
Motion planning I: basic concepts

Vojtěch Vonásek

Department of Cybernetics
Faculty of Electrical Engineering

Czech Technical University in Prague

1 / 64

Motion planning: introduction

Informal definition: Motion planning is about
automatic finding of ways how to move an object
(robot) while avoiding obstacles (and considering
other constraints).

• Classical problem of robotics
• Also Piano mover’s problem
• Relation to other fields

• Mathematics: graph theory & topology
• Computational geometry: collision detection
• Computer graphics: visualizations
• Control theory: feedback controllers

required to navigate along paths

• Motion planning finds application in many
practical tasks

2 / 64

References

* S. M. LaValle, Planning algorithms, Cambridge, 2006, online: planning.cs.uiuc.edu

* H. Choset, K. M. Lynch et al., Principles of Robot Motion: Theory, Algorithms, and
Implementations (Intelligent Robotics and Autonomous Agents series), Bradford Book,
2005

* M. de Berg, Computational Geometry: Algorithms and Applications, 1997

* C. Ericson. Real-time collision detection. CRC Press, 2004.

3 / 64

Relation to navigation/control

Path planning

• Requires models of robot and
environment

• Can ensure finding global
optimum

• Computationally intensive

Navigation/obstacle avoidance

• Fast, reactive way of reasoning
• Sensor-based navigation
• No (or limited) model of environment
• Cannot ensure reaching global goal
• Limited time horizon

navigation towards goal vs. planning towards goal

Planning is rather “global”; navigation is more “local”
4 / 64

Lectures overview

Introduction & motivation

↓

Formal definition, configuration space
Why we need discretization of configuration space

↓ ↓

Low-dimensional cases
Visibility graphs, Voronoi

diagrams, . . .

General cases
Sampling-based planning
Planning under constraints

Technical details I
sampling, collision-detection, metrics, tips & tricks

Technical details II & Path following
physical simulations, basic path-following controllers

5 / 64

Motion planning: definitions
WorldW

• is space where the robot operates
• W is usuallyW ⊆ R2 orW ⊆ R3

• O ⊆ W are obstacles

Robot A

• A is the geometry of the robot
• A ⊆ R2 (or A ⊆ R3)
• or set of links A1, . . .An for n−body robot

Configuration q

• Specifies position of every point of A inW
• Usually a vector of Degrees of freedom (DOF)

q = (q1,q2, . . . ,qn)

Configuration space C (aka C-Space or C-space)

• C is a set of all possible configurations

3D Bugtrap benchmark

W ⊆ R3, A ⊆ R3

O ⊆ R3

(x , y , z) is 3D position
(rx , ry , rz) is 3D rotation

q = (x , y , z, rx , ry , rz)

C-space is 6D

6 / 64

Configuration space

• A configuration is a point in C
• A(q) is set of all points of the robot determined by configuration q ∈ C
• Therefore, point q ∈ C fully describes how the robot looks inW
• The number of dimensions of C equals to the number of DOFs of the

robot.
• For robots with more than 4 DOFs, C is considered already as

high-dimensional

Example: a robotic arm with two revolute joints; q = (ϕ1, ϕ1)→ 2D C-space
Robot geometry has two rigid shapes: A1 and A2

y

x

ϕ
1

ϕ
2

7 / 64

Configuration space
Obstacles in the configuration space: Cobs

Cobs = {q ∈ C |A(q) ∩ O 6= ∅}, Cobs ⊆ C

• Cobs contains robot-obstacle collisions and self-collisions
• Self-collisions: e.g. in the case of robotic arms
• q is feasible, if it is collision free→ q ∈ Cfree

Cfree = C\Cobs

Implicit definition of Cobs

• We cannot (generally) enumerate points in Cobs

• Difficult to determine the nearest colliding configuration
• The main reason, why high-dimensional C is difficult to search!

How to determine if q is collision-free or not?

