Motion planning |: basic concepts

Vojtéch Vonasek

Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague

e

1/64

Motion planning: introduction

Informal definition: Motion planning is about
automatic finding of ways how to move an object
(robot) while avoiding obstacles (and considering
other constraints).

e Classical problem of robotics

e Also Piano mover’s problem

¢ Relation to other fields

Mathematics: graph theory & topology
Computational geometry: collision detection
Computer graphics: visualizations

Control theory: feedback controllers
required to navigate along paths

e Motion planning finds application in many
practical tasks

2/64

References PR B | SRS e

CTU IN PRAGUE GROUP

Mark de Berg

Otfred Cheong
Marc van Kreveld
Mark Overmars

Steven M. LaValle

Principles of Computational

Geometry

Robot Motion

@ S. M. LaValle, Planning algorithms, Cambridge, 2006, online: planning.cs.uiuc.edu

@ H. Choset, K. M. Lynch et al., Principles of Robot Motion: Theory, Algorithms, and
Implementations (Intelligent Robotics and Autonomous Agents series), Bradford Book,
2005

< M. de Berg, Computational Geometry: Algorithms and Applications, 1997
@ (. Ericson. Real-time collision detection. CRC Press, 2004.

3/64

Relation to navigation/control

Path planning Navigation/obstacle avoidance

¢ Requires models of robot and e Fast, reactive way of reasoning
enwronment. . e Sensor-based navigation
* Can ensure finding global No (or limited) model of environment

optimum .
. . . Cannot ensure reaching global goal
e Computationally intensive o i)
Limited time horizon

navigation towards goal vs. planning towards goal

Planning is rather “global”; navigation is more “local”
4/64

Lectures overview Jo&S e

Introduction & motivation)
1

Formal definition, configuration space J

Why we need discretization of configuration space

{ i

Low-dimensional cases General cases
Visibility graphs, Voronoi Sampling-based planning
diagrams, ... Planning under constraints

Technical details |
sampling, collision-detection, metrics, tips & tricks

Technical details Il & Path following
physical simulations, basic path-following controllers

5/64

Motion planning: definitions
World W

e is space where the robot operates
e Wisusually W C R2or W C R®
e O C)V are obstacles

Robot A

e Ais the geometry of the robot
e ACR?(or ACR?
e or set of links Ay, ... A, for n—body robot

Configuration g

e Specifies position of every point of A in W
e Usually a vector of Degrees of freedom (DOF)

q: (Q1aq27~-~7Qn)
Configuration space C (aka C-Space or C-space)

e (Cis a set of all possible configurations

3D Bugtrap benchmark

@)

W CR3 ACRS
O CR8®
(x,y,2) is 3D position
(rx, ry, rz) is 3D rotation
q=(X,y,2,r11y,17)
C-space is 6D

6/64

Configuration space ey it

G
CTU IN PRAGUE

A configuration is a point in C
A(q) is set of all points of the robot determined by configuration q € C
Therefore, point g € C fully describes how the robot looks in W

The number of dimensions of C equals to the number of DOFs of the
robot.

e For robots with more than 4 DOFs, C is considered already as
high-dimensional

Example: a robotic arm with two revolute joints; ¢ = (¢1, 1) = 2D C-space
Robot geometry has two rigid shapes: Ay and As

?,

°
=S

7/64

Configuration space

Obstacles in the configuration space: C,

CObS:{q€C|A(q)mO7é®}u C’obsCC

e C.s contains robot-obstacle collisions and self-collisions
e Self-collisions: e.g. in the case of robotic arms
e qis feasible, if it is collision free — q € Cpee

Cfree - C\Cobs

Implicit definition of C,
e We cannot (generally) enumerate points in Cyps
e Difficult to determine the nearest colliding configuration
e The main reason, why high-dimensional C is difficult to search!
How to determine if g is collision-free or not?
e Generally: compute A(qg) and detect collisions with O — time consuming
e Special cases: direct representation of C, then point-location query o/64

