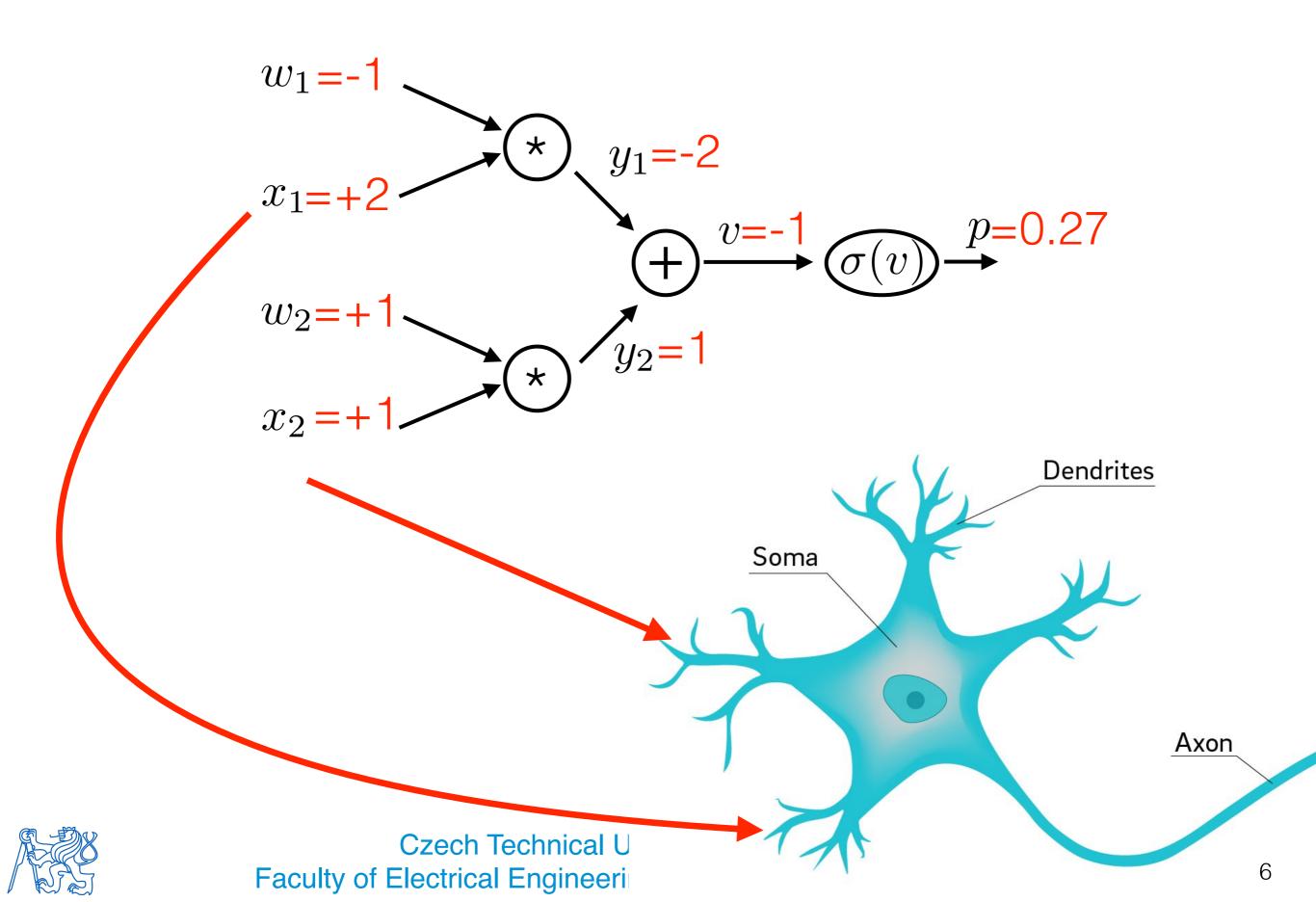
Example I: given trained neuron, and input, what is output?



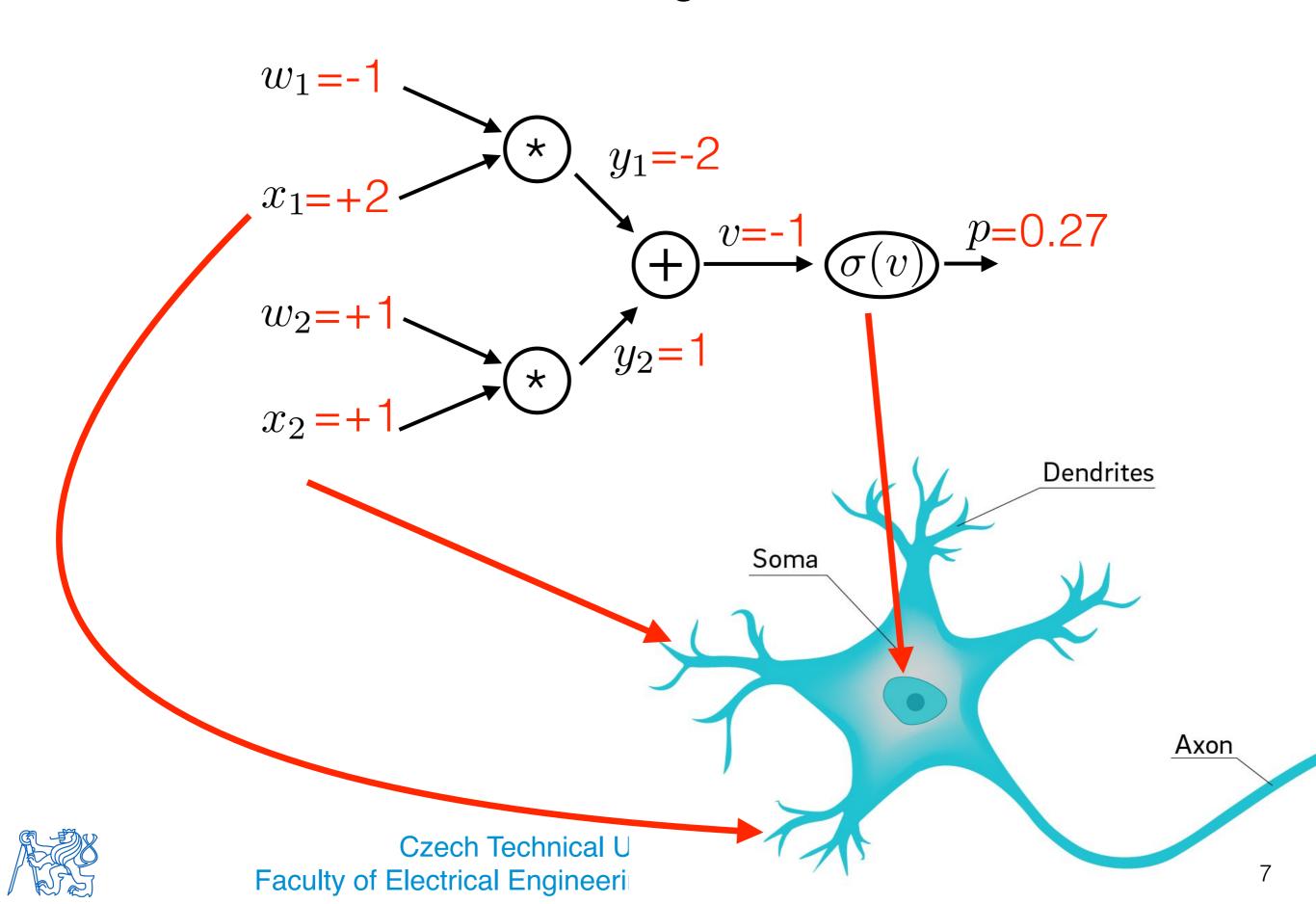
Example I: given trained classifier, and input, what is output?



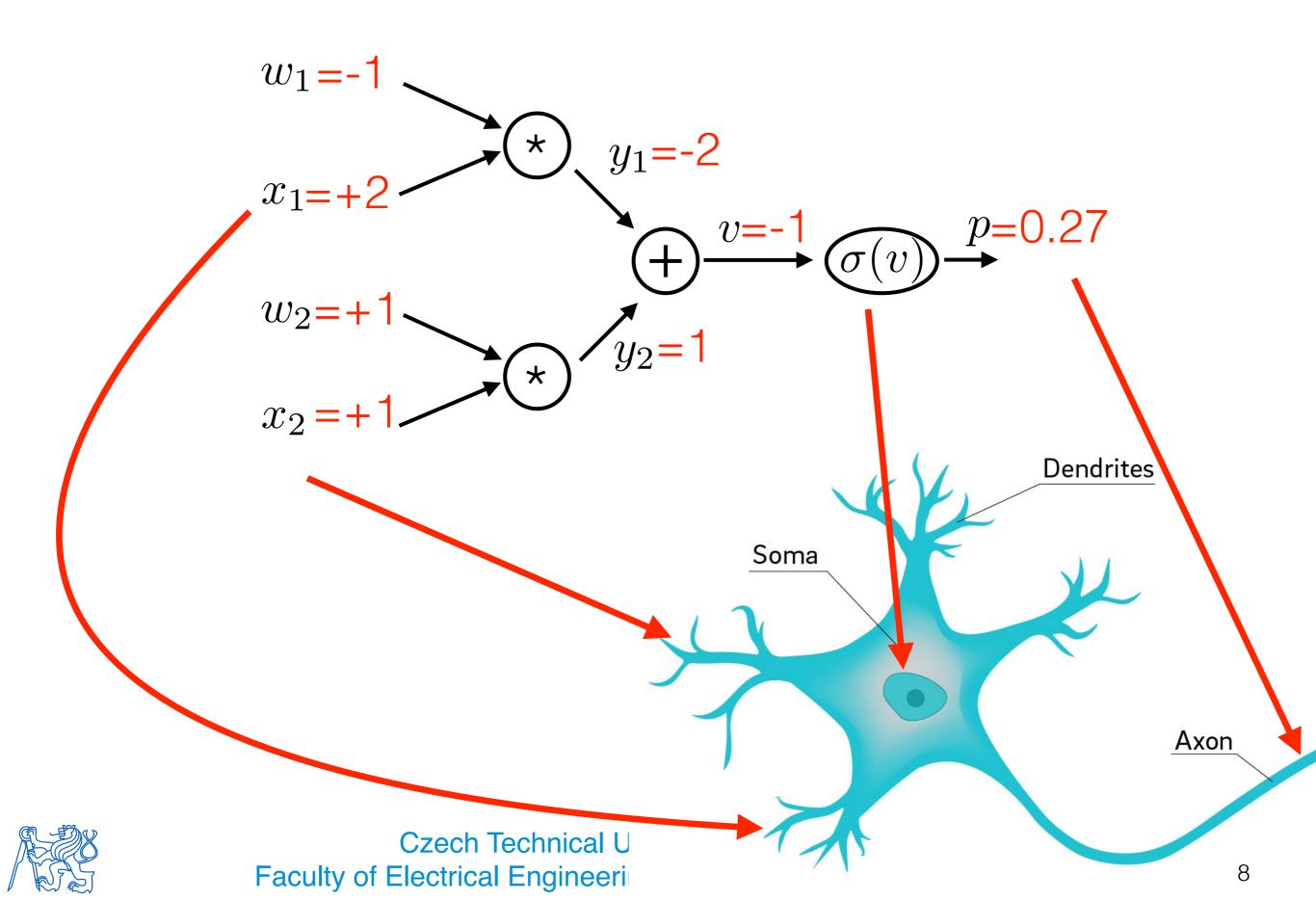
Relation to biological neuron



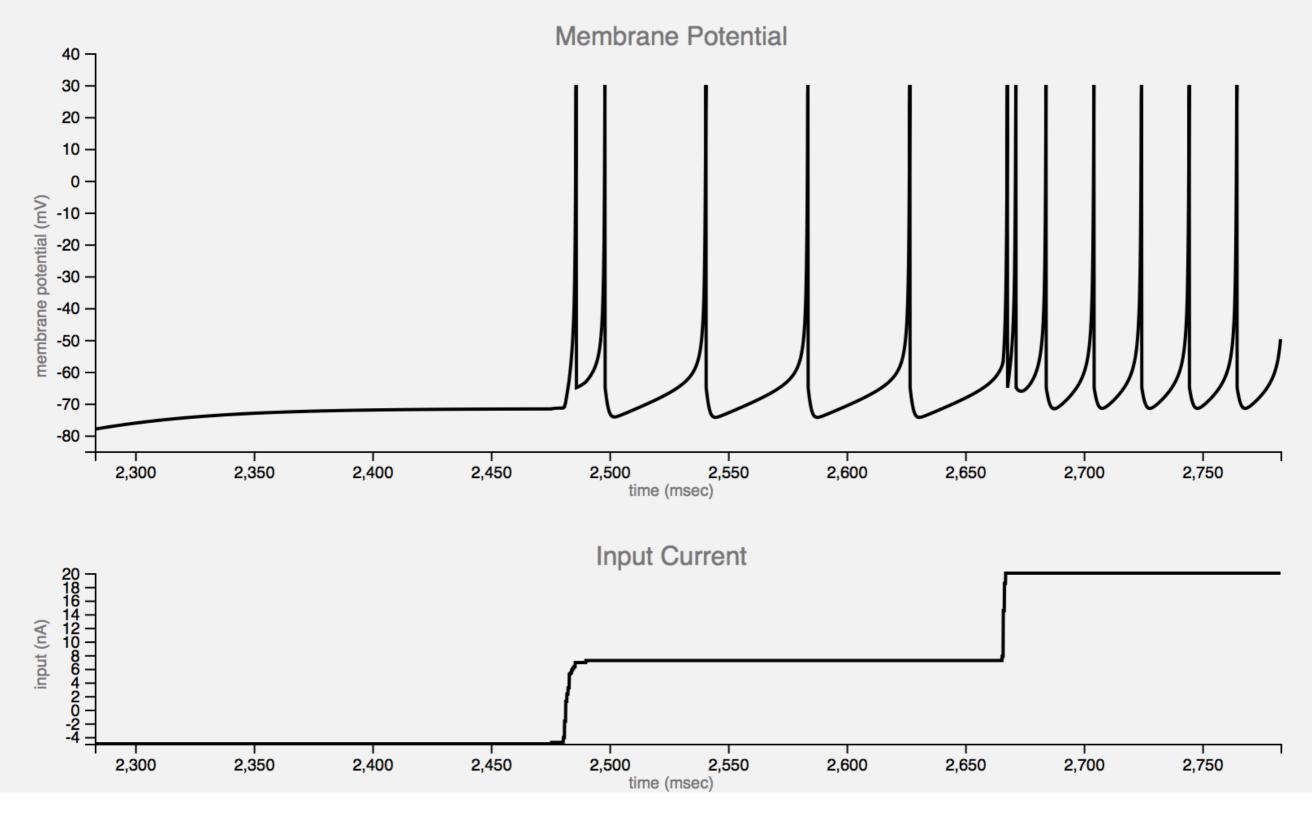
Relation to biological neuron



Relation to biological neuron



Modeling dynamic neuron behaviour



http://jackterwilliger.com/biological-neural-networks-part-i-spiking-neurons/

Linear classifier and neuron

Labels

RGB images

def classify():

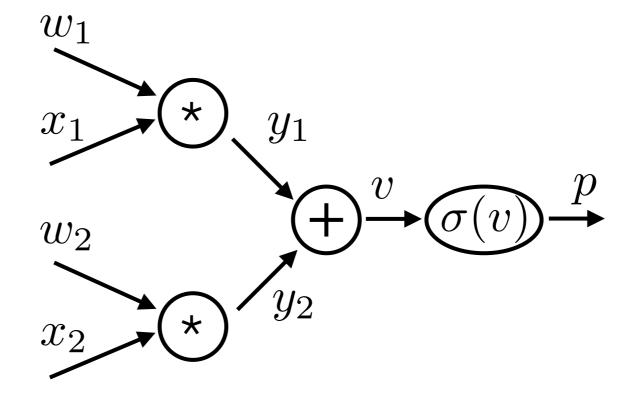
Linear classifier

$$\mathbf{x} = \text{vec}($$

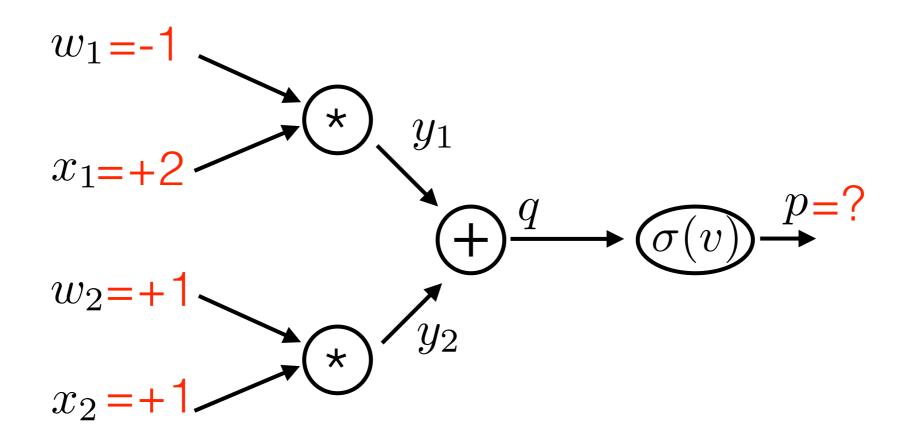
$$p = \sigma\left(\mathbf{w}^{\top}\mathbf{x}\right)$$

return P

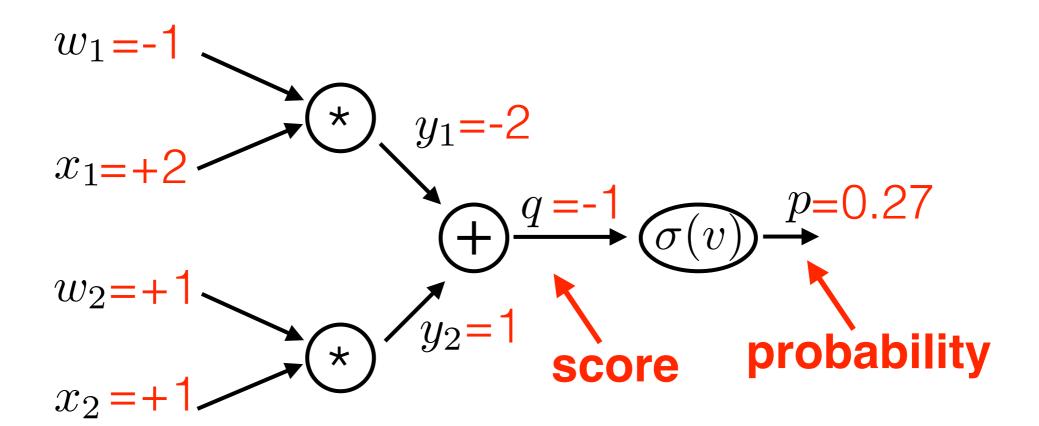
Computational graph of linear classifier

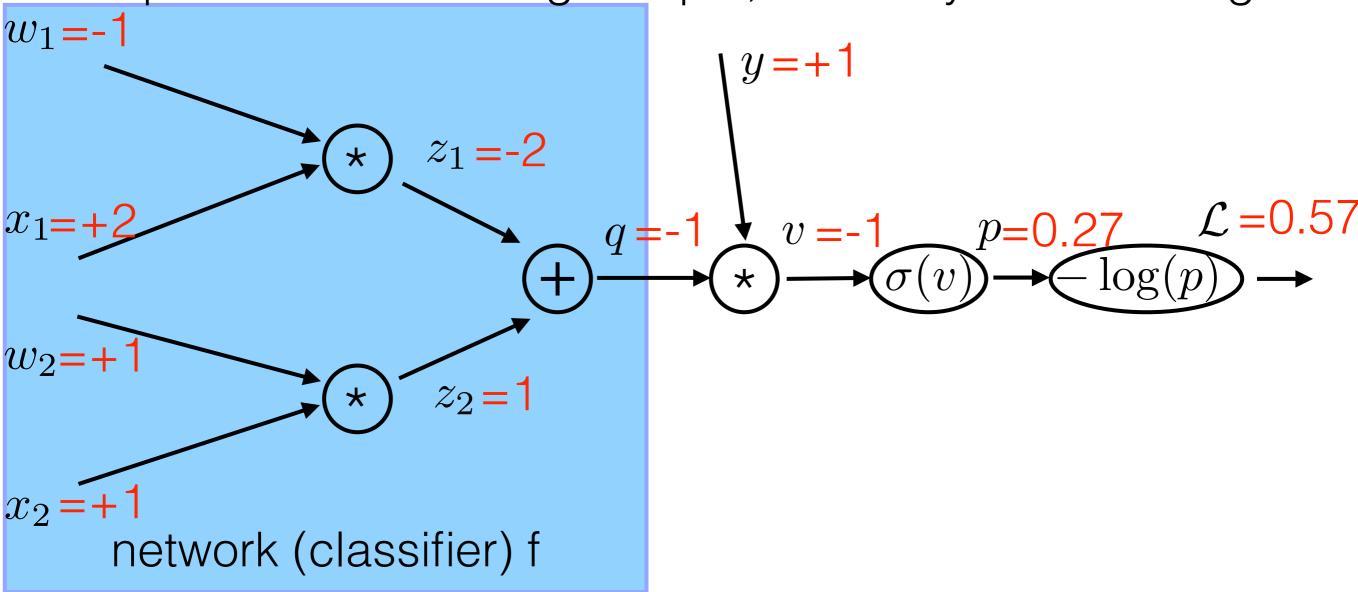


Example I: given trained neuron, and input, what is output?