• Generally: compute A(q) and detect collisions with O → time consuming
• Special cases: direct representation of C, then point-location query 8 / 64

9 / 64

10 / 64

11 / 64

Configuration space: construction
• C-space can be explicitly constructed using Minkowski sum of A and O
• Minkowski sum ⊕ of two sets X and Y is

X ⊕ Y = {x + y ∈ Rn|x ∈ X and y ∈ Y}

where n is the dimension
• Cobs can be computed as O ⊕−A(0)

• A(0) is the robot at origin
• −A(0) is achieved by replacing all x ∈ A(0) by −x

Example: 1D robot A = [−2,1] and obstacle O = [2,4]:

76543210−1−2−3

OA(0)

−A(0)

C obst

Cobs = [1,6]

12 / 64

Configuration space: 2D disc robot
• 2D workspaceW ⊆ R2

• 2D disc robot A ⊆ R2, reference point in the disc’s center
• We assume only translation
• Therefore, configuration q = (x , y) and C is 2D

free
C

Cobs

Workspace Configuration space

• All q ∈ Cfree are collision-free→ A(q) ∩ O = ∅
• Volume of Cfree depends both on the robot and obstacles
• What happens if the robot is a point?

13 / 64

Configuration space: 2D robot I
• 2D robot, only translation, q = (x , y)→ 2D C

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

14 / 64

15 / 64

16 / 64

Configuration space: 2D robot II
• 2D robot, translation + rotation, q = (x , y , ϕ)→ 3D C
• Requires to compute Minkowski sum for each rotation

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

ϕ = 0 ϕ = 45 ϕ = 90

17 / 64

Configuration space: 2D rotating robot III
• 2D robot, translation + rotation, q = (x , y , ϕ)→ 3D C
• Requires to compute Minkowski sum for each rotation

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

-200

 0

 200

 400

 600

 800

 0 200 400 600 800

Minkowski sum
Robot

W-Obstacle

ϕ = 0 ϕ = 50 ϕ = 90

18 / 64

Explicit construction of C

• Construction of C Minkowski sums is straightforward, but . . .
• We have only 2D/3D models of robots and obstacles
→ directly we can construct C only for “translation only” systems
• Other DOFS need to be discretized and Minkowski sum computed for

each combination

Minkowski sum of two objects of n and m complexity
2D polygons

• convex ⊕ convex, O(m + n)

• convex ⊕ arbitrary, (mn)

• arbitrary ⊕ arbitrary, (m2n2)

3D polyhedrons

• convex ⊕ convex, O(mn)

• arbitrary ⊕ arbitrary, (m3n3)

• Explicit construction of C is computationally demanding!
• Not practical for high-dimensional systems

19 / 64

Path & trajectory

• A path in C is a continuous curve connecting two configurations qinit and
qgoal:

τ : s ∈ [0,1]→ τ(s) ∈ C; τ(0) = qinit and τ(1) = qgoal

• A trajectory is a path parametrized by time
τ : t ∈ [0,T]→ τ(t) ∈ C

• Trajectory/path defines motion is workspace

C−space −spaceW

Path in C Workspace motion
20 / 64

Path/motion planning problem
Let’s assume we have

• model of the worldW and robot A
• and configurations qinit,qgoal ∈ Cfree

Path planning

• To find a collision-free path τ(s) from qinit to qgoal

• i.e., q(s) ∈ Cfree for all s ∈ [0,1], s(0) = qinit, s(1) = qgoal

Motion planning

• To find a collision-free trajectory τ(t) from qinit to qgoal

• i.e., q(t) ∈ Cfree for all t ∈ [0,T], s(0) = qinit, s(T) = qgoal

Other specifications

• Kinematic constraints (e.g. ‘car-like’ vehicle)
• Dynamic constraints (e.g. maximal acceleration)
• Task constraints (e.g ‘do not spill the beer’)

21 / 64

Confusion in terminology

• Path/motion planning are studied in several disciplines

• Robotics, computation geometry, mathematics, biology
• . . . since 1950’s !

• Each field uses different meaning for “path” and “trajectory”
. . . and different meaning for path/motion planning

• this continues up to now

What is then the “trajectory”?

• Robotics (including this lecture): path + time
• Control-oriented part of robotics: path + time + control inputs
• Computational biology: 3D path of atom(s) (with or without time)

Before you start to solve a planning problem, define (or agree on) the
basic terms first!

22 / 64

Complexity of motion planning

General motion planning problem is PSPACE-complete.
* J. Canny. The complexity of robot motion planning. MIT press, 1988.

23 / 64

Hierarchy of tasks

Robotic task

Specification
Description of inputs,
obstacles, robot, constraints,
kinematics,

Motion planning
computing path/trajectory

Execution
Path following, control of
motors

Motion planning

Continuous problem
C-space specification,
qinit, qgoal

Discretization of C
Explicit construction
random/deterministic
sampling of C

Graph search
Dijkstra, A*, D*, . . .