9/64

10/64

11/64

G
IN PRAGUE

Configuration space: construction B Eme | Mt
O

e (-space can be explicitly constructed using Minkowski sum of .4 an
e Minkowski sum & of two sets X and Y is

o

XeoY={x+yeRxeXandyec Y}

where n is the dimension
e Cops Can be computed as O @ —.A(0)
e A(0) is the robot at origin
e —A(0) is achieved by replacing all x € A(0) by —x

Example: 1D robot A = [-2,1] and obstacle O = [2,4]:

A(0) O

Cobs = [1) 6]

12/64

Configuration space: 2D disc robot e

G
CTU IN PRAGUE

e 2D workspace W C R?

e 2D disc robot .A C R?, reference point in the disc’s center
e We assume only translation

e Therefore, configuration g = (x,y) and C is 2D

Cobs

. e C free

Workspace Configuration space

e All g € Cy. are collision-free — A(q)NO =0
e Volume of Cg.. depends both on the robot and obstacles
e What happens if the robot is a point?

13/64

, FACULTY

Configuration space: 2D robot | o £

CTU IN PRAGUE

e 2D robot, only translation, g = (x,y) - 2D C

800 = — :
Minkowski sum
Robot mmes
W-Obstacle ====3
600
400
200
0 ‘
-200 i

0 200 400 600 800

14/64

15/64

16/64

Configuration space: 2D robot PR B | SRS e

CTU IN PRAGUE GROUP

e 2D robot, translation + rotation, g = (x, y,) — 3D C
e Requires to compute Minkowski sum for each rotation

800 i o 800 o o 800 o o
Minkowski sum Minkowski sum Minkowski sum
Robot mess Robot mess Robot mess
W-Obstacle =553 W-Obstacle =553 W-Obstacle =53
600 600 600
400 400 400
200 200 200
0r ‘ 0 o™
-200 L -200 L L -200 L L
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
=0 © =45 © =90

17/64

Configuration space: 2D rotating robot Il & g | & s

sYs’
CTU IN PRAGUE GROUP

e 2D robot, translation + rotation, g = (x, y,) — 3D C
e Requires to compute Minkowski sum for each rotation

800 i o 800 o o 800 o o
Minkowski sum Minkowski sum Minkowski sum
Robot mess Robot mess obot s
W-Obstacle ====3 W-Obstacle =553 W-Obstacle =553
600 600 600
400 400 400
200 200 - 200
0 r ‘ 0 0 - '
-200 L -200 L L -200 L L L
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
=0 © =150 © =90

18/64

Explicit construction of C oY s

CTU IN PRAGUE

e Construction of C Minkowski sums is straightforward, but . ..
e We have only 2D/3D models of robots and obstacles
— directly we can construct C only for “translation only” systems

e Other DOFS need to be discretized and Minkowski sum computed for
each combination

Minkowski sum of two objects of n and m complexity

2D polygons 3D polyhedrons
e convex @ convex, O(m+ n) e convex & convex, O(mn)
e convex @ arbitrary, (mn) e arbitrary & arbitrary, (m®n®)

arbitrary @ arbitrary, (m?n?)

Explicit construction of C is computationally demanding!
Not practical for high-dimensional systems

19/64

Path & trajectory

e A pathin C is a continuous curve connecting two configurations gy, and

qgoal:
7:5€[0,1] = 7(s) €C; 7(0) = Gnic and 7(1) = Gooul

e A trajectory is a path parametrized by time
T:tel0, T]—=7(t)eC

e Trajectory/path defines motion is workspace

C—space IW—space

Pathin C Workspace motion

20/64

Path/motion planning problem p B

G
IN PRAGUE

Let’s assume we have

e model of the world W and robot A
e and configurations Giit, Geoal € Ciree

Path planning

e To find a collision-free path 7(s) from Ginic t0 Geour

e i.e., g(S) € Ciee forall s € [0,1], 5(0) = Ginit, S(1) = Geoul
Motion planning

e To find a collision-free trajectory 7(t) from Ginit t0 Geoal

e i.e., g(t) € Ciwee forall t € [0, T], 5(0) = Ginit, S(T) = Geou
Other specifications

e Kinematic constraints (e.g. ‘car-like’ vehicle)

e Dynamic constraints (e.g. maximal acceleration)
e Task constraints (e.g ‘do not spill the beer’)