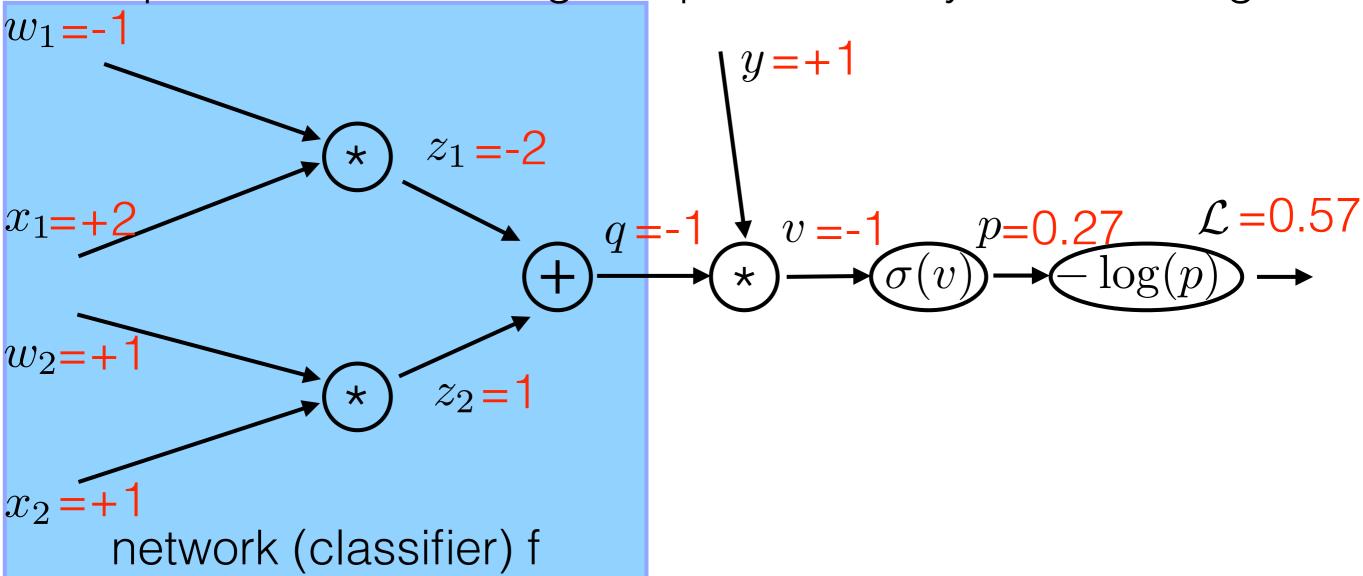


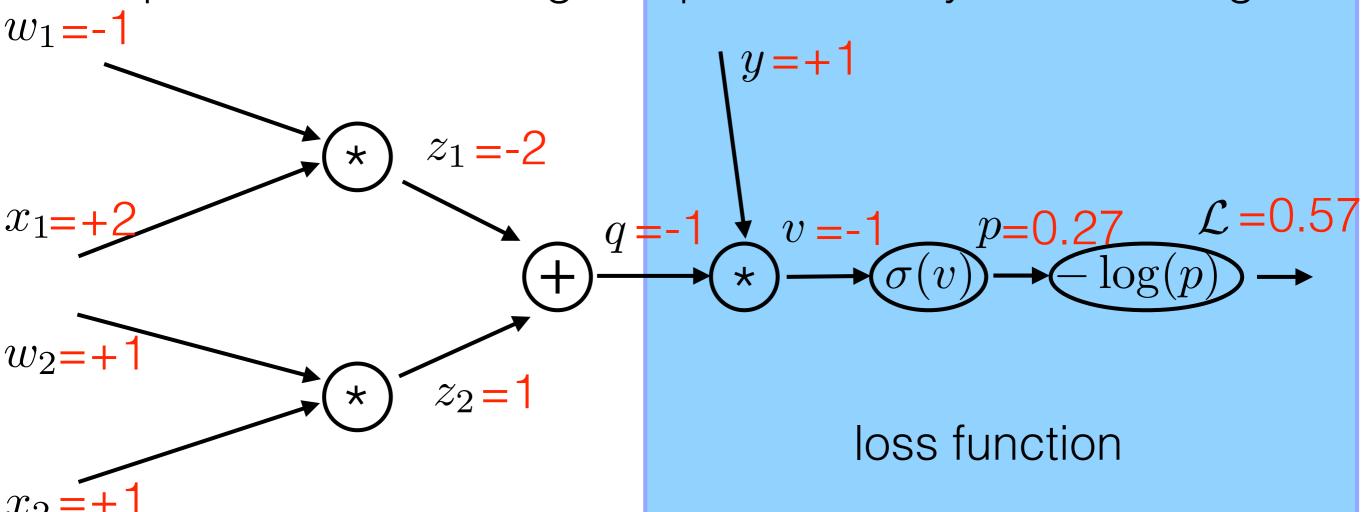
Example I: given trained classifier, and input, what is output?

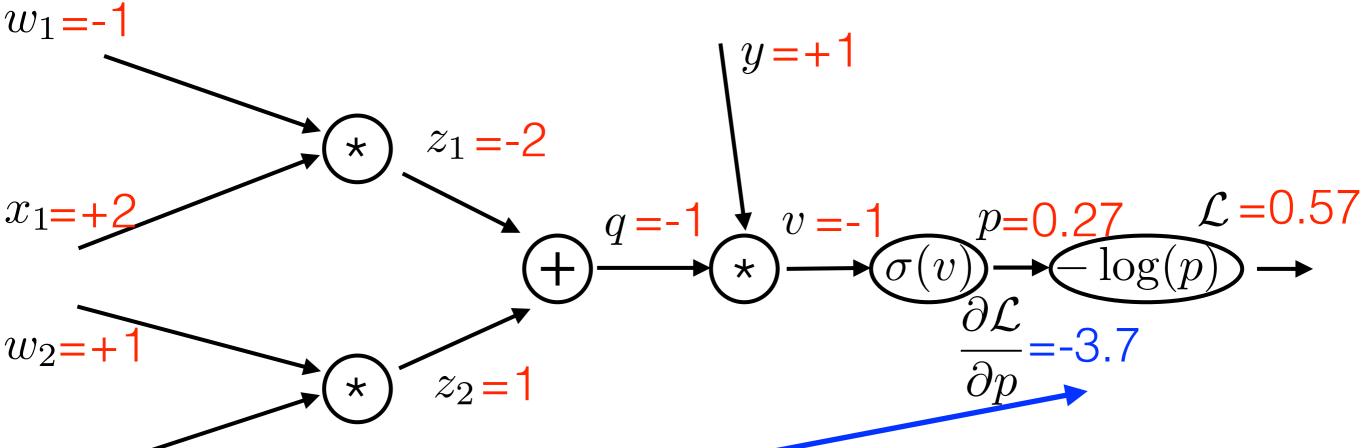




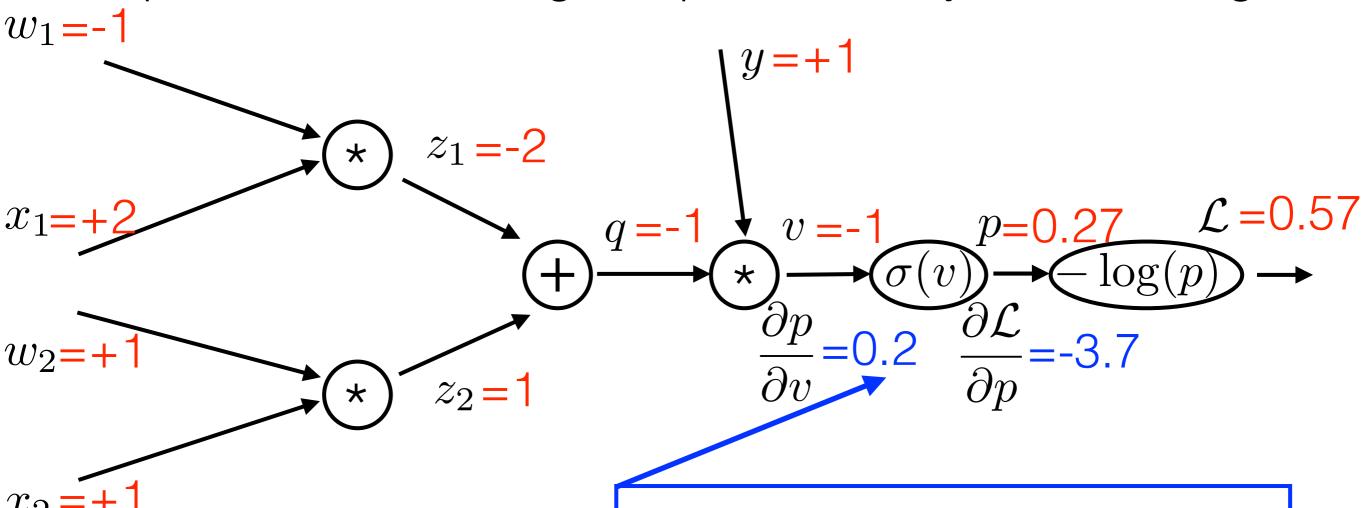
$$\arg\min_{\mathbf{w}} \left(-\log \left[\sigma(y_i f(\mathbf{x}_i, \mathbf{w})) \right] \right)$$



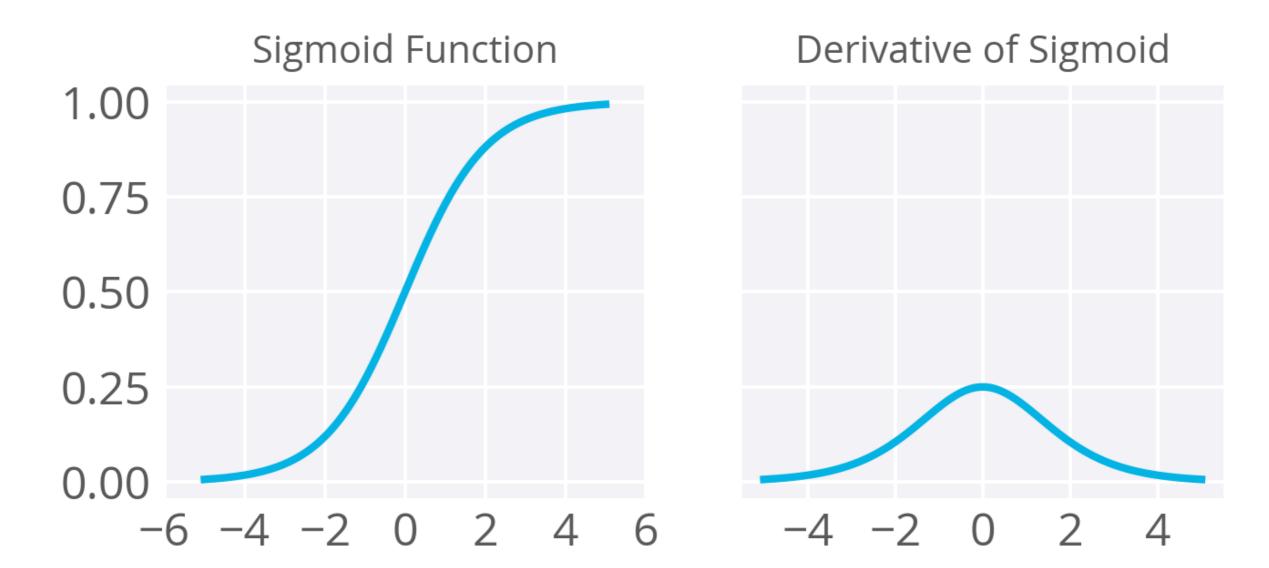




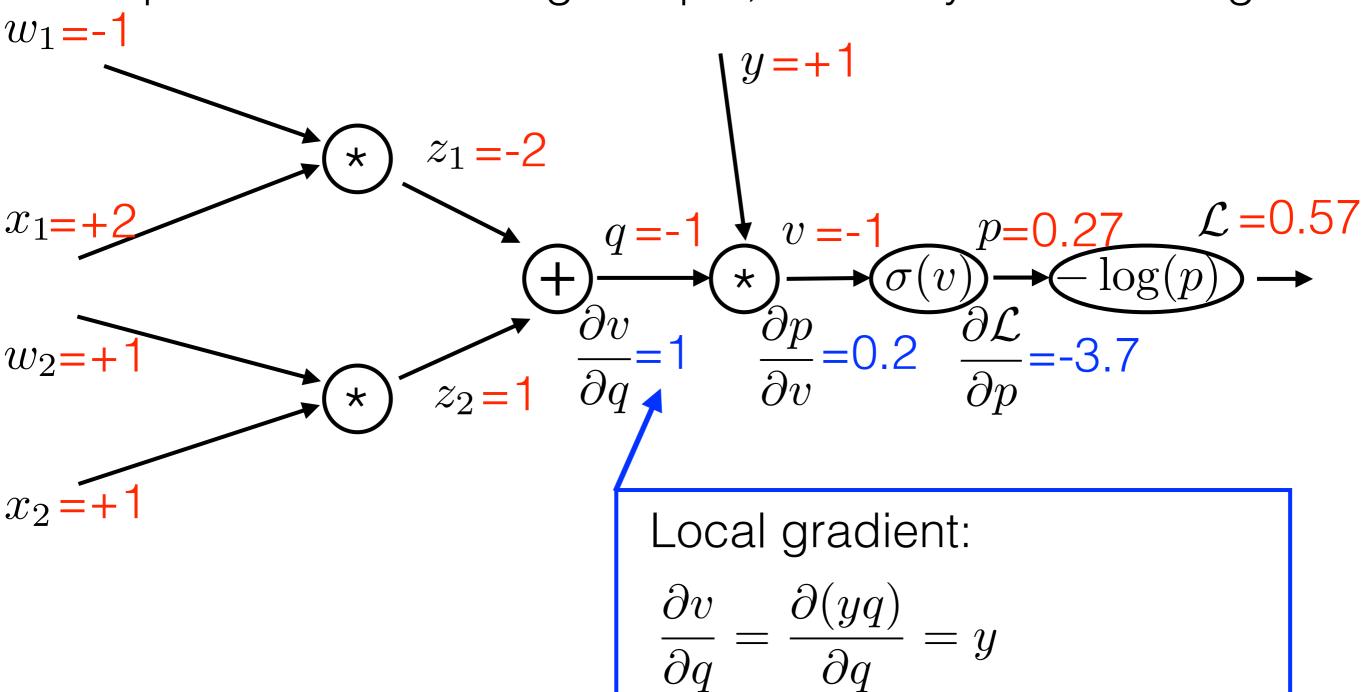
$$\frac{\partial \mathcal{L}}{\partial p} = \frac{\partial (-\log(p))}{\partial p} = -\frac{1}{p}$$

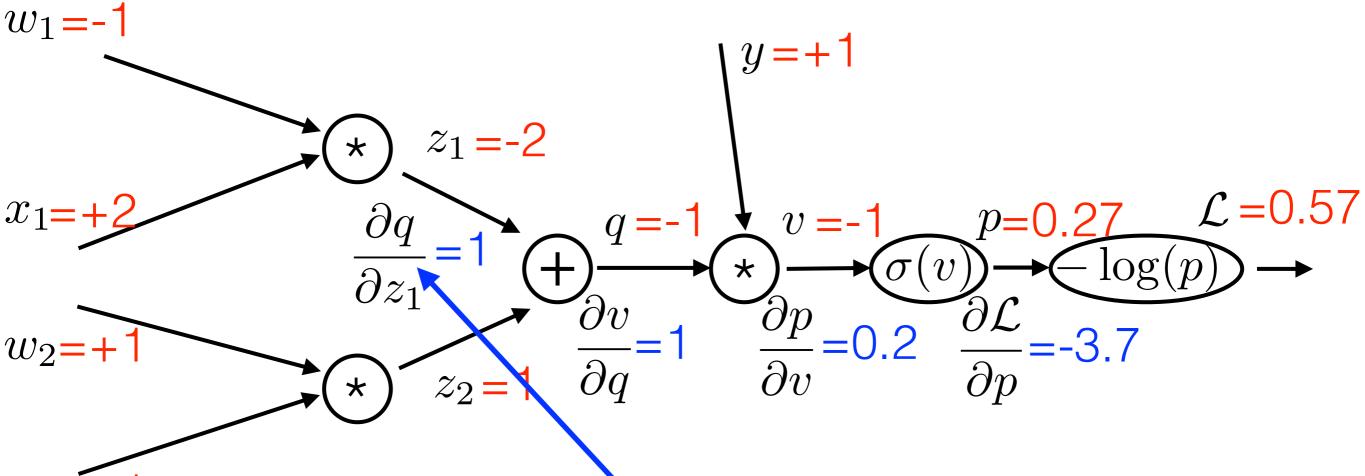


$$\frac{\partial p}{\partial v} = \frac{\partial \sigma(v)}{\partial v} = \sigma(v)(1 - \sigma(v))$$

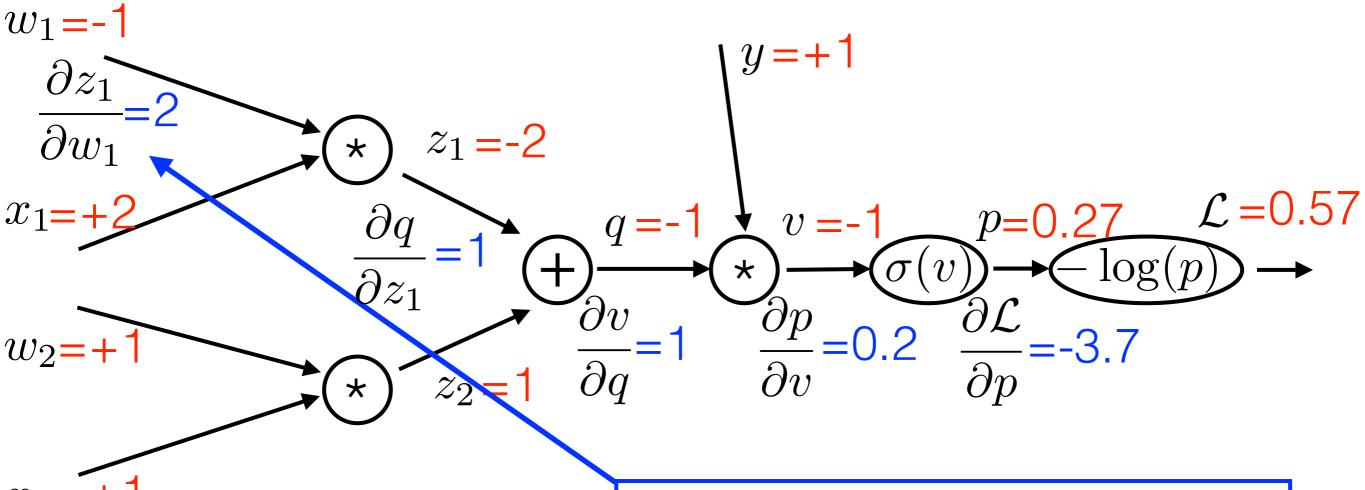


$$\frac{\partial p}{\partial v} = \frac{\partial \sigma(v)}{\partial v} = \sigma(v)(1 - \sigma(v))$$