The art-of-motion-planning
• Understand and formulate the problem, define C
• Apply suitable method to represent C by a graph
• Search the graph

24 / 64

World representations
• Map: the representation of the world

• grid-maps: 2D/3D/nD arrays/grids — represent both Cfree and Cobs
• geometric maps: polygons, polyhedrons (usually for Cobs)
• topological maps: relations between regions of Cfree

• Properties

• Memory requirements
• Supported operations (e.g. merging maps, adding new

information, deleting obstacles, . . .)
• Computational complexity of these procedures
• Precision
• Robustness (with respect to numerical errors)

• One should always choose a map suitable for the given application

C

E

A
B

D

A

E

DC

B

polygons grid topology
25 / 64

Grid maps

• 2D or 3D array (grid) of cells
• Binary maps: 0/1 (obstacle, free spaces)
• Probability: 0–1 (0=free space, 1=obstacle)

• occupancy grid
• often used for integration of sensor data

3 Metric information (distance/angle/area . . .)
3 Easy implementation
3 Efficient search for obstacle cells, nearest obstacle cell, . . .
3 Straightforward update of cells & map merging
3 Integration of data from different sensors
7 High memory requirements

• depends on environment size & map resolution
• practical limit to 2D and 3D environments

26 / 64

Polygonal maps

• 2D worlds
• Obstacle is represented by polygon

(x1, y1), (x2, y2), . . . , (xn, yn)

• (xi , yi) are vertices
• The map is the collection of obstacles
• Simple polygon: does not intersect itself, no holes
• Polygons with holes: contour + one or more holes
3 Memory efficient, easy to process, metric information
3 Fast tests for collisions, point location
7 Numerical stability of (some) algorithms
7 Number of vertices can dramatically grow if map is built

from (unfiltered) sensor data

Map ∼ 100× 5 m, ∼1k vertices

0,0 3,0

3,3

1,2

Convex

0,0 3,0

3,3

2,1

Non-convex

Polygon from Lidar

27 / 64

Polygonal maps: basic operations I

Point-in-polygon

• Is a point inside/outside of a polygon?
• Crossing test:

• shot a ray from the query point and compute crossings
• the point is inside if the number of crossings is odd

• Winding number:

• sum up (signed) angles from query point to all vertices
• point is outside, if the sum is near-zero
• slow (practically): required trigonometric functions

• Crossing test & Winding number: for convex/non-convex, O(n)

• Faster algorithm for convex polygons: O(log n)

c=2

c=0 c=1

c=5

BC

A

* Shimrat, M., "Algorithm 112, Position of Point Relative to Polygon," CACM, p. 434, August
1962.

28 / 64

Polygonal maps: basic operations II

Collision-detection

• Used to determine if q ∈ Cfree or q ∈ Cobs

• Leads to computations of intersections between polygons A(q) and O
• Collision determination: compute the result of the collision
• Collision detection: only report if there is collision or not (True/False)

Intersection of two polygons P and Q

• The result is the polygon of intersection→ collision determination
• Time complexity O(|P|+ |Q|)

Collision detection

• Naïve: check all segments of A(q) vs. all segments of O → O(|A||O|)
• Disadvantage: also “distant” segment are tested (slow)
• Better solution: sweepline method, e.g. Bentley-Ottman algorithm

* Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric
intersections", IEEE Transactions on Computers, C-28 (9)

29 / 64

Path planning for special cases
Special cases with an explicit representation of C
Point robot in 2D or 3DW

• The map ofW is also representation of C
• Polygons/polyhedrons are suitable

Disc/sphere robot in 2D or 3DW

• The obstacles are “enlarged” by radius of the
robot (Minkowski sum)

• Then, representation ofW is also
representation of C

Geometric planning methods

• Assume point/disc robots
• Use geometric (usually polygonal)

representation of W (=C)
• Voronoi diagram, Visibility map,

Decomposition-based methods

r

30 / 64

Visibility graph
• Two points vi , vj are visible ⇐⇒ (svi + (1− s)vj) ∈ Cfree, s ∈ (0,1)

• Visibility graph (V ,E), V are vertices of polygons, E are edges
between visible points