21/64

Confusion in terminology o e

CTU IN PRAGUE

e Path/motion planning are studied in several disciplines

o Robotics, computation geometry, mathematics, biology
e ...since 1950’s !

e Each field uses different meaning for “path” and “trajectory”
... and different meaning for path/motion planning
e this continues up to now

What is then the “trajectory”?

e Robotics (including this lecture): path + time
e Control-oriented part of robotics: path + time + control inputs
e Computational biology: 3D path of atom(s) (with or without time)

Before you start to solve a planning problem, define (or agree on) the
basic terms first!

22/64

Complexity of motion planning

EXPSPACE
?

EXPTIME

General motion planning problem is PSPACE-complete.

@ J. Canny. The complexity of robot motion planning. MIT press, 1988.
23/64

Hierarchy of tasks

ks &

MULTI-ROBOT
SYSTEMS.

GROUP

Robotic task

Specification

Description of inputs,
obstacles, robot, constraints,
kinematics,

Motion planning

computing path/trajectory

Execution

Path following, control of
motors

The art-of-motion-planning

Motion planning

Continuous problem

C-space specification,
Ginit qgoal

Discretization of C

Explicit construction
random/deterministic
sampling of C

Graph search
Dijkstra, A*, D*, ...

e Understand and formulate the problem, define C
e Apply suitable method to represent C by a graph

e Search the graph

24/64

World representations

e Properties

P
«

e Map: the representation of the world

o grid-maps: 2D/3D/nD arrays/grids — represent both Cge. and Cops
e geometric maps: polygons, polyhedrons (usually for Cops)
o topological maps: relations between regions of Cge.

o Memory requirements

o Supported operations (e.g. merging maps, adding new
information, deleting obstacles, ...)

o Computational complexity of these procedures

e Precision

o Robustness (with respect to numerical errors)

-

Ay

polygons

e One should always choose a map suitable for the given application

A —®)
@‘99

topology

25/64

Grid maps e i

x NN N NS

2D or 3D array (grid) of cells
Binary maps: 0/1 (obstacle, free spaces)
Probability: 0—1 (0O=free space, 1=0bstacle)

e occupancy grid
o often used for integration of sensor data

Metric information (distance/angle/area . . .)

Easy implementation

Efficient search for obstacle cells, nearest obstacle cell, ...
Straightforward update of cells & map merging

Integration of data from different sensors

High memory requirements

e depends on environment size & map resolution
o practical limit to 2D and 3D environments

26/64

Polygonal maps

2D worlds
Obstacle is represented by polygon

(Xﬁajﬁ)7(Xéay9)7" '7(Xh7)GJ
(xi, yi) are vertices

The map is the collection of obstacles

Simple polygon: does not intersect itself, no holes
Polygons with holes: contour + one or more holes
Memory efficient, easy to process, metric information
Fast tests for collisions, point location

Numerical stability of (some) algorithms

Number of vertices can dramatically grow if map is built
from (unfiltered) sensor data

Map ~ 100 x 5 m, ~1k vertices

, FACULTY
OF ELECTRICAL
Y ENGINEERING

CTU IN PRAGUE

0,0 3,0
Convex
33
2,1
0,0 3,0
Non-convex

Polygon from Lidar

27/64

Polygonal maps: basic operations | ol s

Point-in-polygon

Is a point inside/outside of a polygon?
Crossing test:

o shot a ray from the query point and compute crossings
e the point is inside if the number of crossings is odd

Winding number:

e sum up (signed) angles from query point to all vertices
o point is outside, if the sum is near-zero
 slow (practically): required trigonometric functions

Crossing test & Winding number: for convex/non-convex, O(n)
Faster algorithm for convex polygons: O(log n)
w ¢=0 c=1