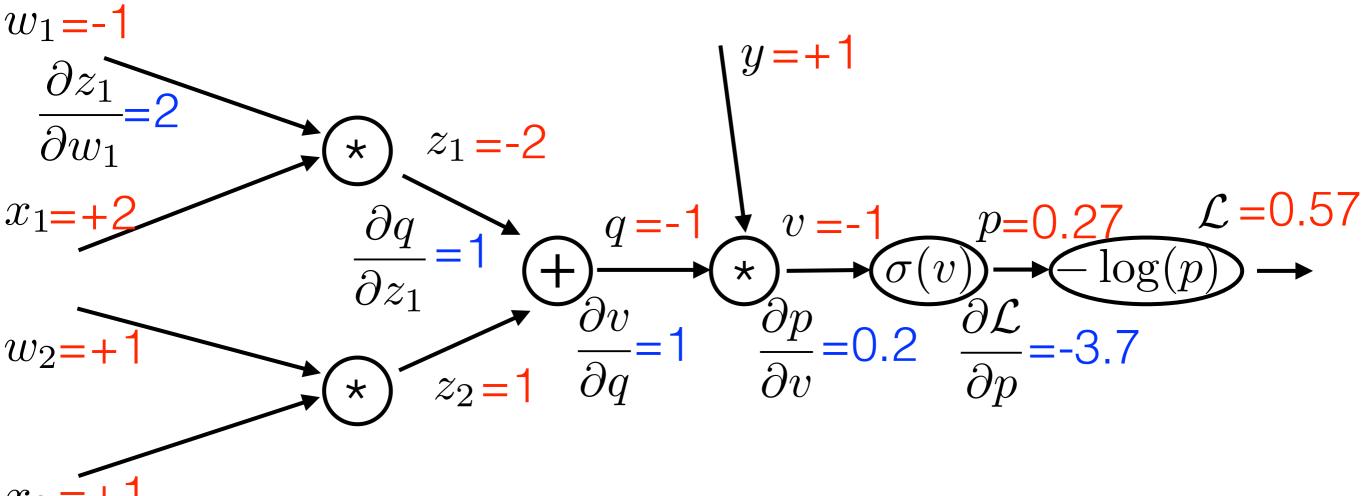




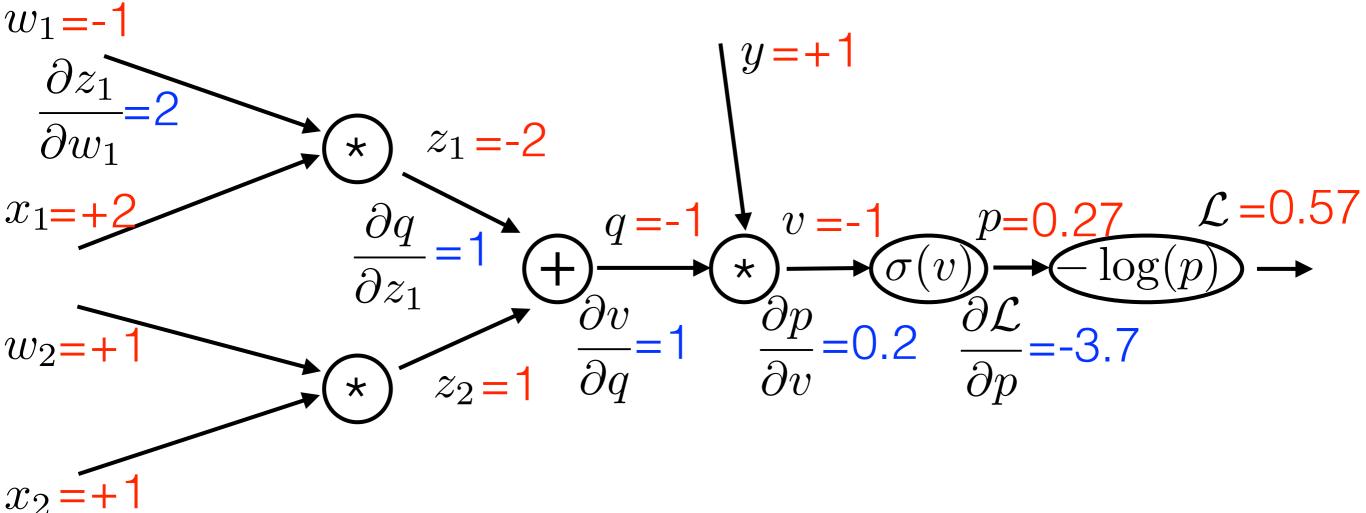
$$\frac{\partial q}{\partial z_1} = \frac{\partial (z_1 + z_2)}{\partial z_1} = 1$$



$$\frac{\partial z_1}{\partial w_1} = \frac{\partial (w_1 x_1)}{\partial w_1} = x_1$$

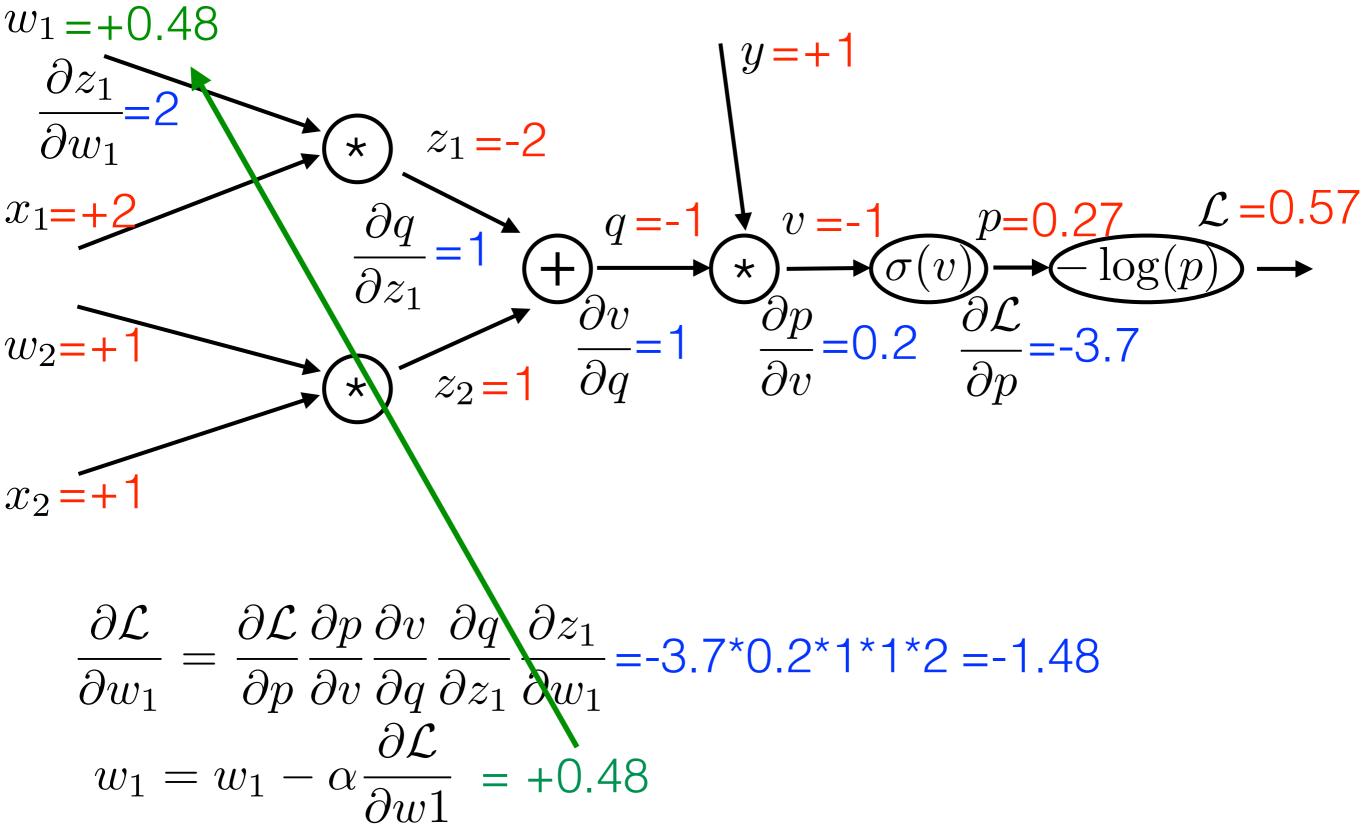


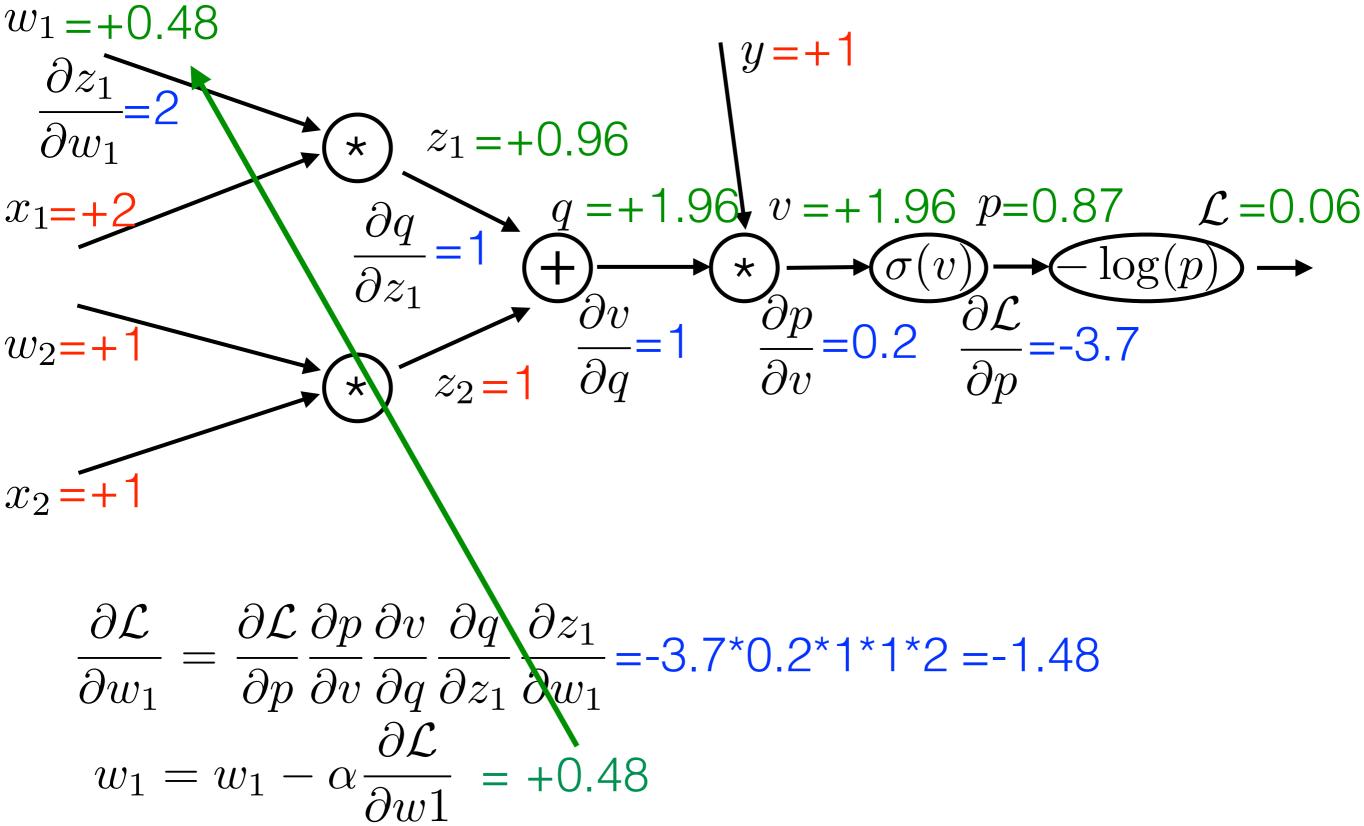
$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial p} \frac{\partial p}{\partial v} \frac{\partial v}{\partial q} \frac{\partial q}{\partial z_1} \frac{\partial z_1}{\partial w_1} = -3.7^*0.2^*1^*1^*2 = -1.48$$



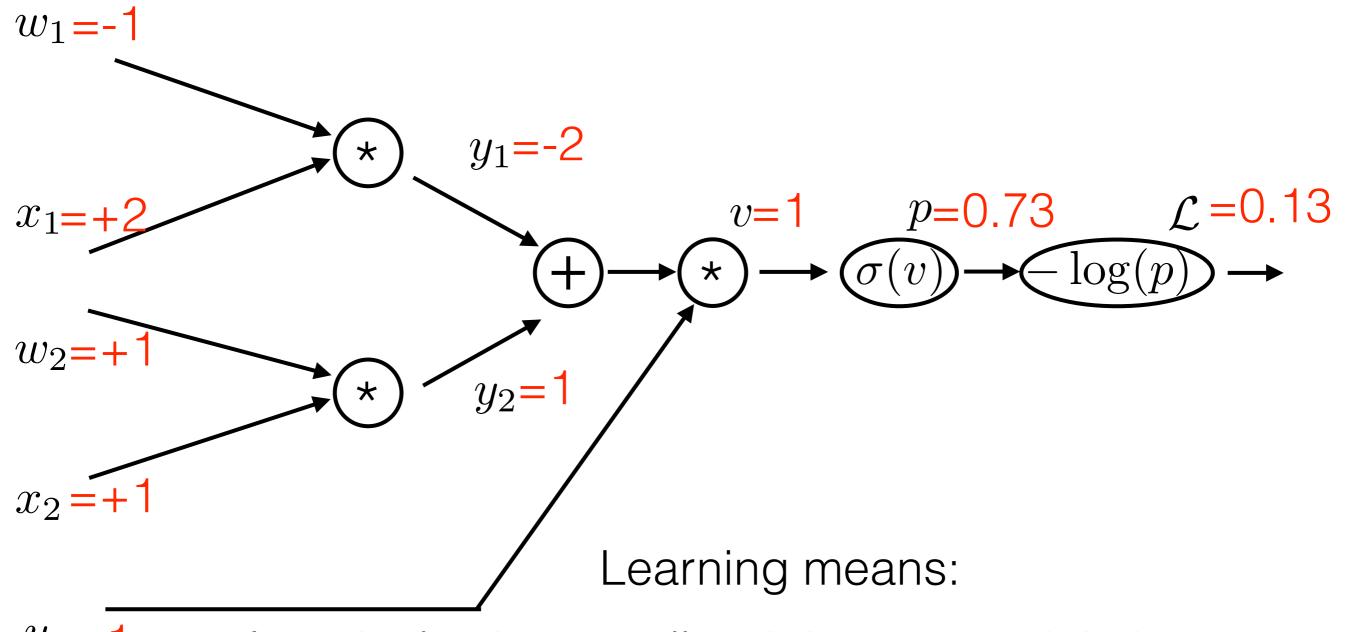
$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial p} \frac{\partial p}{\partial v} \frac{\partial v}{\partial q} \frac{\partial q}{\partial z_1} \frac{\partial z_1}{\partial w_1} = -3.7^*0.2^*1^*1^*2 = -1.48$$

$$w_1 = w_1 - \alpha \frac{\partial \mathcal{L}}{\partial w_1} = +0.48$$





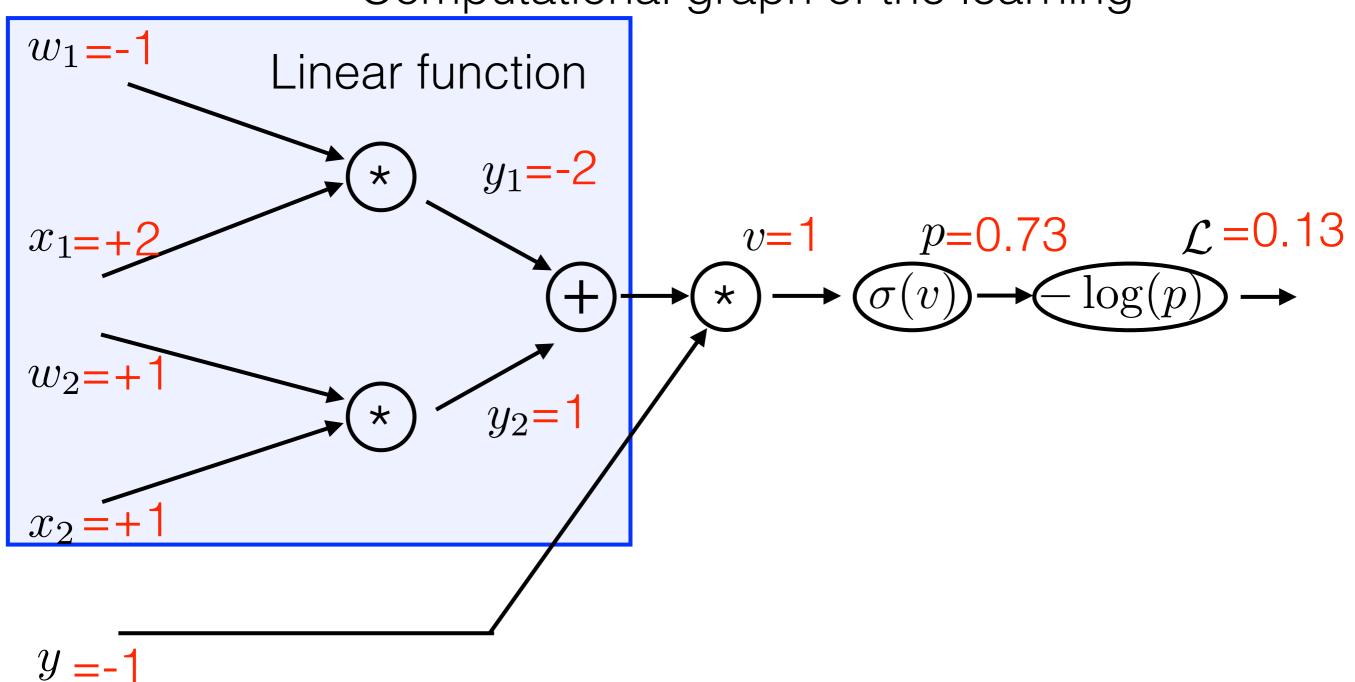
Example III: vector representation



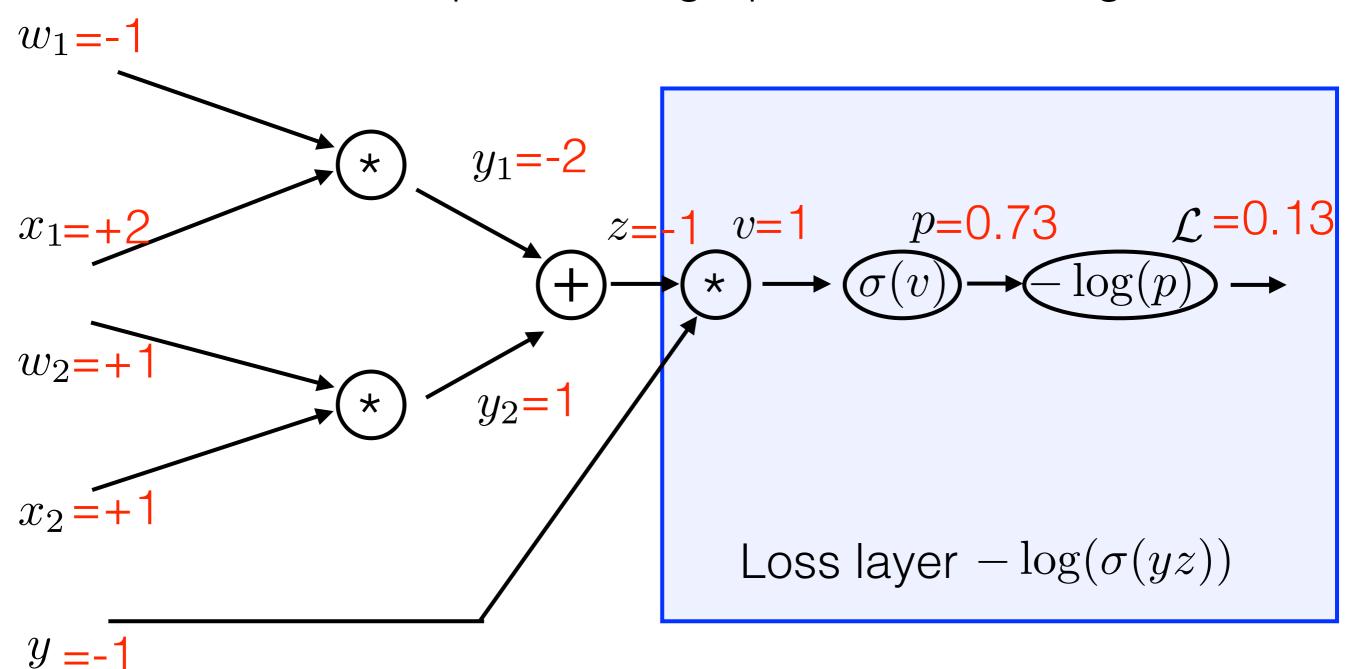
y=-1 Iteratively change all weights w to minimize \mathcal{L}