• Start/goal are connected in same manner to visible vertices

Visibility graph After connecting start/goal + path

• No clearance
• Suitable only for 2D

31 / 64

Visibility graph (VG)
• Straightforward, näive, implementation O(n3)

Input: polygonal obstacle
Output: visibility graph G = (V ,E)

1 V = all vertices of polygonal obstacles
2 foreach u, v ∈ V do
3 foreach obstacle edge e do
4 if segment u, v intersects e then
5 continue;

6 add edge u, v to E

• n2 pairs of vertices
• Complexity of checking

one intersection is O(n)

→ Total complexity O(n3)

Fast methods

• Lee’s algorithm O(n2 log n)

• Overmars/Welz method O(n2)

• Ghosh/Mount method O(|E |n log n)

* Lee, Der-Tsai, Proximity and reachability in the plane, 1978

* D. Coleman, Lee’s O(n2 log n) Visibility Graph Algorithm Implementation and Analysis, 2012.

* M. H. Overmars, E. Welzl, New methods for Computing Visibility Graphs, Proc. of 4th Annual
Symposium on Comp. Geometry, 1998

* S. Ghosh and D. M. Mount, An output-sensitive algorithm for computing visibility graphs, SIAM
Journal on Computing, 1991 32 / 64

33 / 64

34 / 64

35 / 64

Voronoi diagram
• Let P = v1, . . . , vn are n distinct points (“input sites”) in a d−dimensional

space
• Voronoi Diagram (VD) divides P into n cells V (pi)

V (pi) = {x ∈ Rd : ||x − pi || ≤ ||x − pj || ∀j ≤ n}

• Cells are convex
• Used in point location (1-nn search), closes-pair search, spatial analysis
• Construction using Fortune’s method in O(n log n)

* S. Fortune. A sweepline algorithm for Voronoi diagrams. Proc. of the 2nd annual composium
on Computational geometry. pages 313-322. 1986.

36 / 64

37 / 64

38 / 64

Voronoi diagram
• Let P = v1, . . . , vn are n distinct points (“input sites”) in a d−dimensional

space
• Voronoi Diagram (VD) divides P into n cells V (pi)

V (pi) = {x ∈ Rd : ||x − pi || ≤ ||x − pj || ∀j ≤ n}

• Note, that other metrics can be considered!

39 / 64

Voronoi diagram: nature
• VD can be found also in nature

40 / 64

Voronoi diagram: spatial analysis
• One of first analysis was Cholera epidemic in London
• Often used in criminology

* Melo, S. N. D., Frank, R., Brantingham, P. (2017). Voronoi diagrams and spatial analysis of
crime. The Professional Geographer, 69(4), 579-590.

41 / 64

Voronoi diagram in computer graphics
• Used in many low-level routines (e.g., point location)
• Modeling fractures

• Object is filled with some random points
• VD is computed to provide set of convex cells
• Interaction between cells can be modeled e.g. using rigid body

dynamics

42 / 64

Generalized Voronoi diagram
• Many types of Voronoi Diagrams exist

• e.g. points + weights, segments, spheres, . . .

• Segment Voronoi Diagram (SVD) is computed on
line-segments describing obstacles

3 Maximize the path clearance

• biggest possible distance between path and the
nearest obstacle

Classic VD

Weighted VD

Segment VD

43 / 64

Generalized Voronoi diagram
Algorithms for computing Segment Voronoi diagram of n segments

• Lee & Drysdale: O(n log2 n), no intersections

• Karavelas: O((n + m) log2 n), m intersections between segments

Karavelas 2004

* Karavelas, M. I. "A robust and efficient implementation for the segment Voronoi diagram."
International symposium on Voronoi diagrams in science and engineering. 2004

* Lee, D. T, R. L. Drysdale, III. "Generalization of Voronoi diagrams in the plane." SIAM
Journal on Computing 10.1 (1981): 73-87.

44 / 64

Voronoi diagrams in bioinformatics
• Proteins are modeled using hard-sphere model
• Weighted Voronoi diagram of the spheres (weight is the atom radii —

Van der Waals radii)
• Path in the Voronoi diagram reveals “void space” and “tunnels”
• Tunnel properties (e.g. bottleneck) estimate possibility of interaction

between protein and a ligand

Tunnels∗ Voronoi diagram ∗ Tunnels on 1BL8

* * A. Pavelka, E. Sebestova, B. Kozlikova, J. Brezovsky, J. Sochor, J. Damborsky, CAVER:
Algorithms for Analyzing Dynamics of Tunnels in Macromolecules, IEEE/ACM Trans. on compt.
biology and bioinformatics, 13(3), 2016.