28/64

Polygonal maps: basic operations |I Mo B

Collision-detection

Used to determine if g € Ceee OF @ € Cops

Leads to computations of intersections between polygons .A(q) and O
Collision determination: compute the result of the collision

Collision detection: only report if there is collision or not (True/False)

Intersection of two polygons P and Q
e The result is the polygon of intersection — collision determination
e Time complexity O(|P| + |Q)|)

Collision detection

e Naive: check all segments of .A(q) vs. all segments of O — O(]A||O|)
e Disadvantage: also “distant” segment are tested (slow)
e Better solution: sweepline method, e.g. Bentley-Ottman algorithm

@ Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric
intersections", IEEE Transactions on Computers, C-28 (9)

29/64

Path planning for special cases
Special cases with an explicit representation of C

Point robot in 2D or 3D W

e The map of W is also representation of C
e Polygons/polyhedrons are suitable

Disc/sphere robot in 2D or 3D W

e The obstacles are “enlarged” by radius of the
robot (Minkowski sum)

e Then, representation of W is also
representation of C

Geometric planning methods

Motion planning

Continuous problem

C-space specification,
Qhnit ngal

Discretization of C

Explicit construction
random/deterministic
sampling of C

Graph search
Dijkstra, A*, D*, ...

e Assume point/disc robots

e Use geometric (usually polygonal)
representation of W (=C)

e Voronoi diagram, Visibility map,
Decomposition-based methods

30/64

FACULTY Q

Visibility graph PR B | SRS e

CTU IN PRAGUE GROUP

e Two points v;, v; are visible <= (sv; + (1 — 5)V}) € Cee, S € (0,1)

e Visibility graph (V, E), V are vertices of polygons, E are edges
between visible points

e Start/goal are connected in same manner to visible vertices

Visibility graph After connecting start/goal + path

e No clearance
e Suitable only for 2D

31/64

Visibility graph (VG) M e | oS s

e Straightforward, naive, implementation O(n?)

Input: polygonal obstacle
Output: visibility graph G = (V, E)

1V = all vertices of polygonal obstacles o pairs of vertices
2 foreach u,v € V do . .

3 foreach obstacle edge e do e Complexity of checking
4 if segment u, v intersects e then one intersection is O(n)
5 | continue;

— Total complexity O(n®)

o

add edge u,vto E

Fast methods

e Lee’s algorithm O(n?log n)
e Overmars/Welz method O(n?)
e Ghosh/Mount method O(|E|nlog n)

@ | ee, Der-Tsai, Proximity and reachability in the plane, 1978

@ D. Coleman, Lee’s O(n2 log n) Visibility Graph Algorithm Implementation and Analysis, 2012.

@ M. H. Overmars, E. Welzl, New methods for Computing Visibility Graphs, Proc. of 4th Annual
Symposium on Comp. Geometry, 1998

@ S. Ghosh and D. M. Mount, An output-sensitive algorithm for computing visibility graphs, SIAM
Journal on Computing, 1991 32/64

33/64

34/64

35/64

i di 5 o0
Voronoi dlagram o & O g
e Let P=v4,...,v,are ndistinct points (“input sites”) in a d—dimensional
space

e Voronoi Diagram (VD) divides P into ncells V(p;)

V(p) = {x € R?: ||lx — pil| < |lx = pjl| Vj < n}

e Cells are convex
e Used in point location (1-nn search), closes-pair search, spatial analysis
e Construction using Fortune’s method in O(nlog n)

@ S. Fortune. A sweepline algorithm for Voronoi diagrams. Proc. of the 2nd annual composium

on Computational geometry. pages 313-322. 1986.
36/64

37/64

38/64

5, mary [Q0O

Voronoi diag ram PR guscimen | MRS, smonngeer

CTU IN PRAGUE

e Let P=v4,...,v,are ndistinct points (“input sites”) in a d—dimensional
space
e Voronoi Diagram (VD) divides P into ncells V(p;)

V(p) = {x € R?: ||lx — pil| < |lx = pjl| Vj < n}

¢ Note, that other metrics can be considered!