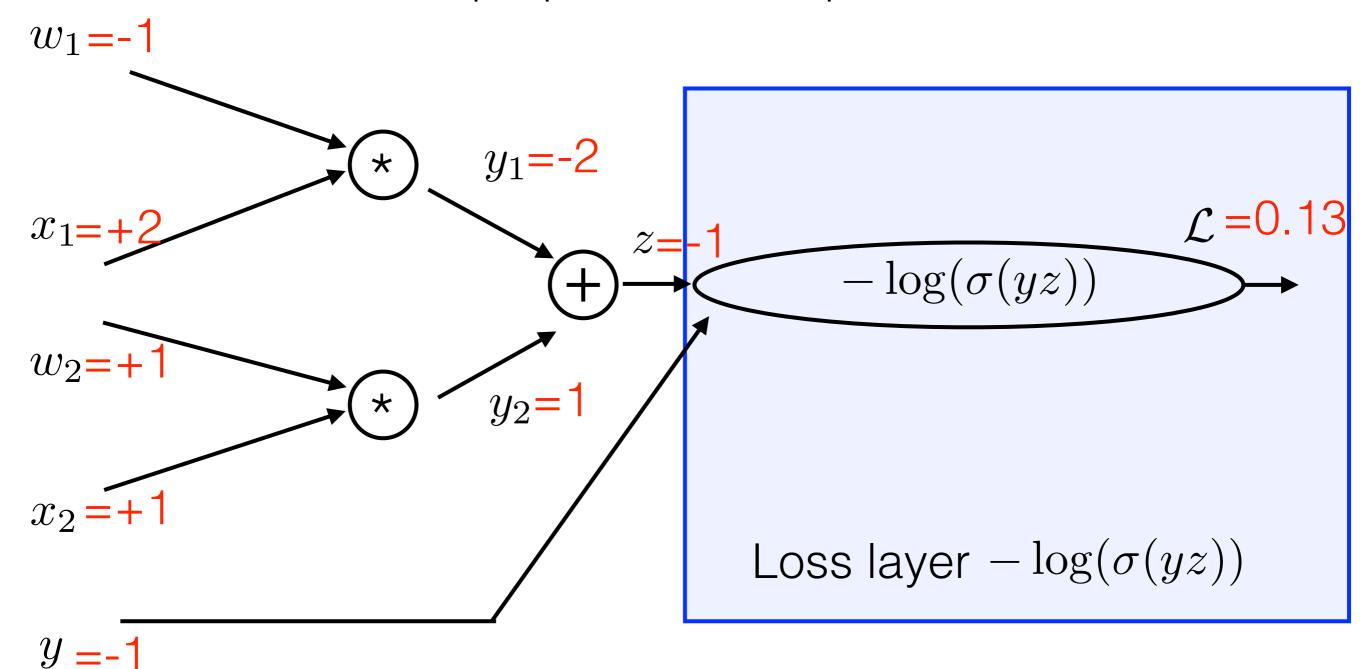
$$\mathbf{w} = \mathbf{w} - \alpha \left[\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} \right]^{\mathsf{T}}$$
 where $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \left[\frac{\partial \mathcal{L}}{\partial w_1}, \frac{\partial \mathcal{L}}{\partial w_2}, \dots \right]$

Computational graph of the learning



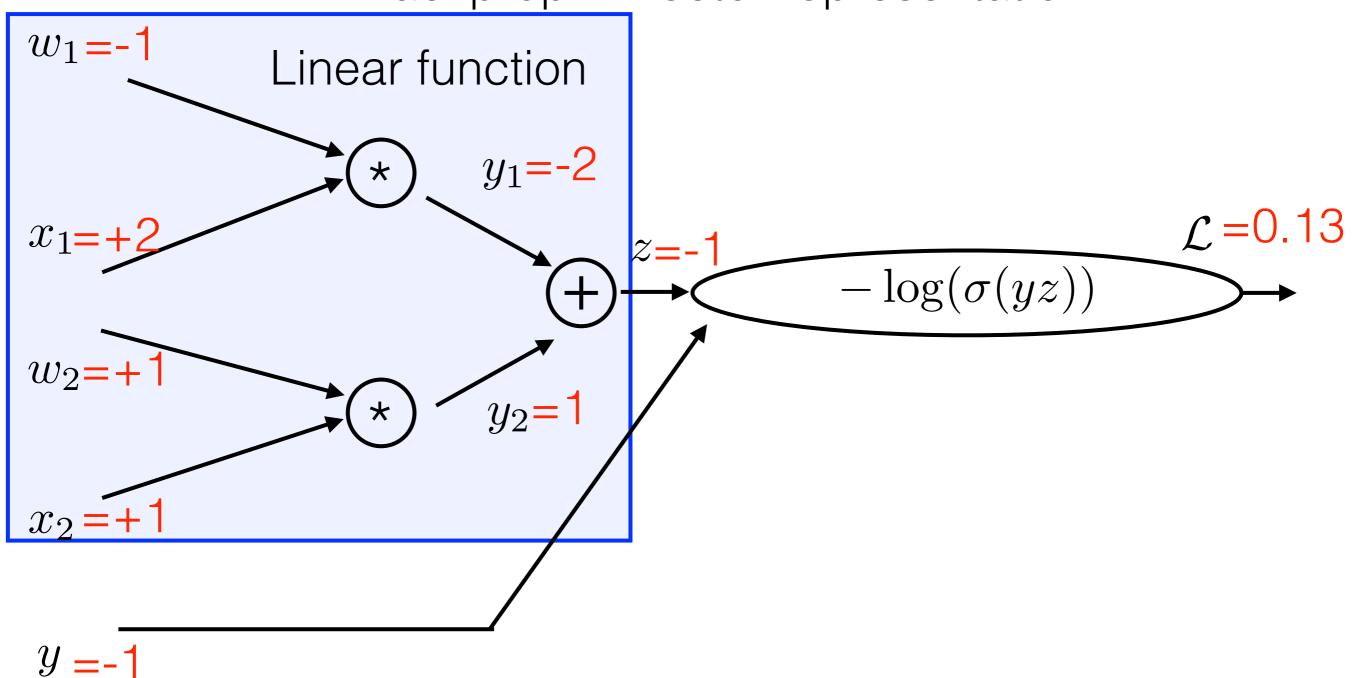
Computational graph of the learning

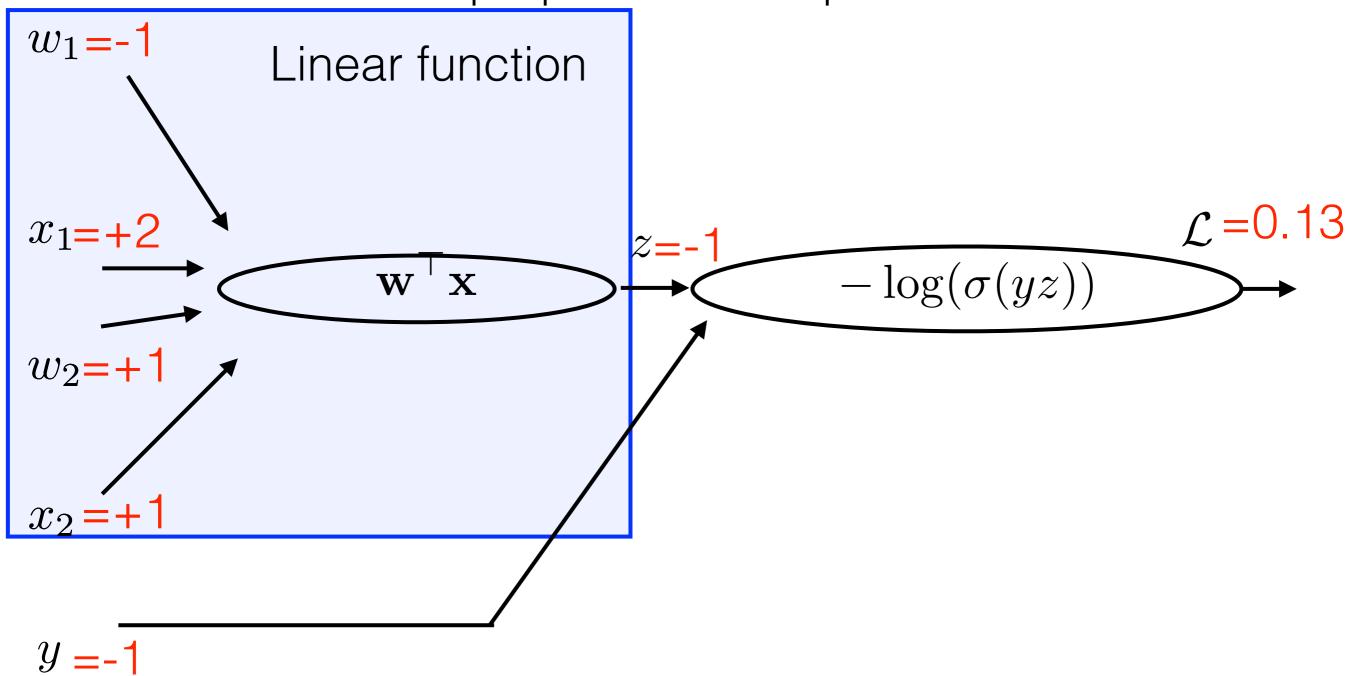


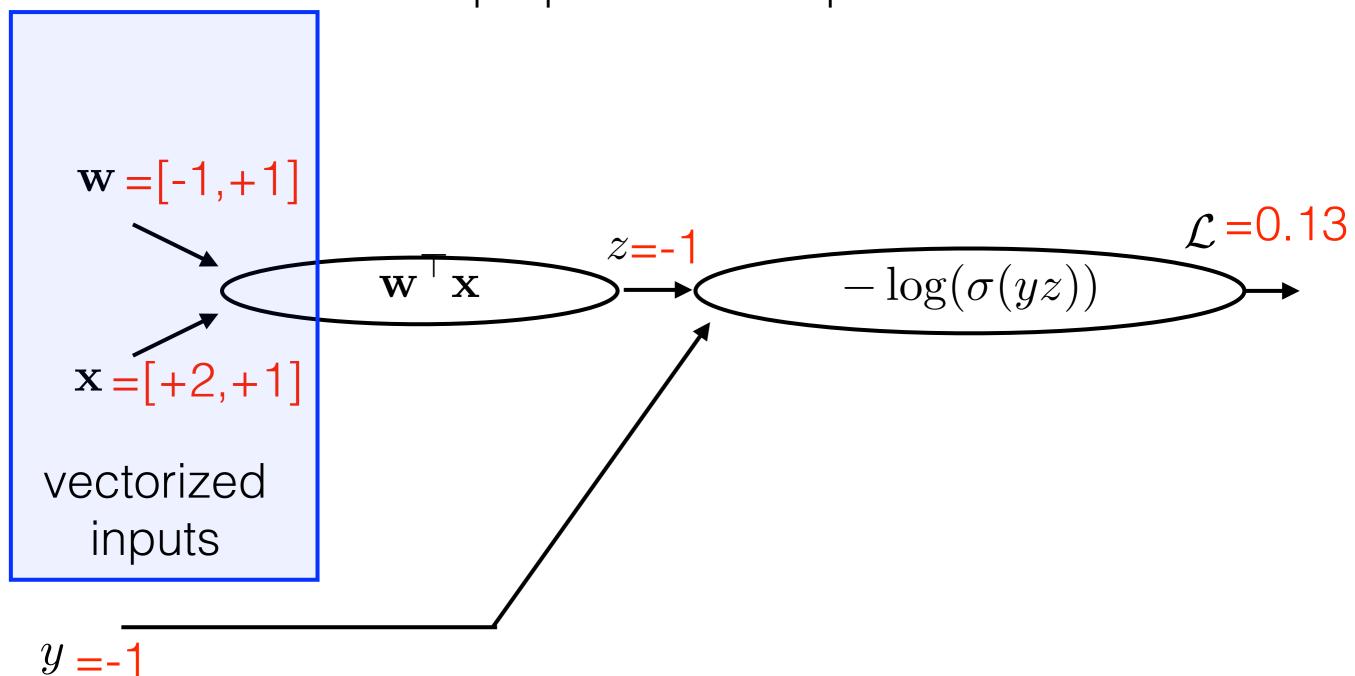


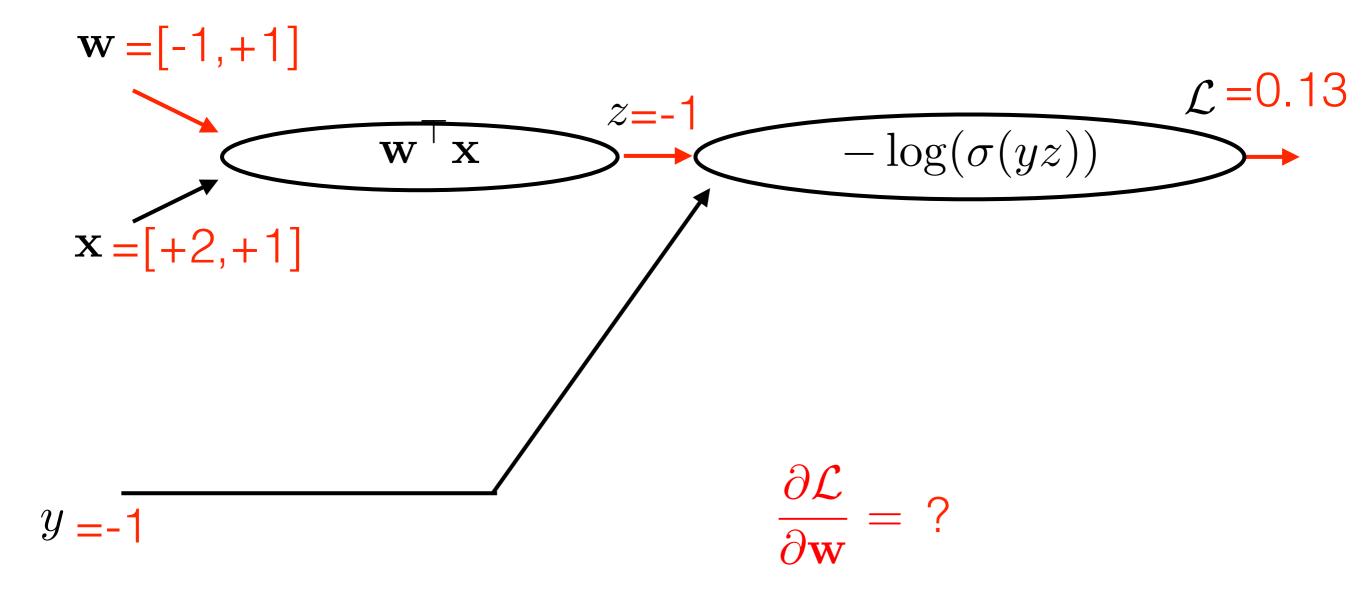
This is the logistic loss!

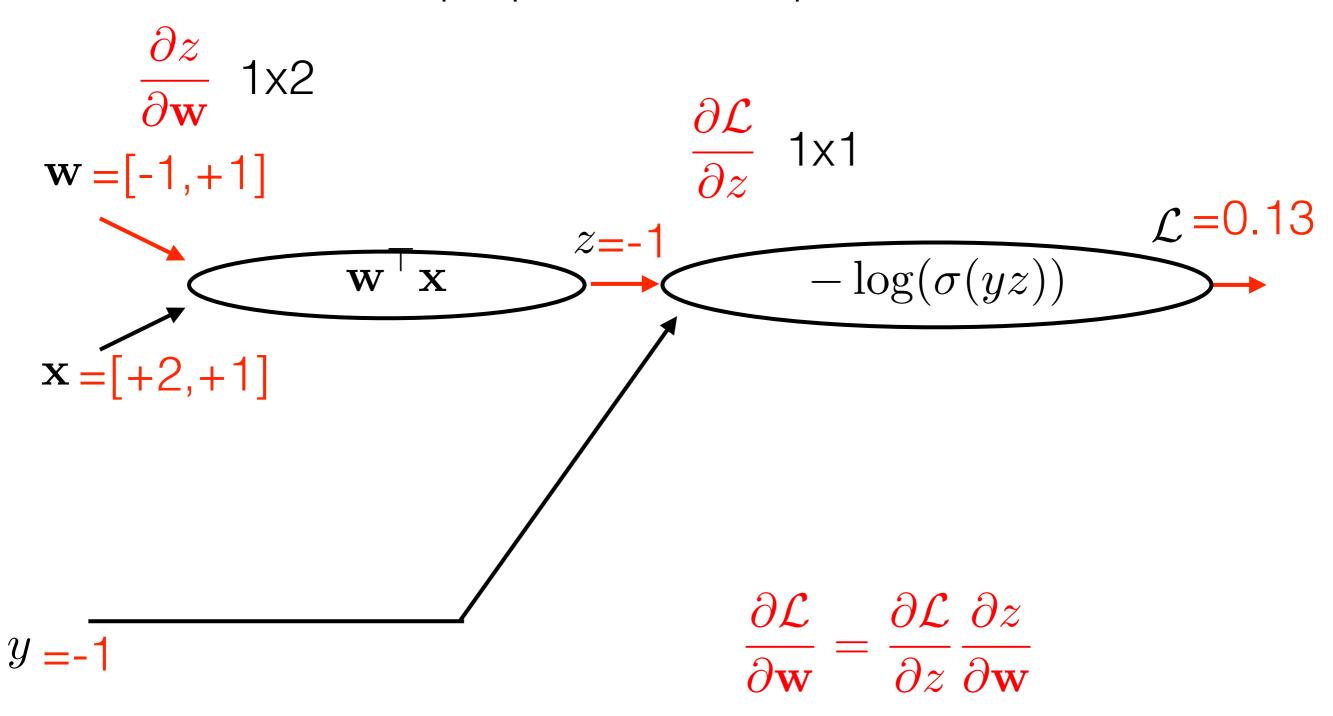
$$\mathcal{L}(y,z) = -\log(\sigma(yz)) = \log(1 + \exp(-yz))$$