45 / 64

Decomposition-based methods
• The free space is partitioned into a finite set of cell

• Determination of cell containing a point should be trivial
• Computing paths inside the cells should be trivial

• The relations between the cells is described by a graph
• Path from start to goal is solved on the graph

Vertical cell decomposition
• Make vertical line from each vertex, stop at obstacles
• Determine centroids of the cells, centers of each segments
• Graph connects the neighbor centroids through the centers
• Connect start/goal to centroid of their cells
• Can be built in O(n log n) time

goal

start

46 / 64

Decomposition via triangulation I
• Variant of decomposition-based methods
• Cfree is triangulated
• Can be computed in O(n log log n) time
• Polygons can be triangulated in many ways
• Cfree is represented by graph G = (V ,E)

• V are centroids of the triangles
• E = (ei,j) if ∆i is neighbor of ∆j

• Or

• V are vertices of the triangulation
• E are edges of the triangulation

• Planning: start/goal are connected to graph, then
graph search

• How to triangulate polygonal map composed of n
disconnected polygons?

47 / 64

Decomposition via triangulation II
• Finer triangulation via Constrained Delaunay Triangulation (CDT)

• if a triangle does not meet a criteria, it is further triangulated
• criteria: triangle area or the largest angle

CDT Finer CDT (area of ∆)

48 / 64

Decomposition via triangulation II
• Finer triangulation via Constrained Delaunay Triangulation (CDT)

• if a triangle does not meet a criteria, it is further triangulated
• criteria: triangle area or the largest angle

Path on edges Modification: ignore segments connecting obstacles

48 / 64

CDT in civil engineering
• Structural analysis: modeling behavior of a structure under load, wind,

pressure, . . .
• Finite element method

49 / 64

Navigation functions

• Let’s assume a forward motion model

q̇ = f (q,u)

where q ∈ C and u ∈ U ; U is the action space
• The navigation function F (q) tells which action to take at q to reach the

goal

Example: robot moving on grid, actions U = {→,←, ↑, ↓, •}

goal

Discrete planning problem Navigation function

• In discrete space, navigation f. is by-product of graph-search methods

50 / 64

Wavefront planner

• Simple way to compute navigation function on discrete space X
• Explores X in “waves” starting from goal until all states are explored
1 open = {goal}
2 i = 0
3 while open 6= ∅ do
4 wave = ∅ // new wave
5 foreach x ∈ open do
6 value(x) = i
7 foreach y ∈ N(x) do
8 if y is not explored then
9 add y to wave

10 i = i + 1
11 open = wave

• N(x) are neighbors of x
• 4-/8-point connectivity
• The increase of the wave value i

should reflect the distance
between x and its neighbors

• Path is retrieved by gradient
descend from start

• O(n) time for n reachable states

0

8
8

8 8 8 8
8

1

1

11

0

11

1

1

8
8

8 8 8 8
8

111 2

2 2 2

1012 2

1112 2

8
8

8 8 8 8
8

7 7

6

2

2

5

4

3

2

2

2

2

5

4

1

1

1

5

5

2

1

0

1

6

6

2

1

1

1

7

6

5

4

3

3

3

6

5

4

4

4

4

8
8

8 8 8 8
8

goal state i = 1 i = 2 i = 7
51 / 64

Wavefront planner

52 / 64

Potential field: principle

• Potential field U: the robot is repelled by obstacles and
attracted by qgoal

• Attractive potential Uatt , repulsive potential Urep

• Weights Katt and Krep, d is the distance to the nearest
obstacle, % is radius of influence

q
start

d

ρ

qgoal

Uatt (q) =
1
2

Kattdist(q,qgoal)
2 Urep(q) =

{ 1
2 Krep(1/d − 1/%)2 if d ≤ %

0 otherwise

• Combined attractive/repulsive potential

U(q) = Uatt (q) + Urep(q)

• Goal is reached by following negative gradient −∇U(q)

• Gradient-descend method

* Y. K. Hwang and N. Ahuja, A potential field approach to path planning, IEEE Transaction on
Robotics and Automation, 8(1), 1992.