39/64

Voronoi diagram: nature M i | S

CTU IN PRAGUE

e VD can be found also in nature

FACULTY Q

Voronoi diagram: spatial analysis s |) e

CTU IN PRAGUE GROUP

e One of first analysis was Cholera epidemic in London
e Often used in criminology

@ Melo, S. N. D., Frank, R., Braﬁtingham, P. (2017). Voronoi diagrams and spatial analysis of
crime. The Professional Geographer, 69(4), 579-590.

41/64

Voronoi diagram in computer graphics o Gt

e Used in many low-level routines (e.g., point location)
e Modeling fractures

o Obiject is filled with some random points

o VD is computed to provide set of convex cells

o Interaction between cells can be modeled e.g. using rigid body
dynamics

42/64

FACULTY

Generalized Voronoi diagram P e

e Many types of Voronoi Diagrams exist
e e.g. points + weights, segments, spheres, ...

e Segment Voronoi Diagram (SVD) is computed on
line-segments describing obstacles

v Maximize the path clearance

o biggest possible distance between path and the
nearest obstacle

Segment VD

43/64

Generalized Voronoi diagram

Algorithms for computing Segment Voronoi diagram of n segments

o Lee & Drysdale: O(nlog? n), no intersections
o Karavelas: O((n+ m)log® n), m intersections between segments

Karavelas 2004

@ Karavelas, M. I. "A robust and efficient implementation for the segment Voronoi diagram."
International symposium on Voronoi diagrams in science and engineering. 2004

@ lee, D. T, R. L. Drysdale, Ill. "Generalization of Voronoi diagrams in the plane." SIAM
Journal on Computing 10.1 (1981): 73-87.

44/64

FACULTY Q

Voronoi diagrams in bioinformatics M i | S

Proteins are modeled using hard-sphere model

Weighted Voronoi diagram of the spheres (weight is the atom radii —
Van der Waals radii)

Path in the Voronoi diagram reveals “void space” and “tunnels”

Tunnel properties (e.g. bottleneck) estimate possibility of interaction
between protein and a ligand

E,
Tunnels* Voronoi diagram *

Tunnels on 1BL8

* @ A. Pavelka, E. Sebestova, B. Kozlikova, J. Brezovsky, J. Sochor, J. Damborsky, CAVER:
Algorithms for Analyzing Dynamics of Tunnels in Macromolecules, IEEE/ACM Trans. on compt.
biology and bioinformatics, 13(3), 2016.

45/64

Decomposition-based methods ¥ e

e The free space is partitioned into a finite set of cell
o Determination of cell containing a point should be trivial
o Computing paths inside the cells should be trivial

e The relations between the cells is described by a graph

e Path from start to goal is solved on the graph

Vertical cell decomposition

Make vertical line from each vertex, stop at obstacles
Determine centroids of the cells, centers of each segments
Graph connects the neighbor centroids through the centers
Connect start/goal to centroid of their cells

Can be builtin O(nlog n) time

.

GINEERINI G
IN PRAGUE

Variant of decomposition-based methods
Creee is triangulated

Can be computed in O(nloglog n) time
Polygons can be triangulated in many ways
Crree i represented by graph G = (V, E)

e V are centroids of the triangles
* E =(e;;)if Ajis neighbor of A;

Or

o V are vertices of the triangulation
o E are edges of the triangulation

Planning: start/goal are connected to graph, then
graph search

How to triangulate polygonal map composed of n
disconnected polygons?

