Dynamic Programming

ACM Seminar in Algorithmics

Marko Genyk-Berezovsky;j Tomas Tunys
berezovs@fel.cvut.cz tunystom@fel.cvut.cz

CVUT FEL, K13133

February 27, 2013

mailto:berezovs@fel.cvut.cz
mailto:tunystom@fel.cvut.cz

Problem: Longest Increasing Subsequence

Input: A list of numbers, a1, a, ..., a,.

Output: Find the largest k for which there are indices i1, ip, . . ., ik
with a;; < aj, <...<a;.

Exercise: What is the longest increasing subsequence in the following
list of numbers?

5,1,6,4,8,3,2,1,5,6,8

Problem: Longest Increasing Subsequence

On the first sight it may seem a bit difficult to come up with a solu-
tion but as we will see there is an underlying structure in the problem
that allows us to solve it "fast”.

If you are faced with the following

can you tell what the underlying structure is and what its
properties are?

Problem: Longest Increasing Subsequence

Let G = (V, E) is a directed graph with vertices vq, v, . .., v, which
are labelled with the numbers from the list a1, az,...,a,. There is
an edge (vj, v;) € E iff the corresponding numbers satisfy a; < a;.

Two important things to notice:
e The graph G is a directed acyclic graph, so-called DAG.

e There is one-to-one correspondence between paths in the
graph G and the increasing subsequences in the list

di,d2,...,an.

Problem: Longest Increasing Subsequence

Solution: Let us denote the length of a longest path ending in the
vertex v; as L(i). Then the following algorithm computes L(i) for
every i € {1,...,n}:

for j « 1 to ndo

LG) + 1+ max{L(i) | (i.j) € E(G)}
end
return max?_; L(i)

Example:

L(3) =1+ max{L(1), L(2)} ONOLONO050.

Dynamic Programming " Definition”

Dynamic programming is a problem solving technique based upon
the following two principles:
@ Identification of subproblems.

® Using the answer to "smaller” subproblems to solve the
"bigger" ones.

In the case of the Longest Increasing Subsequence we have according
to these principles:
@ L(/) - the length of the longest increasing subsequence
ending with a;.
® L)1+ man<,'{L(j) | aj < aj}.

When Does Dynamic Programming Work?

A problem is solvable with dynamic programming if it has:

@ Optimal substructure. An optimal solution of the whole
problem can be build out of optimal solutions to its
subroblems.

® Overlapping subproblems.
Remember, when you are faced with a DP problem the DAG is

implicit - you are the one to define the vertices (subproblems) and
the edges (relations) between them.

How do we find out a given problem is solvable using DP?

When Does Dynamic Programming Work?

A problem is solvable with dynamic programming if it has:

@ Optimal substructure. An optimal solution of the whole
problem can be build out of optimal solutions to its
subroblems.

® Overlapping subproblems.

Remember, when you are faced with a DP problem the DAG is
implicit - you are the one to define the vertices (subproblems) and
the edges (relations) between them.

How do we find out a given problem is solvable using DP?

Through Experience!

Problem: Maximum Subarray Problem

Input: An array of numbers, ai, as, ..., an.

Output: Find a continuous subarray within the given array which
has the largest sum.

Solution:

Problem: Maximum Subarray Problem

Input: An array of numbers, ai, as, ..., an.

Output: Find a continuous subarray within the given array which
has the largest sum.

Solution:

@ Subproblems: S[i] - the largest sum of a subarray ending at
i-th element (inclusive).

@® Induction: S[i] < a; if S[i — 1] <=0 else a; + S[i — 1].

Problem: Longest Common Subsequence

Input: Two strings ajap---a, and bibs - - - by,.
Output: The largest k for which there are indices

1<ii<hbh<---<ik<n
and

1<p<p<-<jx<m
with

ajaj, - -+ aj, = bj b, - - bj,.

Solution:

Problem: Longest Common Subsequence

Input: Two strings ajap---a, and bibs - - - by,.
Output: The largest k for which there are indices

1<ii<hbh<---<ik<n
and

I1<p<p<--<jk<m
with

ajaj, - -+ aj, = bj b, - - bj,.

Solution:

@ Subproblems: S[i][j] - the longest common subsequence of
the prefixes of the two strings ajaz---a; and biby - - bj.

® Induction: (diff(a,b)is 1if a= b else 0)
SUIU] = max{S[i—1][j], S[A—1], SUi—1]li—1]+diff (aj, b;)}.

Problem: Knapsack Problem

Input: A list of items with their weights wy, ws, ..., w, and costs
c1,¢2,...,Cn, a total weight W the knapsack can hold (capacity).

Output: A subset of items for which the sum of their costs is max-
imum and the knapsack can hold them, i.e. |/ C {1,2,...,n} such
that) ;c, ¢i is maximum and } ., w; <= W.

Solution:

Problem: Knapsack Problem

Input: A list of items with their weights wy, ws, ..., w, and costs
c1,¢2,...,Cn, a total weight W the knapsack can hold (capacity).

Output: A subset of items for which the sum of their costs is max-
imum and the knapsack can hold them, i.e. |/ C {1,2,...,n} such
that) ;c, ¢i is maximum and } ., w; <= W.

Solution:
@ Subproblems: C[w][i] - the maximum achievable value of the
items from a set {1,2,...,i} with the knapsack capacity w.
® Induction: C[w]|[i] = max{C[w][i — 1], C[w — w;][i — 1] + ¢}
if w > w; else C[w][i — 1].

Top-Down vs. Bottom-up
Approach

Consider the knapsack problem again. The following solution of it
is referred to as the bottom-up approach:
for i <+ 0 to n do
C[o0][i] « O
end

for w < 0 to W do
C[w][0] <~ 0
end
for i + 1 to ndo
for w < 1 to W do
if W < w; then
Clw][i] « Cw][i — 1]
else
Clw][i] + Clw — wi][i — 1] + ¢
end
end
end

return C[W][n]

Top-Down vs. Bottom-up

Approach
Now consider the following which is referred to as the top-down
approach:
function solve(w,i)
if C[w][i] = —1 then
if w > w; then
C[w][i] +—solve(w — w;,i — 1) +¢;
end
C[w][i] + max{C[w][i], solve(w,i—1)}
end
return C[w][/]
end

for w < 0 to W do
for i < 0 to n do
Clw][i] + -1
end
end

return solve(W,n)

Problem: Chain Matrix Multiplication

Input: An expression Ay X Ay X - -+ X A, where the A;'s are matrices
with dimensions mg X my, m; X ma,...,my_1 X my,.

Output: A parenthesization of the expression such that the num-
ber of multiplications needed to be done in order to evaluate it is
minimum.

Hint:

Ar % (A2 x A3) x Ag) (3) (9

Problem: Chain Matrix Multiplication

Solution:

@ Subproblems: C[i][j] - the minimum number of multiplications
to evaluate A; x Ajy1 x -+ X A;.

@ Induction: C[i][j] <= minj<k<;{ C[i][k]+ C[K][j]4+mj_1-mi-m;}.

DP Problem Complexities

The problems that have been presented are typical representants of
the following complexity classes:

O(n) Maximum Subarray Sum
O(mn) Longest Common Subsequence
O(n®) Chain Matrix Multiplication