53 / 64

Potential field: parameters

Katt = 0, no attraction Katt � Krep , no repulsion

Katt ∼ Krep optimal settings
54 / 64

Potential field: local minima problem

• Potential field may have more local minima/maxima
• Gradient-descent stucks there

potential field gradient-descent to minimum

• Escape using random walks
• Use a better potential function without multiple local minima — harmonic

field
55 / 64

Harmonic field

• Harmonic field is an ideal potential function: only one extrem

Harmonic field Paths from various qinit

Images by J. Mačák, Multi-robotic cooperative inspection, Master thesis, 2009

56 / 64

Potential field: summary

• Usually computed using grid or a triangulation of theW
• Suitable for 2D/3D C-space

• memory requirements (in case of grid-based
computation)

• requires to compute distance d to the nearest
obstacle in C!

• Parameters Katt ,Krep and % need to be tuned
• Problem with local minima→ hamornic fields

57 / 64

But how to really find the path?

So far we know . . .

• Visibility graphs, Voronoi diagrams,
Decomposition-based planners

• Navigation functions & Potential fields

What they do?

• Discretize workspace/C-space by “converting” it
to a graph structure

• The graph is also called roadmap
• The roadmap is a “discrete image” of the

continuous C-space
• The path is then found as path in the graph

Graph-search

• Breath-first search
• Dijkstra
• A*, D* (and their variants)

58 / 64

Graph search: Dijkstra’s algorithm

• Finds shortest path from s ∈ V (source) to all nodes
• dist(v) is the distance traveled from the source to the

node s; prev(v) denotes the predecessor of node v

1 Q = ∅
2 for v ∈ V do
3 prev[v] = -1 // predecessor of v
4 dist[v] =∞ // distance to v

5 dist[s] = 0
6 add all v ∈ V to Q
7 while Q is not empty do
8 u = vertex from Q with min dist[u]
9 remove u from Q

10 foreach neighbor v of u do
11 dv = dist[u] + du,v
12 if dv < dist[v] then
13 dist[v] = dv
14 prev [v] = u

• Path from v → s : v ,pred [v],pred [pred [v]], . . . s
* Dijkstra, E. W. "A note on two problems in connection with graphs." Numerische mathematik
1.1 (1959): 269-271. 59 / 64

Completeness and optimality

Completeness

• Algorithm is complete, if for any input it correctly reports in finite time if
there is a solution or no.

• If a solution exists, it must return one in a finite time
• Computationally very hard
• Complete methods exist only for low-dimensional problems

Probabilistic completeness

• Algorithm is prob. complete if for scenarios with existing solution the
probability of finding that solution converges to one.

• If solution does not exists, the method can run forever

Optimal vs. non-optimal

• Optimal planning: algorithm ensures finding of the optimal solution
(according to a criterion)

• Non-optimal: any solution is returned

60 / 64

Completeness and optimality

Visibility graph

• Complete and optimal

Voronoi diagram, decomposition-based method

• Complete, non-optimal

Navigation function

• Complete
• Optimal for Wavefront/Dijkstra/-based navigation functions

Potential field

• Complete only if harmonic field is used (one local minima!)

Consider the limits of these methods!

• Point/Disc robots, low-dimensional C-space

* E. Rimon and D. Koditschek. "Exact robot navigation using articial potential functions." IEEE
Transactions on Robotics and Automation, 1992. 61 / 64

Optimality of planning methods

Do we always need optimal solution?

• No! in many cases, non-optimal solution is fine
• e.g. for assembly/disassembly studies, computational biology
• generally: if the existence of a solution is enough for subsequent

decisions
• in industry:

• scenarios, where robot waits due to mandatory technological
breaks

• e.g., in robotic welding and painting

62 / 64

Optimality of planning methods

When to prefer optimal one?

• Repetitive executing of the same plan
• Benchmarking of algorithms

It is necessary to carefully design the criteria!

Shortest path vs. fastest path vs. path for good spraying

63 / 64

Summary of the lecture

• Motion planning: how to move objects and
avoid obstacles

• Configuration space C
• Generally, planning leads to search in

continuous C
• But we (generally) don’t have explicit

representation of C
• We have to first create a discrete

representation of C
• and search it by graph-search methods
• Special cases: point robot and 2D/3D worlds

• Explicit representation ofW is also rep. of
C

• Geometric planning methods: Visibility
graph, Voronoi diagram,
decomposition-based

• Also navigation functions + potential field

64 / 64