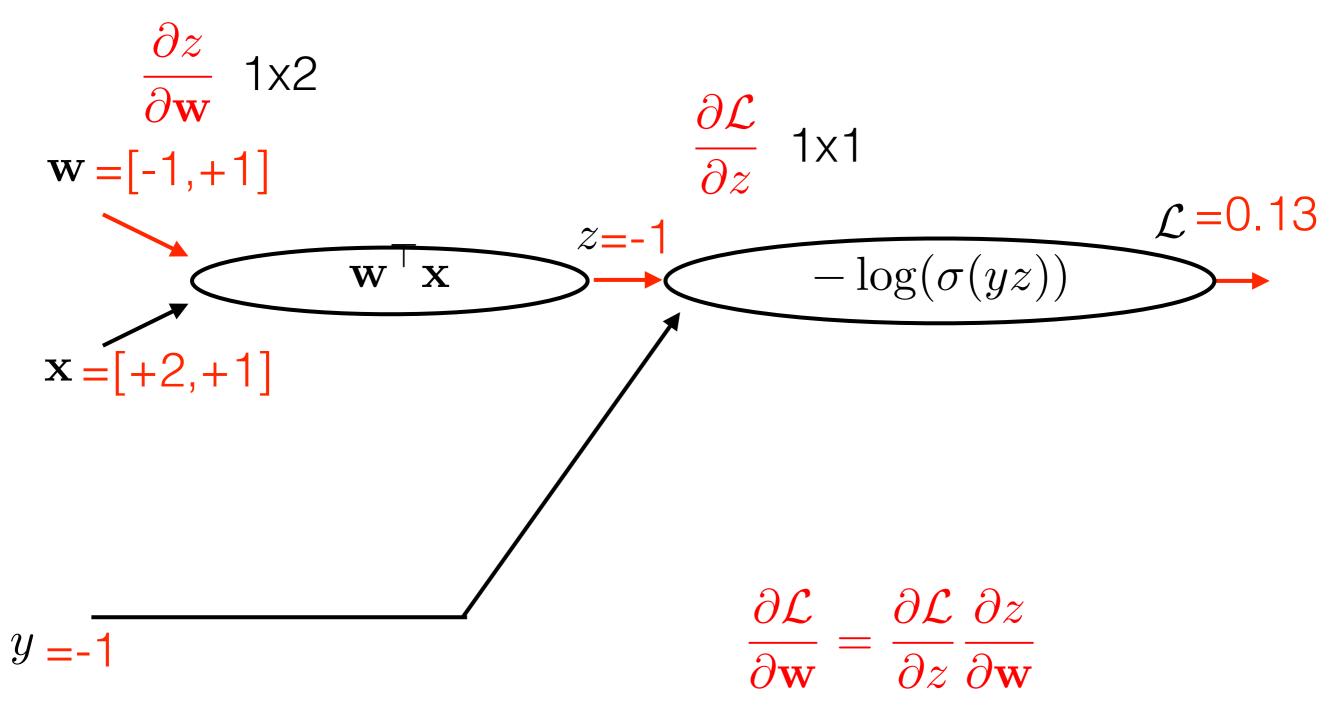






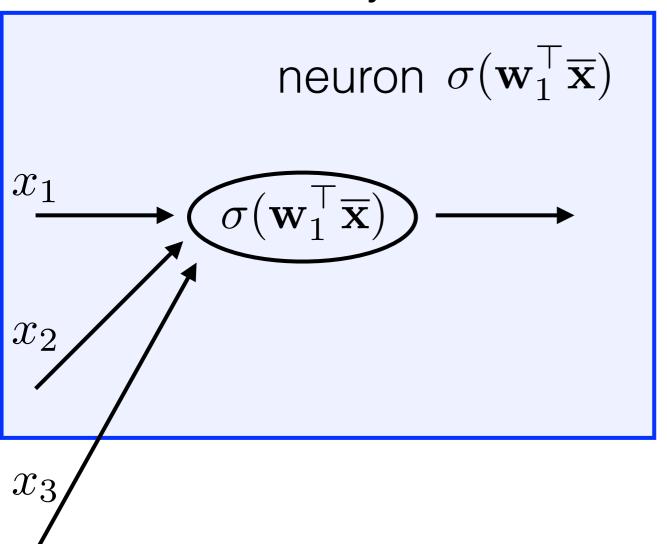


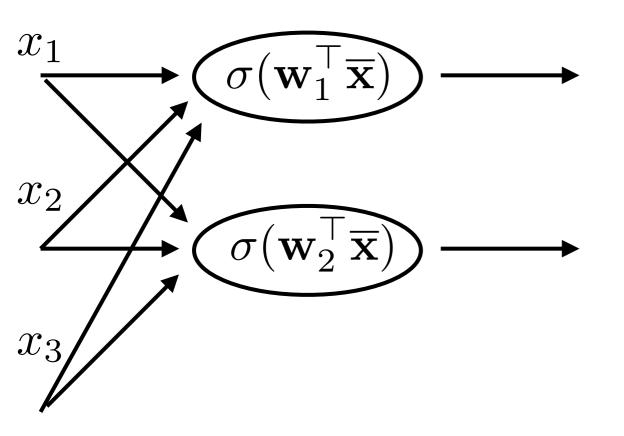


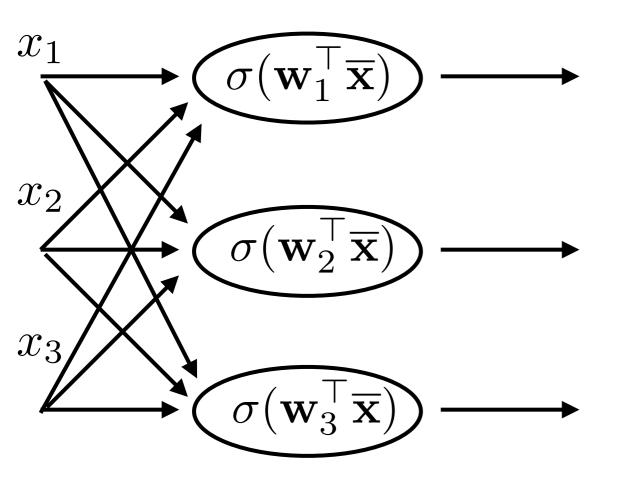


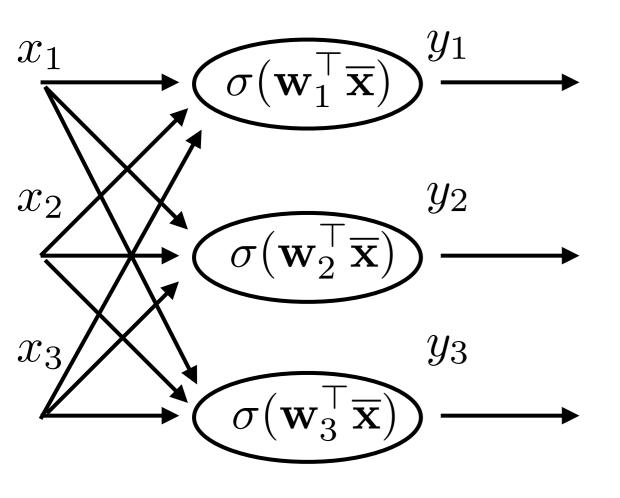
Learning from multiple training samples means summing up the gradient over all samples