47/64

Decomposition via triangulation

e Finer triangulation via Constrained Delaunay Triangulation (CDT)
« if a triangle does not meet a criteria, it is further triangulated

e criteria: triangle area or the largest angle
NSO INABINAEDK
Do e B B

RN

DY
L5
a
N

N |V A< g
<
NA‘»"

Ay Vv
3V TAWAAY
S =
paval I

AN
CDT

05
AN

E
0
\/

/>
DG
VAW
AR

/N
%

=X
ANV,
o

WS
pad

VN
2

<

v VN,
> N Nl
SAVAVAN | Iy
RO R
Finer CDT (area of A)

48/64

Decomposition via triangulation 1| itmen | S

e Finer triangulation via Constrained Delaunay Triangulation (CDT)

o if a triangle does not meet a criteria, it is further triangulated
o criteria: triangle area or the largest angle

N
:@QNA‘
Y

VOVAY N,
)&5@4 A

P
Ve

<lx
7K

NOGK]
XKL
R

% VA
R
NERKERREN, KAERRY
e, A S S
Piwirati 1 O
R M CRINEKA
GEAS e SN
W <L
ANl TSR < >u¢§ nyﬁgggévgtﬂ S
SISO REEOAEN SOOI
Path on edges Modification: ignore segments connecting obstacles

48/64

e (e

CDT in civil engineering Fep B |l oo

e Structural analysis: modeling behavior of a structure under load, wind,
pressure, ...
e Finite element method

49/64

, FACULTY

Navigation functions Fo s

e Let’'s assume a forward motion model
q=1(q,u)

where q € C and u € U; U is the action space
e The navigation function F(q) tells which action to take at g to reach the
goal

Example: robot moving on grid, actions & = {—, <+, 1,], e}

AR AR A ddindR
v
{
v
Discrete planning problem Navigation function

e In discrete space, navigation f. is by-product of graph-search methods

50/64

Wavefront planner P Eimen |)

GROUP

e Simple way to compute navigation function on discrete space X
Explores X in “waves” starting from goal until all states are explored

1 open = {goal}
2i=0 e N(x) are neighbors of x
while open do . .
i Waee j@@ /) new wave ©® 4-/8-point connectivity
5 foreach x € open do e The increase of the wave value i
® value(x) = i should reflect the distance
7 foreach y € N(x) do . .
8 if y is not explored then between x and its neighbors
o L [addy to wave e Path is retrieved by gradient
= descend from start
10 f=i4+1 .
1 open = wave e O(n) time for n reachable states
7776555
66 6654 4
55 3
2 2022 (4 42 222
111 11 1]2]|43[®1 112
0 101 20101 (2]|4321012
111 21 11 2/[4321112
goal state i=1 i=2 i=7

51/64

Wavefront planner

52/64

Potential field: principle

e Potential field U: the robot is repelled by obstacles and
attracted by Ggoa
e Attractive potential Uy, repulsive potential Uyep

o Weights Ka and Kiep, d is the distance to the nearest ’ oo
obstacle, ¢ is radius of influence L~

{ %K,ep(‘l/d— 1/0)2 ifd<op
0

otherwise

1 .
Uan(q) = éKattd/St(q; qgoal)2 Urep(q) =

e Combined attractive/repulsive potential

U(q) = Uatt(q) + Urep(q)
e Goal is reached by following negative gradient —VU(q)
e Gradient-descend method

@ Y. K. Hwang and N. Ahuja, A potential field approach to path planning, IEEE Transaction on
Robotics and Automation, 8(1), 1992.

53/64

Potential field: parameters

g » NN

Katt > Krep, NO repulsion

optimal settings
54/64

Potential field: local minima problem feé e

e Potential field may have more local minima/maxima

e Gradient-descent stucks there

potential field

e Escape using random walks

gradient-descent to minimum

e Use a better potential function without multiple local minima — harmonic

field

55/64

FACULTY Q

" " . m
rmonic field JRS Einimen | i) s

CTU IN PRAGUE GROUP

e Harmonic field is an ideal potential function: only one extrem

Harmonic field Paths from various Qiit

Images by J. Magak, Multi-robotic cooperative inspection, Master thesis, 2009

56/64

Potential field: summary

Usually computed using grid or a triangulation of the W
Suitable for 2D/3D C-space

e memory requirements (in case of grid-based
computation)

e requires to compute distance d to the nearest
obstacle in C!

e Parameters Ka, Kiep and o need to be tuned
Problem with local minima — hamornic fields

57/64

But how to really find the path?

So far we know ...

e Visibility graphs, Voronoi diagrams,
Decomposition-based planners
e Navigation functions & Potential fields

What they do?

e Discretize workspace/C-space by “converting” it
to a graph structure

e The graph is also called roadmap

e The roadmap is a “discrete image” of the
continuous C-space

e The path is then found as path in the graph

Graph-search

e Breath-first search
e Dijkstra
e A*, D* (and their variants)

Motion planning

Continuous problem

C-space specification,
Qhnits Ggoal

Discretization of C

Explicit construction
random/deterministic
sampling of C

Graph search
Dijkstra, A*, D*, ...

58/64

Graph search: Dijkstra’s algorithm

e Finds shortest path from s € V (source) to all nodes
e dist(v) is the distance traveled from the source to the
node s; prev(v) denotes the predecessor of node v

1 Q=10

2 forv e Vdo

3 prev[v] = -1 // predecessor of v
4 L dist[v] = co // distance to v
5 dist[s] =0

6 addallve Vio Q

7 while Q is not empty do

8 u = vertex from Q with min dist[u]

9 remove u from Q

10 foreach neighbor v of u do

11 dv = dlSl‘[u] + dLI,V

12 if dv < dist[v] then

13 dist[v] = dv

14 prev[v] =u

e Pathfromv — s: v, pred|v], pred[pred|Vv]],...s
@ Dijkstra, E. W. "A note on two problems in connection with graphs." Numerische mathematik

1.1 (1959): 269-271. 59/64

Completeness and optimality

Completeness
e Algorithm is complete, if for any input it correctly reports in finite time if
there is a solution or no.
e [f a solution exists, it must return one in a finite time
e Computationally very hard
e Complete methods exist only for low-dimensional problems

Probabilistic completeness

e Algorithm is prob. complete if for scenarios with existing solution the
probability of finding that solution converges to one.

e |f solution does not exists, the method can run forever
Optimal vs. non-optimal

e Optimal planning: algorithm ensures finding of the optimal solution
(according to a criterion)

e Non-optimal: any solution is returned

60/64

Completeness and optimality

Visibility graph
e Complete and optimal

Voronoi diagram, decomposition-based method
e Complete, non-optimal

Navigation function

e Complete
e Optimal for Wavefront/Dijkstra/-based navigation functions

Potential field
e Complete only if harmonic field is used (one local minimal)
Consider the limits of these methods!

e Point/Disc robots, low-dimensional C-space

@ E. Rimon and D. Koditschek. "Exact robot navigation using articial potential functions." IEEE
Transactions on Robotics and Automation, 1992. 61/64

FACULTY

Optimality of planning methods fits Stimen

CTU IN PRAGU

Do we always need optimal solution?
e No! in many cases, non-optimal solution is fine

o e.g. for assembly/disassembly studies, computational biology
o generally: if the existence of a solution is enough for subsequent
decisions

e inindustry:
e scenarios, where robot waits due to mandatory technological

breaks
e e.g., in robotic welding and painting

62/64

Optimality of planning methods W

When to prefer optimal one?

e Repetitive executing of the same plan
e Benchmarking of algorithms

It is necessary to carefully design the criteria!

Shortest path vs. fastest path vs. path for good spraying

63/64

Summary of the lecture

e Motion planning: how to move objects and

MULTI-ROBOT
SYSTEMS.
GROUP

avoid obstacles Motion planning

e Configuration space C T

e Generally, planning leads to search in C-space specification,
continuous C Ginits Geoal

e But we (generally) don’t have explicit Discretization of C
representanon of C Explicit construction

random/deterministic

e We have to first create a discrete sampling of

representation of C
« and search it by graph-search methods Graph search
e Special cases: point robot and 2D/3D worlds Dlfkstra, A% 0%

o Explicit representation of W is also rep. of
C

o Geometric planning methods: Visibility
graph, Voronoi diagram,
decomposition-based

 Also navigation functions + potential field

64/64