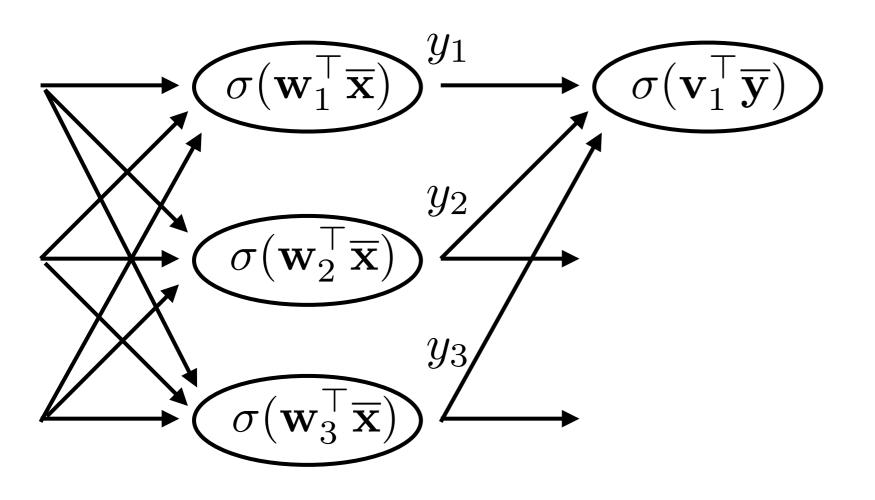
Fully connected neural network

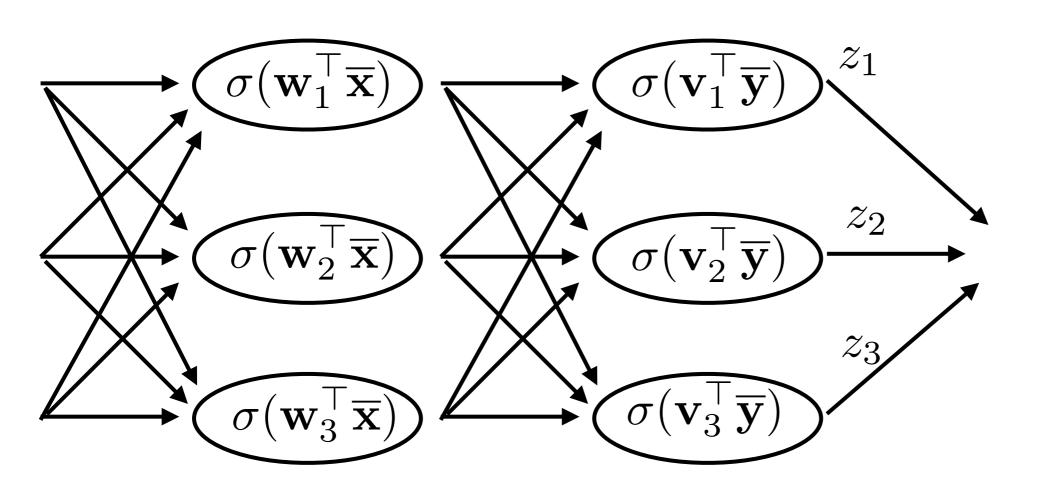


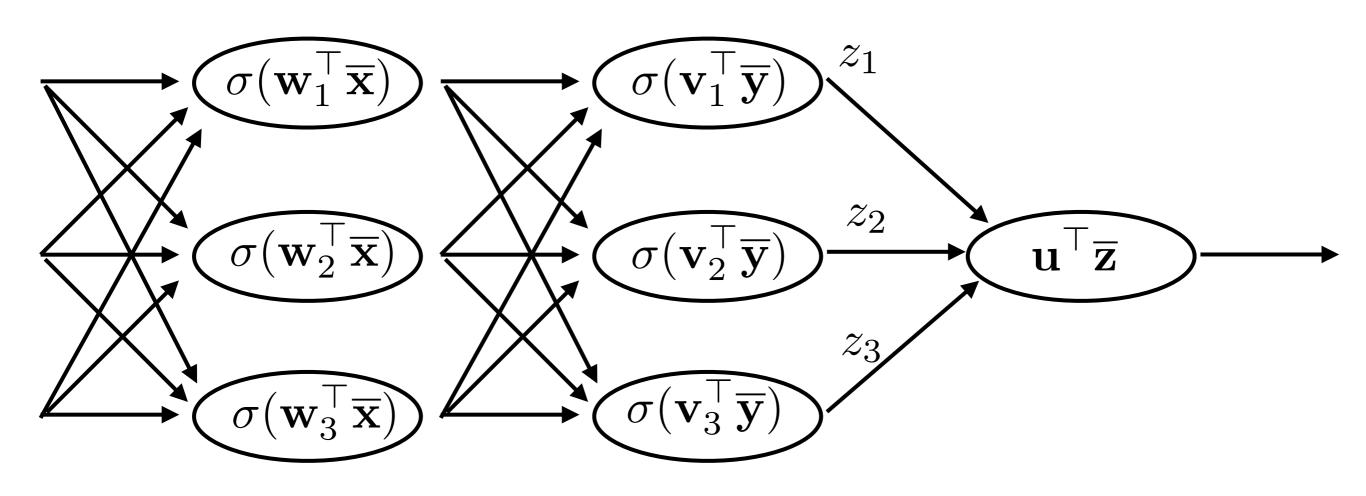


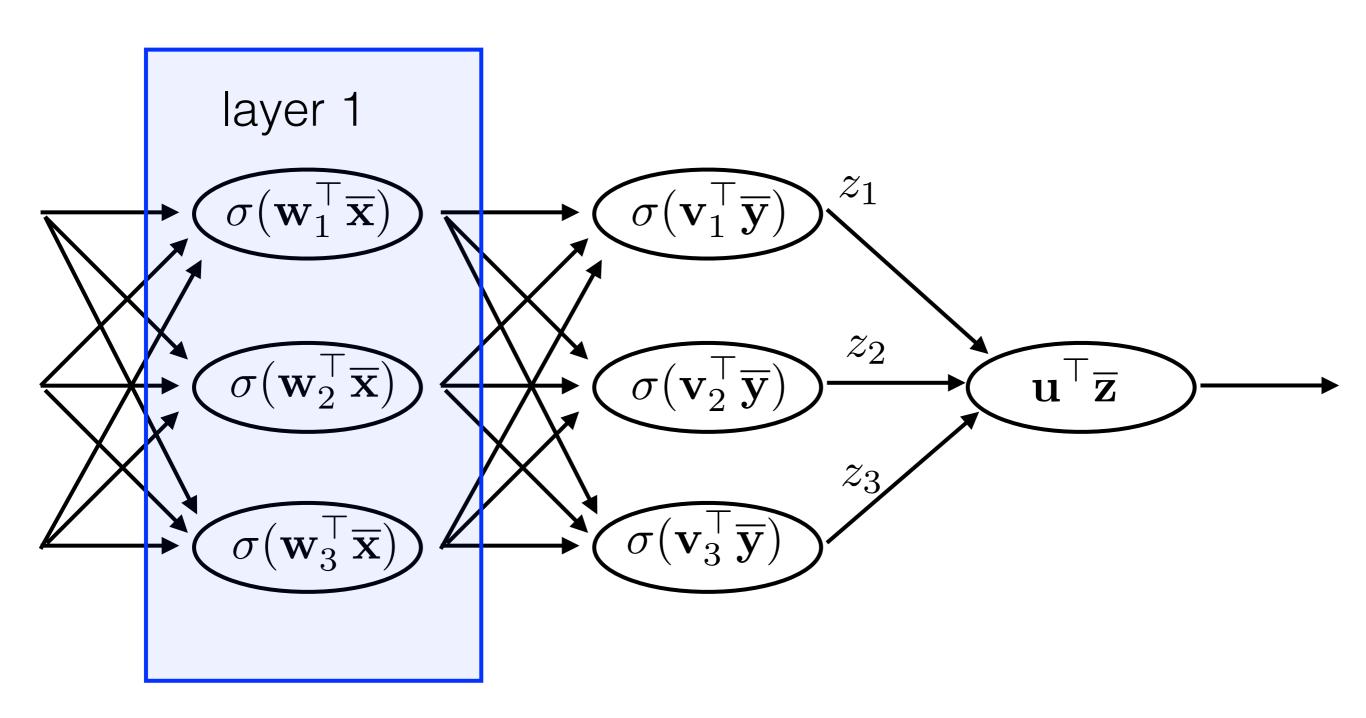


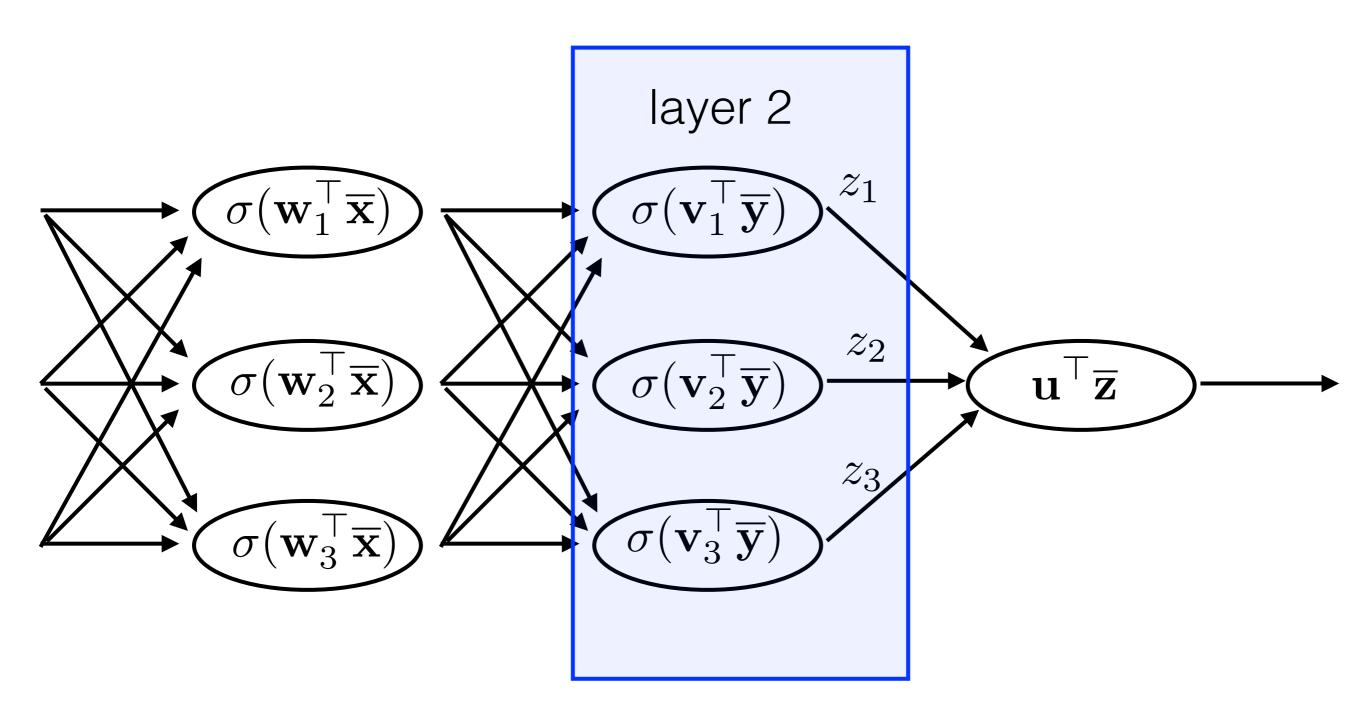


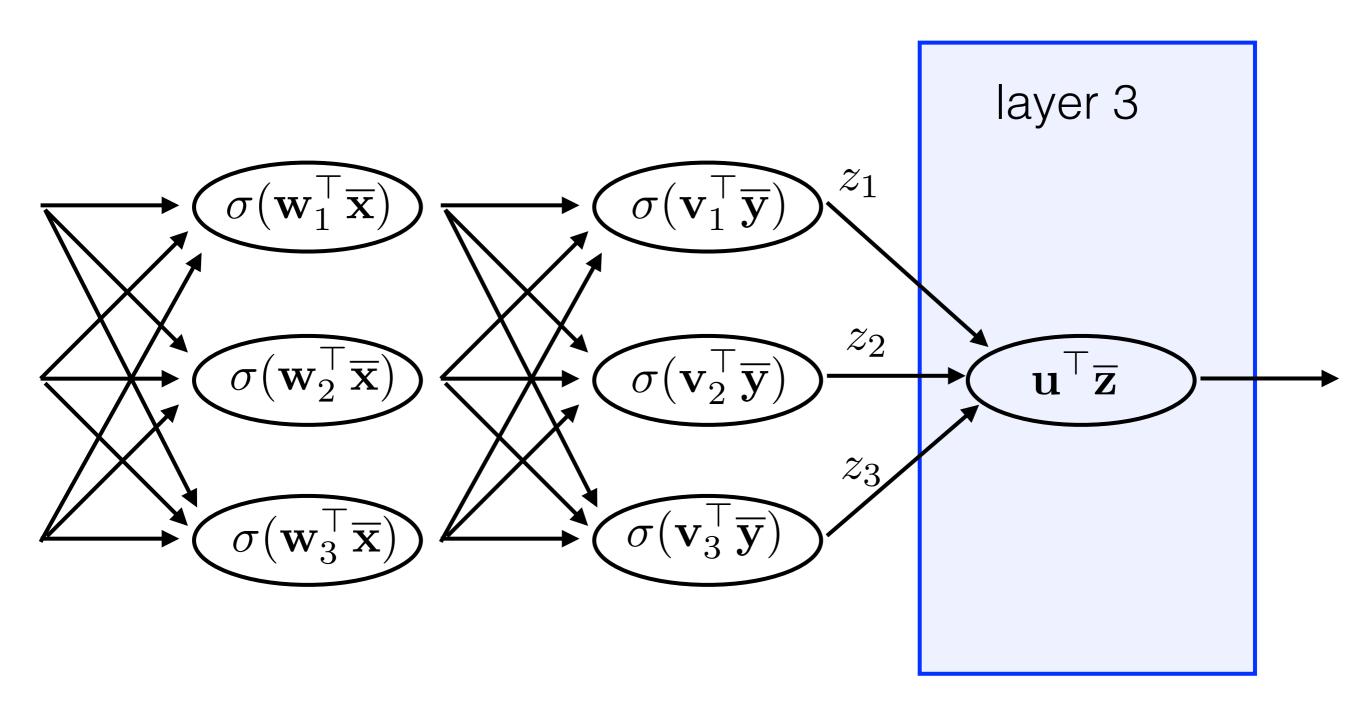


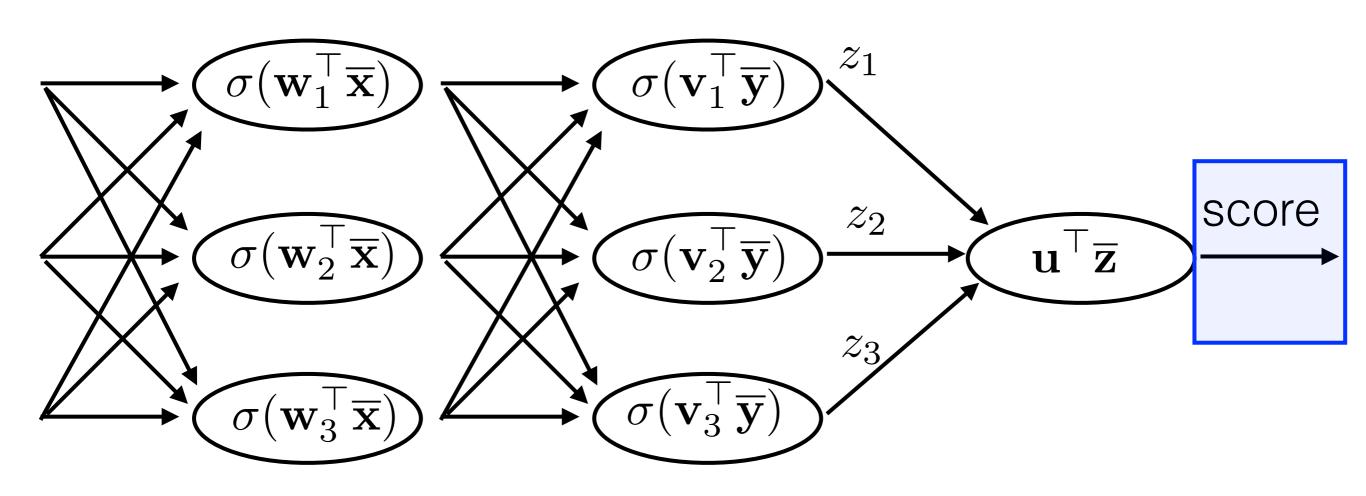


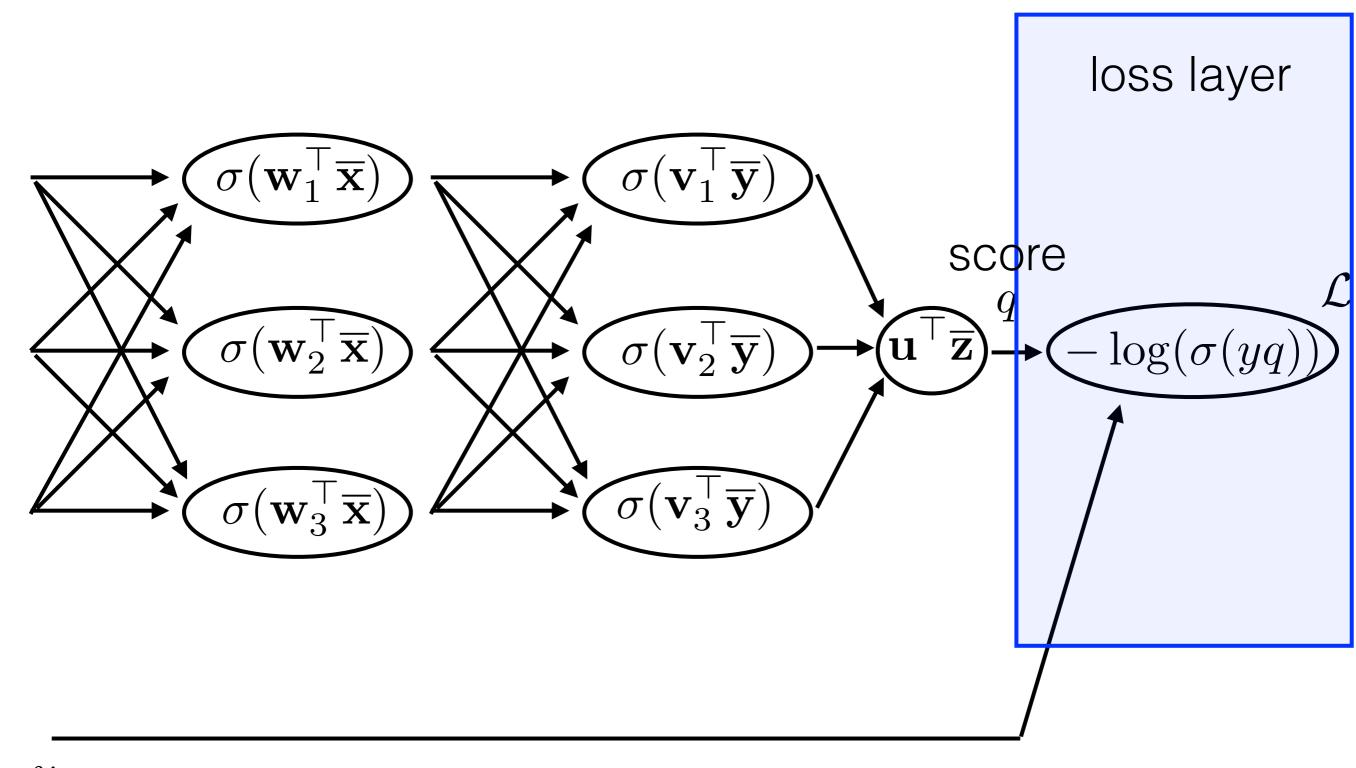


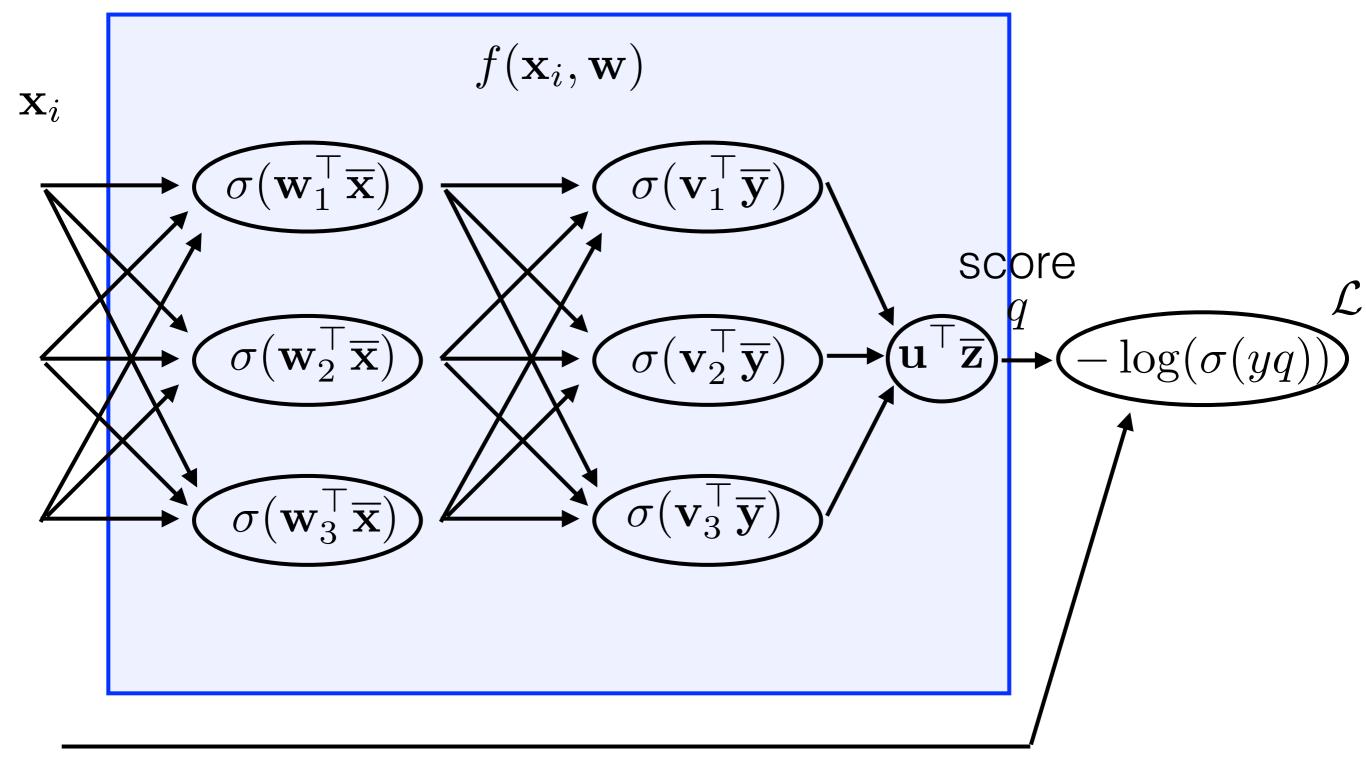


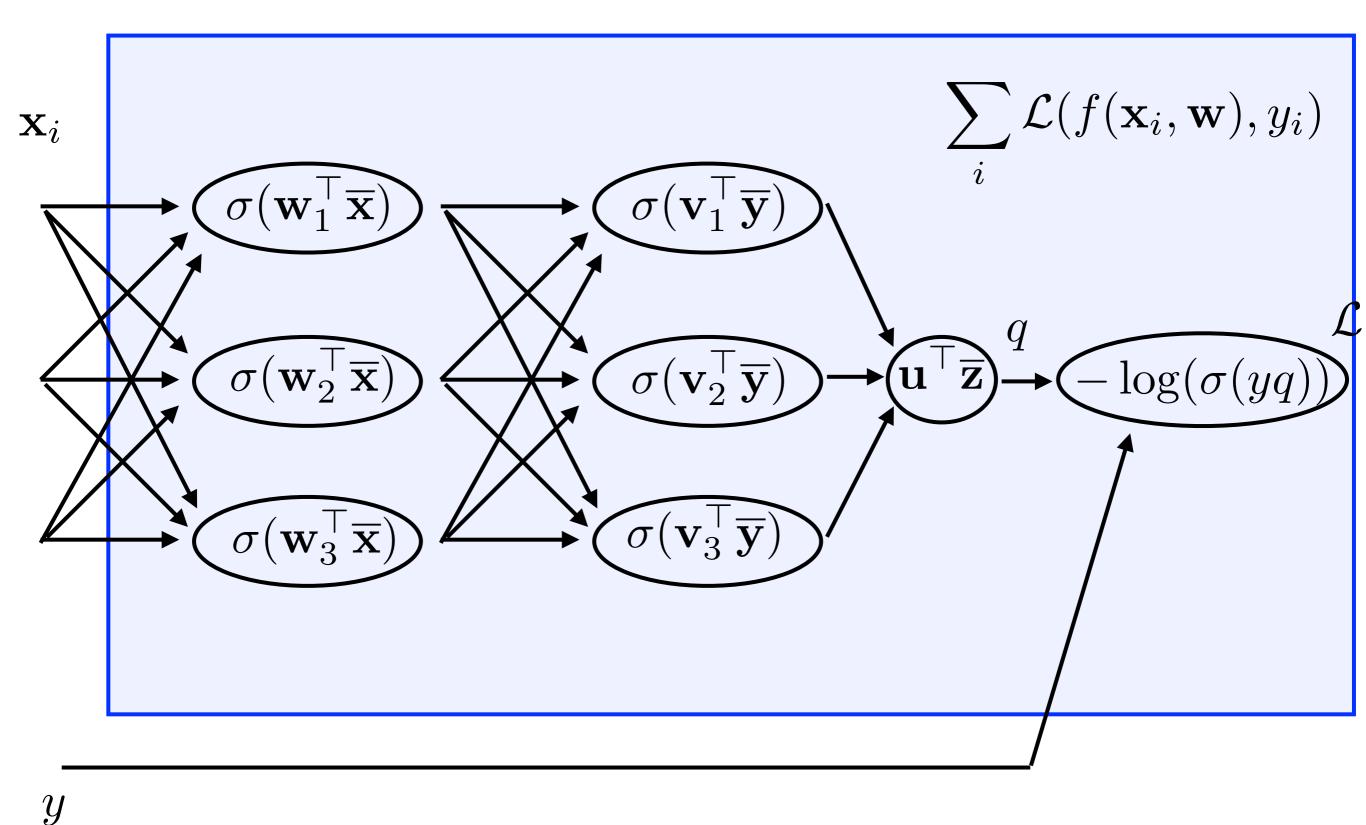












9

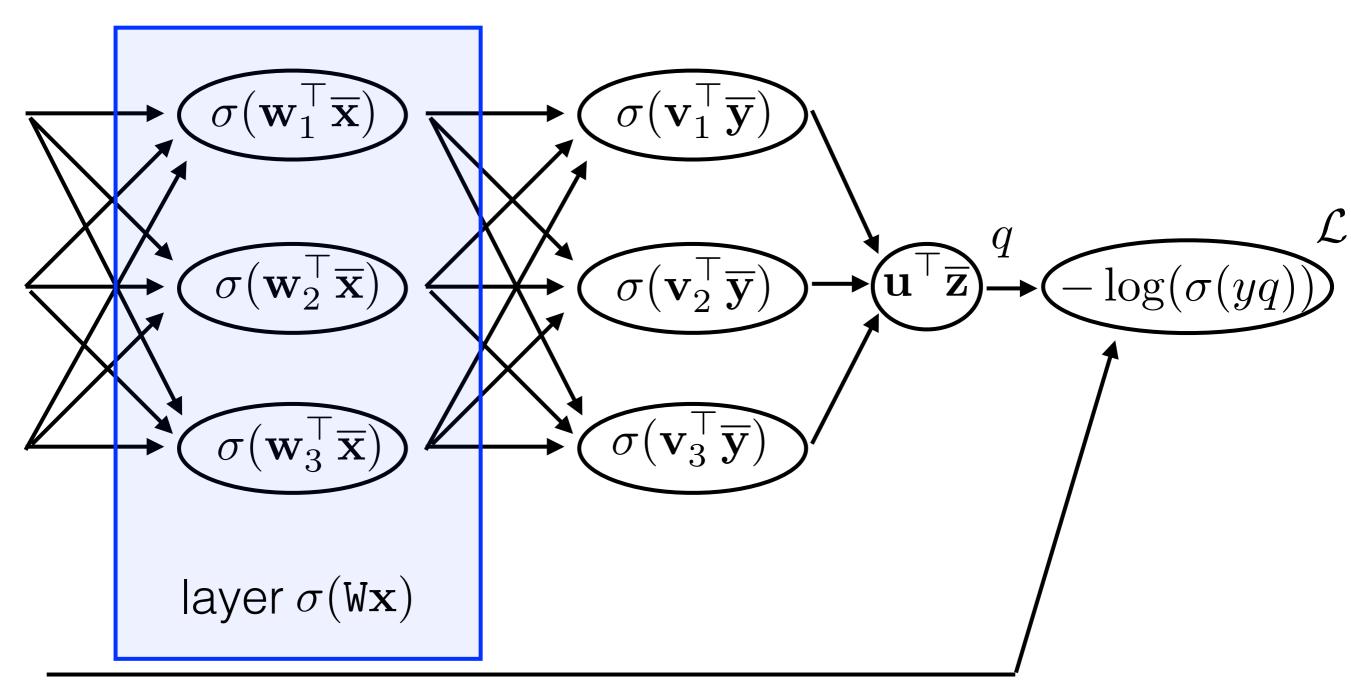
1. Estimate gradient

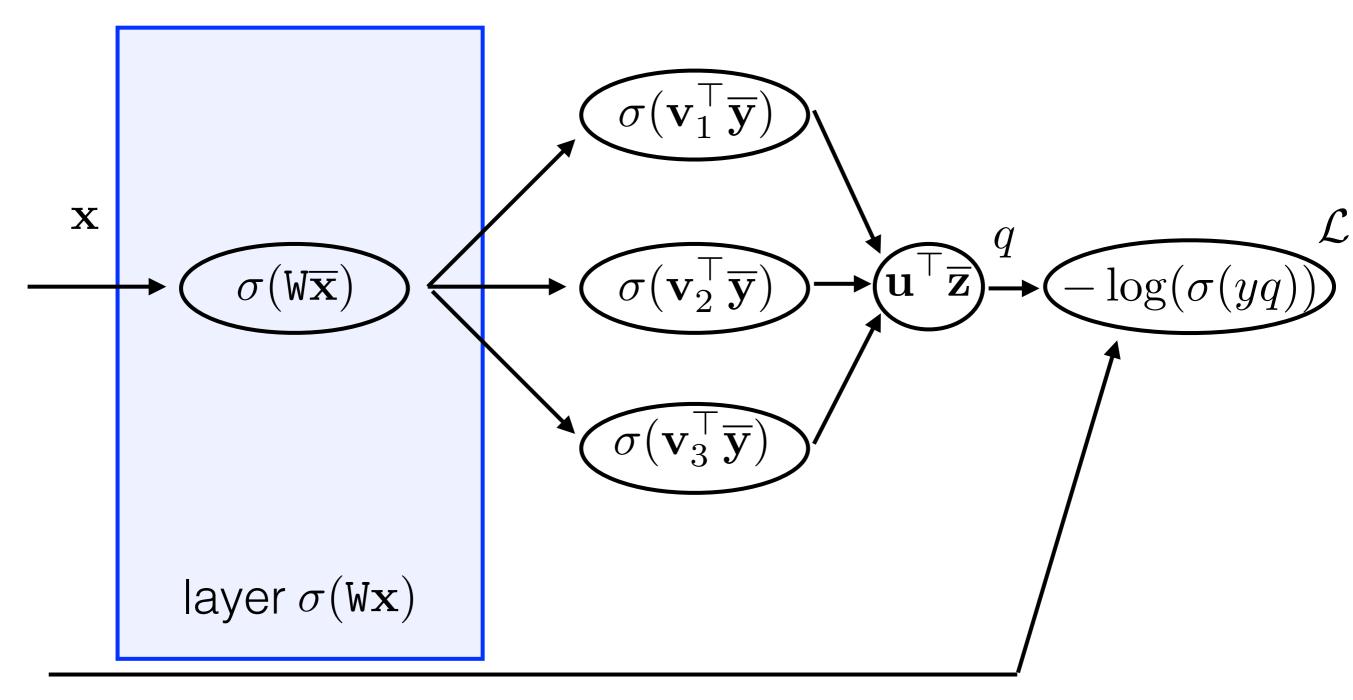
$$\sum_{i} \frac{\partial \mathcal{L}(f(\mathbf{x}_{i}, \mathbf{w}), y_{i})}{\partial \mathbf{w}}$$

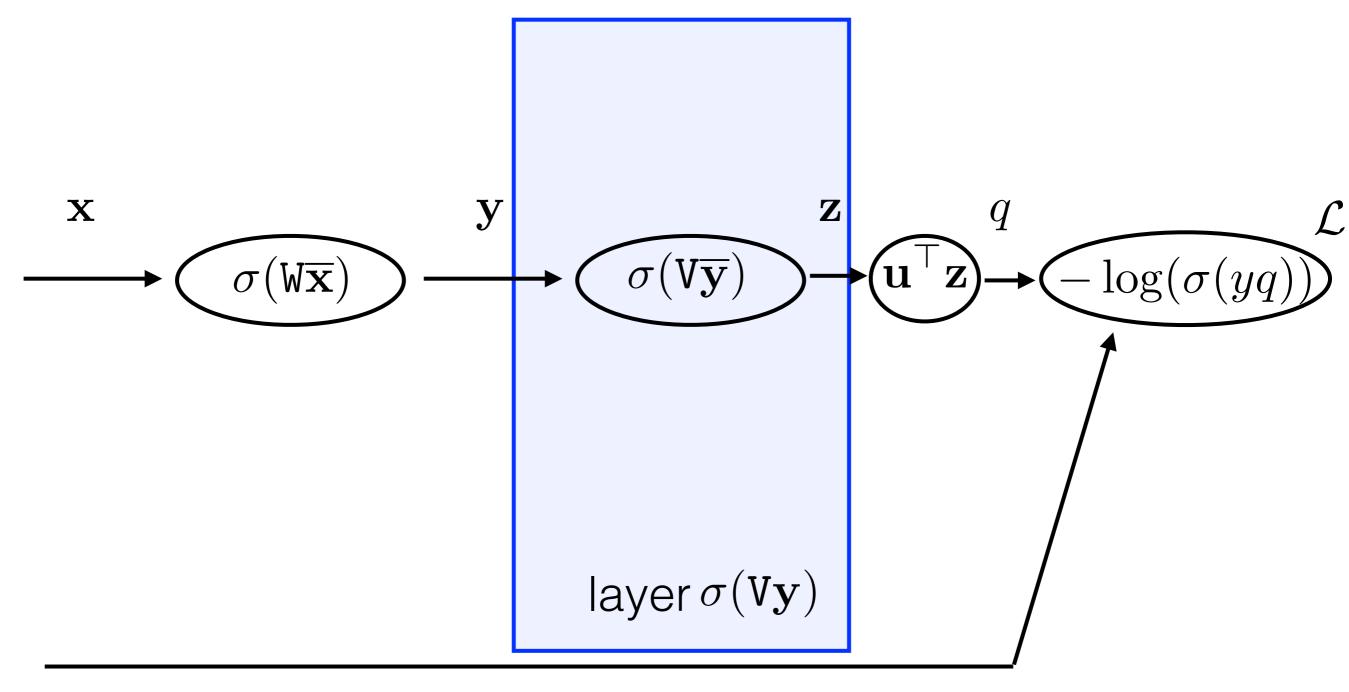
2. Update weights:

$$\mathbf{w} = \mathbf{w} - \alpha \sum_{i} \frac{\partial \mathcal{L}(f(\mathbf{x}_{i}, \mathbf{w}), y_{i})}{\partial \mathbf{w}}$$

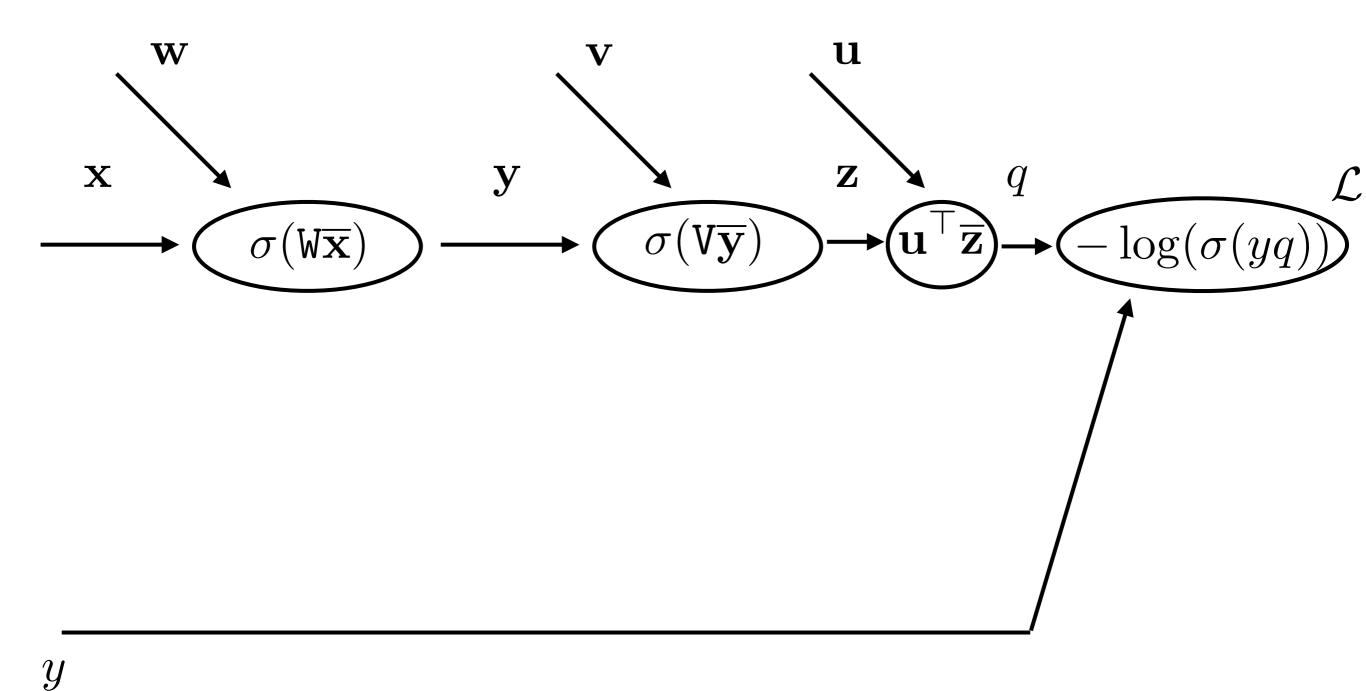
- 3. Optionally update learning rate α
- 4. Repeat until convergence



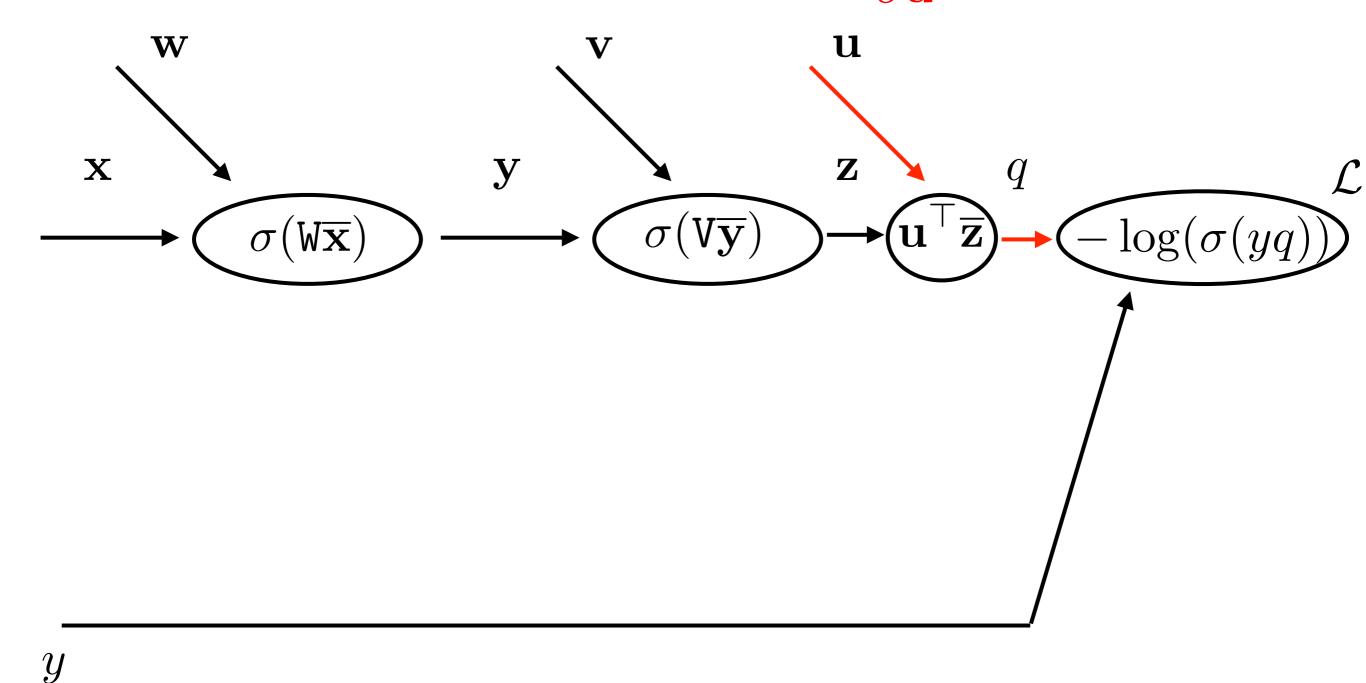




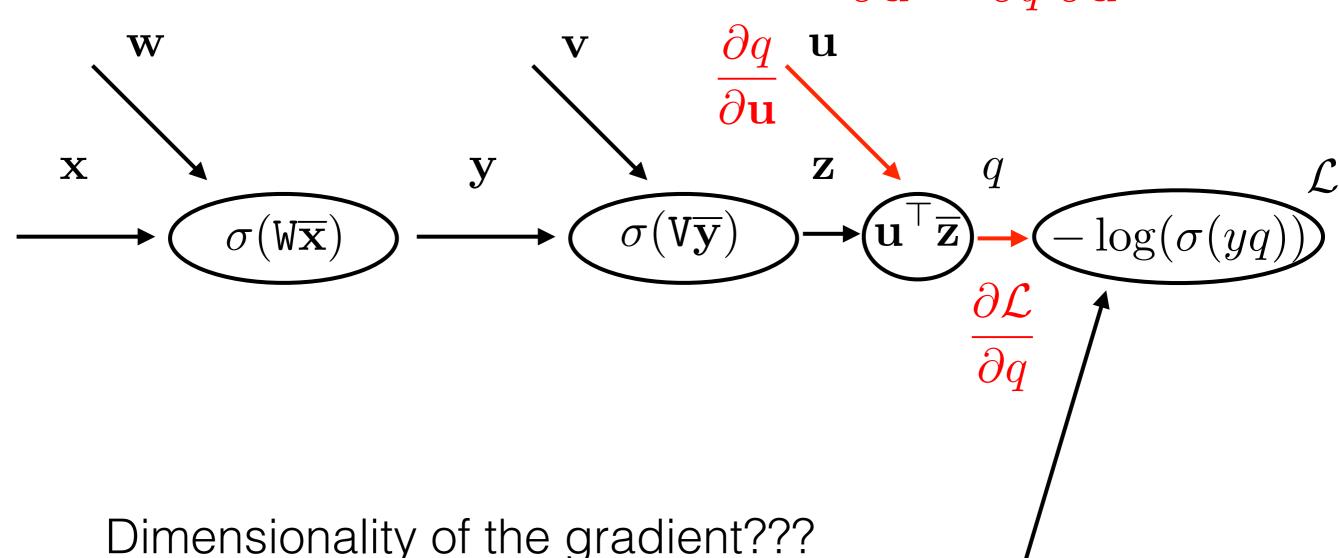
$$\mathbf{w} = \operatorname{vec}(V)$$
 $\mathbf{v} = \operatorname{vec}(V)$

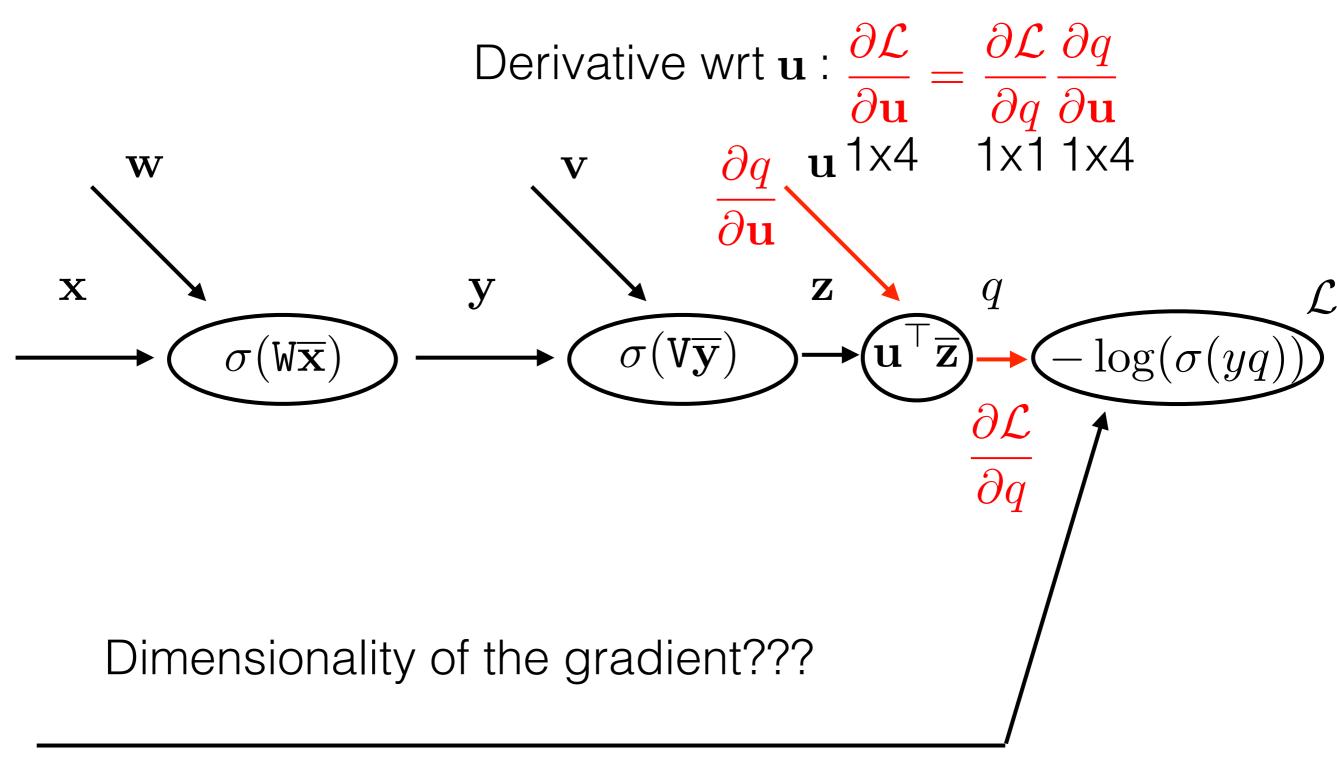


Derivative wrt
$$\mathbf{u}$$
 : $\frac{\partial \mathcal{L}}{\partial \mathbf{u}} = ?$



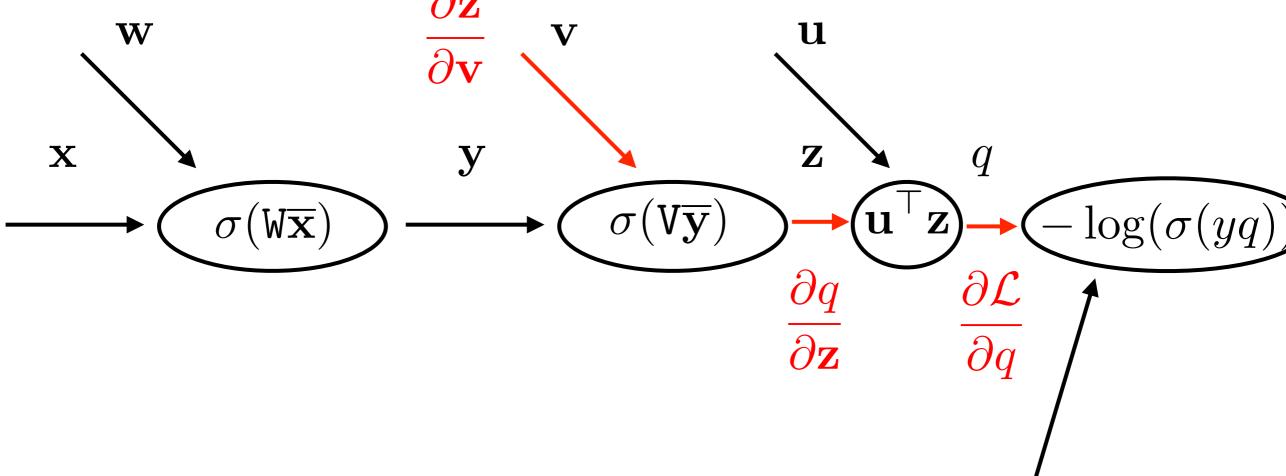
Derivative wrt
$$\mathbf{u}$$
: $\frac{\partial \mathcal{L}}{\partial \mathbf{u}} = \frac{\partial \mathcal{L}}{\partial q} \frac{\partial q}{\partial \mathbf{u}}$



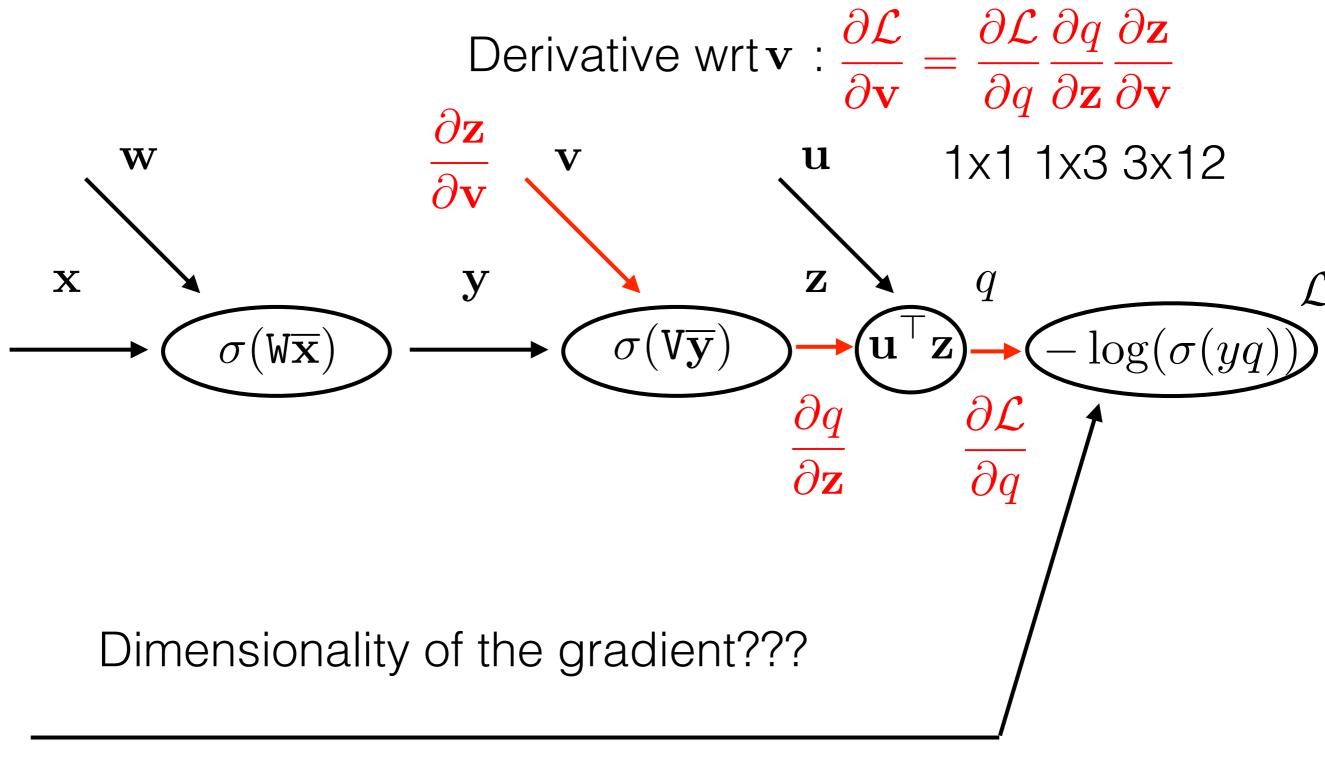


Derivative wrt
$$\mathbf{v}: \frac{\partial \mathcal{L}}{\partial \mathbf{v}} = \frac{\partial \mathcal{L}}{\partial q} \frac{\partial q}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}}$$

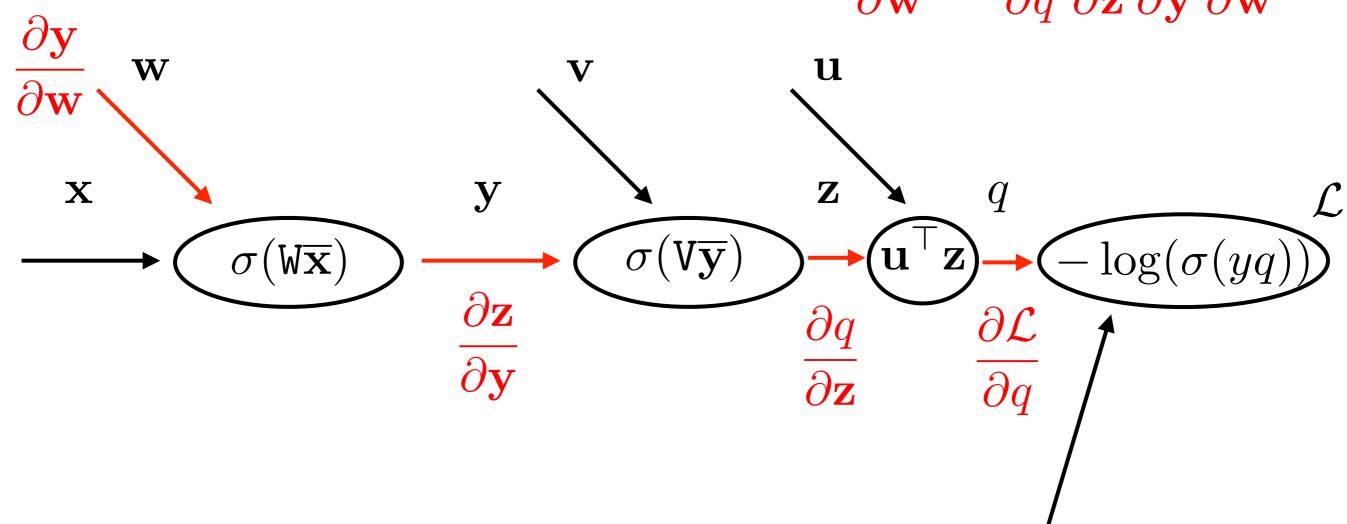
$$\mathbf{w} \qquad \qquad \mathbf{u}$$



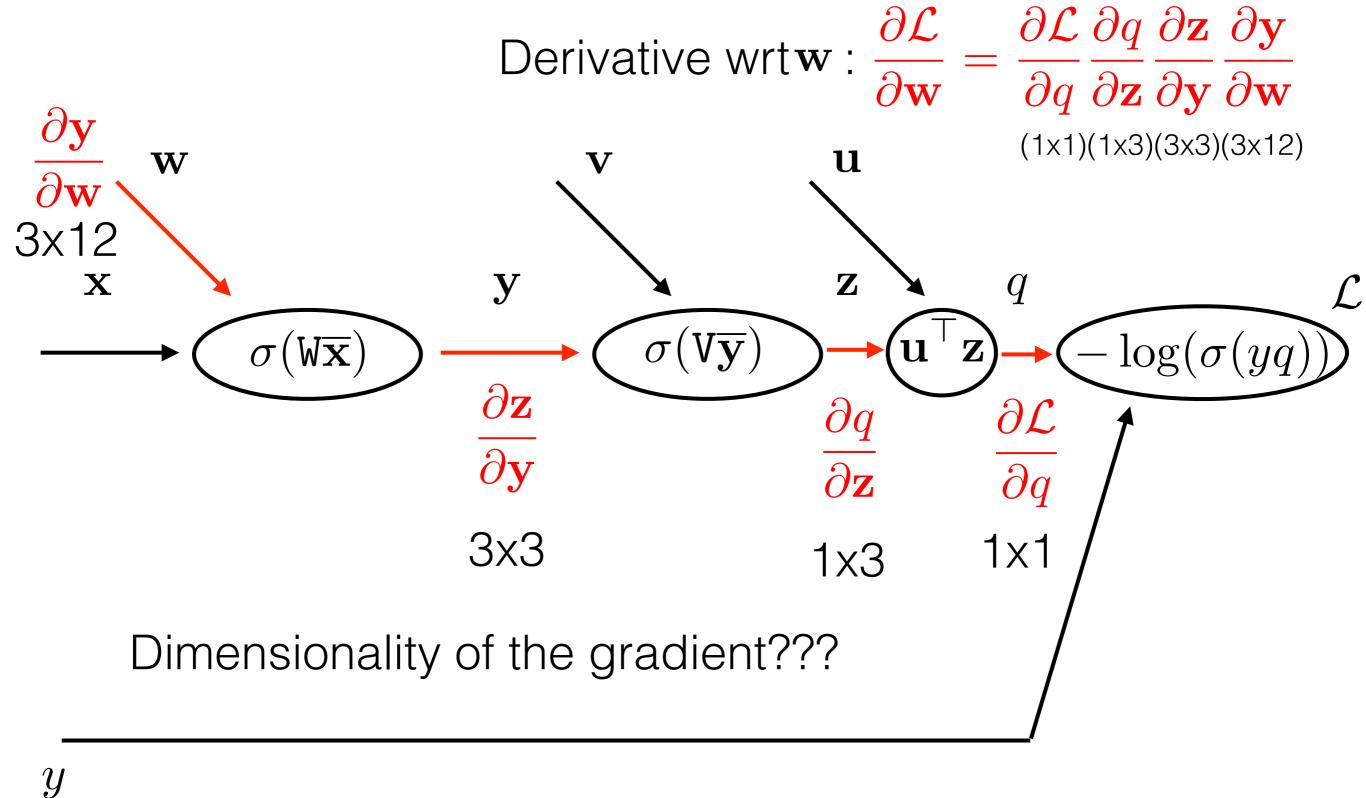
Dimensionality of the gradient???



Derivative wrt
$$\mathbf{w}$$
: $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \frac{\partial \mathcal{L}}{\partial q} \frac{\partial q}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{w}}$



Dimensionality of the gradient???



- 1. Estimate all required local gradients
- 2. Update weights:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{u}} = \frac{\partial \mathcal{L}}{\partial q} \frac{\partial q}{\partial \mathbf{u}} \qquad \mathbf{u} = \mathbf{u} - \alpha \left[\frac{\partial \mathcal{L}}{\partial \mathbf{u}} \right]^{\top}
\frac{\partial \mathcal{L}}{\partial \mathbf{v}} = \frac{\partial \mathcal{L}}{\partial q} \frac{\partial q}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \qquad \mathbf{v} = \mathbf{v} - \alpha \left[\frac{\partial \mathcal{L}}{\partial \mathbf{v}} \right]^{\top}
\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \frac{\partial \mathcal{L}}{\partial q} \frac{\partial q}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{w}} \qquad \mathbf{w} = \mathbf{w} - \alpha \left[\frac{\partial \mathcal{L}}{\partial \mathbf{w}} \right]^{\top}$$

- 3. Optionally update learning rate α
- 4. Repeat until convergence

Neural nets summary

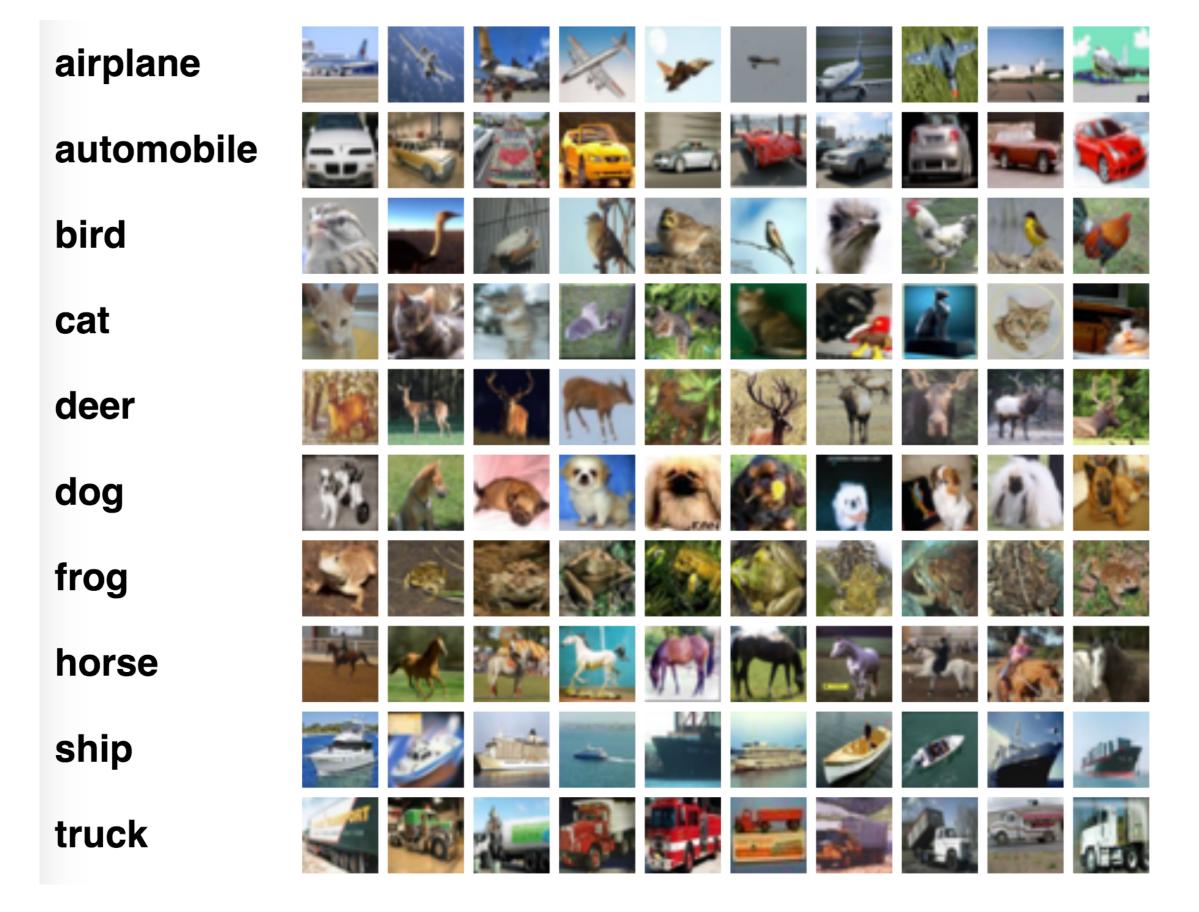
- Neural net is a function created as concatenation of simplier functions (e.g. neurons or layers of neurons)
- Gradient optimization of the neural net is called backpropagation
- Neural net frameworks has many predefined layers
- Spoiler alert: It does not work (on images) at all why?

Neural nets summary

- Neural net is a function created as concatenation of simplier functions (e.g. neurons or layers of neurons)
- Gradient optimization of the neural net is called backpropagation
- Neural net frameworks has many predefined layers
- Spoiler alert: It does not work (on images) at all why?

Linear classifier NN convNet

MNIST



CIFAR-10: classify 32x32 RGB images into 10 categories https://www.cs.toronto.edu/~kriz/citar.html

Dataset

Learned weights of linear classifier

Error

8% **MNIST** CIFAR-10 automobile bird airplane cat deer 63% dog https://benchmarks.ai truck

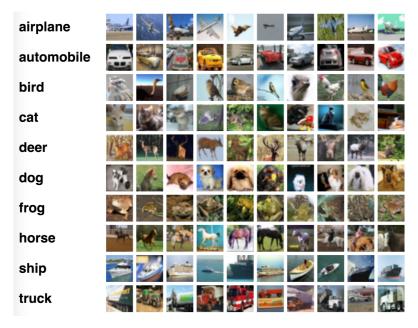
Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Dataset

Linear

MNIST

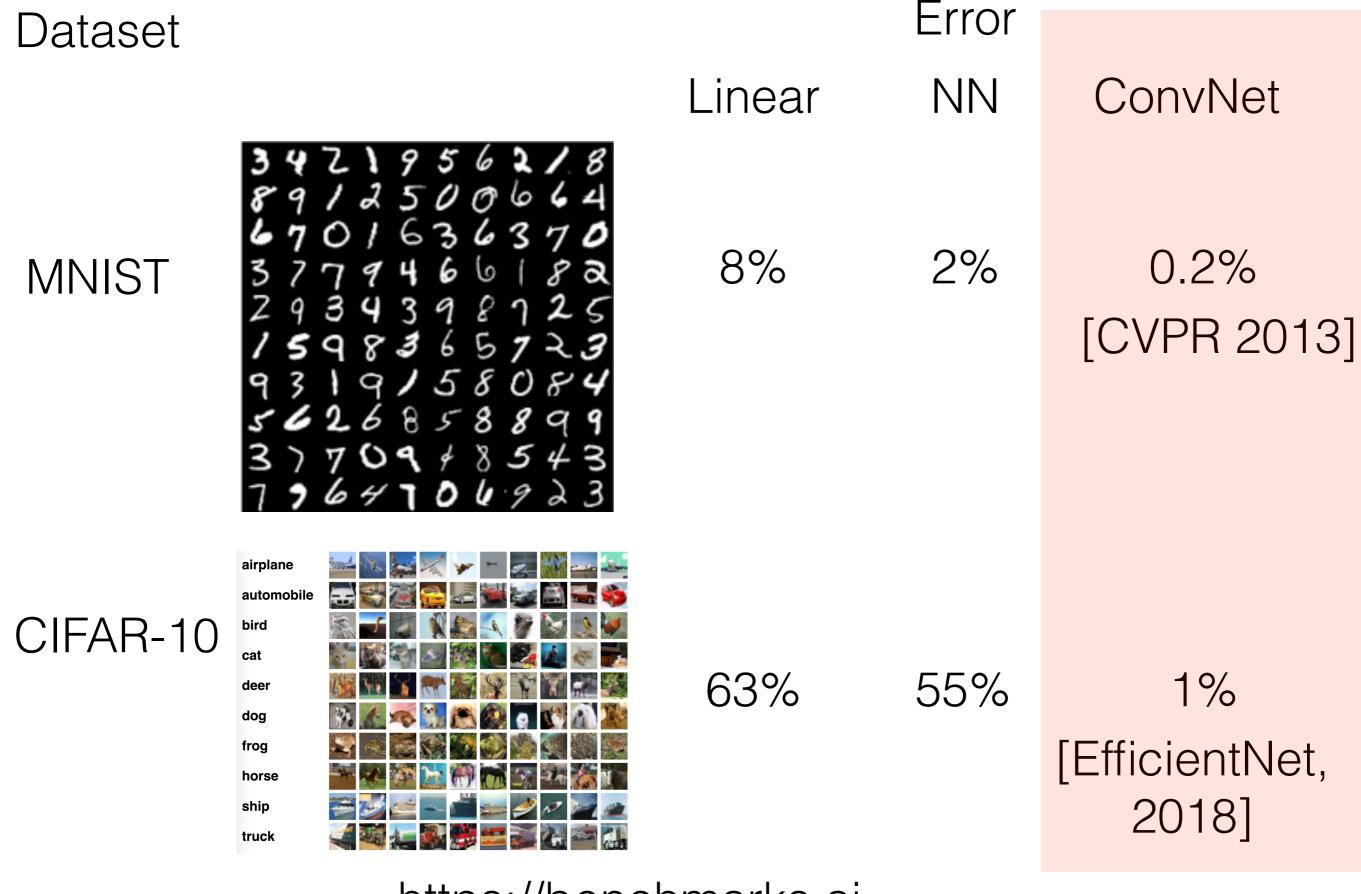
8%

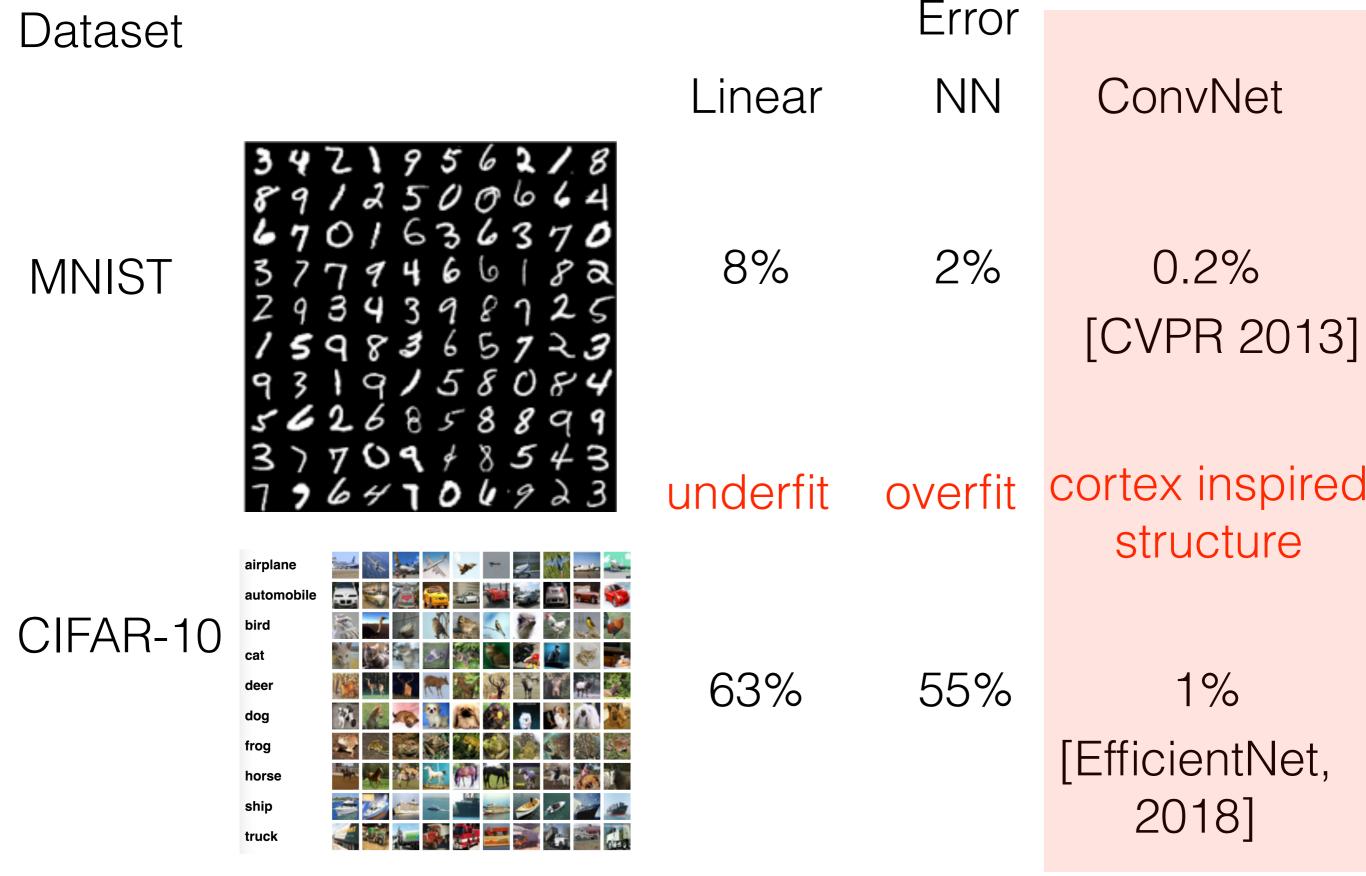
CIFAR-10



63%

Error Dataset NN Linear 2% 8% **MNIST** airplane automobile CIFAR-10 bird 63% 55% deer frog horse ship truck





Competencies required for the test T1

- Ability to draw a computational graph.
- Compute edge gradients/jacobians.
- Perform one step of backpropagation in a vectorized form

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right) + (-\log p(\mathbf{w}))$$

loss function

prior/regulariser

- Class of function represented by a NN is too general.
- Naive regulariser helps a bit, but dimensionality/wildness is huge => curse-of-dimensionality, overfitting,...
- What is number of weights between two 1000-neuron layers?
 - **Next lecture:** study animal cortex to find a stronger prior on the class of suitable functions.
- Spoiler alert 2:

reduce very general class of functions "neuron layer" to very specific sub-class of functions "convolution layer"

Competencies required for the test T1

- Ability to draw a computational graph.
- Compute edge gradients/jacobians.
- Perform one step of backpropagation in a vectorized form

