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Problem: Longest Increasing Subsequence

Input: A list of numbers, a1, a2, . . . , an.

Output: Find the largest k for which there are indices i1, i2, . . . , ik
with ai1 < ai2 < . . . < aik .

Exercise: What is the longest increasing subsequence in the following
list of numbers?

5, 1, 6, 4, 8, 3, 2, 1, 5, 6, 8



Problem: Longest Increasing Subsequence

On the first sight it may seem a bit difficult to come up with a solu-
tion but as we will see there is an underlying structure in the problem
that allows us to solve it ”fast”.

If you are faced with the following

5 1 6 4 8 3 2 1 5 6 8

can you tell what the underlying structure is and what its
properties are?



Problem: Longest Increasing Subsequence

Let G = (V ,E ) is a directed graph with vertices v1, v2, . . . , vn which
are labelled with the numbers from the list a1, a2, . . . , an. There is
an edge (vi , vj) ∈ E iff the corresponding numbers satisfy ai < aj .

5 1 6 4 8 3 2 1 5 6 8

Two important things to notice:

• The graph G is a directed acyclic graph, so-called DAG.

• There is one-to-one correspondence between paths in the
graph G and the increasing subsequences in the list
a1, a2, . . . , an.



Problem: Longest Increasing Subsequence

Solution: Let us denote the length of a longest path ending in the
vertex vi as L(i). Then the following algorithm computes L(i) for
every i ∈ {1, . . . , n}:

for j ← 1 to n do
L(j)← 1 + max{L(i) | (i , j) ∈ E (G )}

end
return maxni=1 L(i)

Example:

L(3) = 1 + max{L(1), L(2)} 5 1 6 4 8



Dynamic Programming ”Definition”

Dynamic programming is a problem solving technique based upon
the following two principles:

1 Identification of subproblems.

2 Using the answer to ”smaller” subproblems to solve the
”bigger” ones.

In the case of the Longest Increasing Subsequence we have according
to these principles:

1 L(i) - the length of the longest increasing subsequence
ending with ai .

2 L(i)← 1 + maxj<i{L(j) | aj < ai}.



When Does Dynamic Programming Work?

A problem is solvable with dynamic programming if it has:

1 Optimal substructure. An optimal solution of the whole
problem can be build out of optimal solutions to its
subroblems.

2 Overlapping subproblems.

Remember, when you are faced with a DP problem the DAG is
implicit - you are the one to define the vertices (subproblems) and
the edges (relations) between them.

How do we find out a given problem is solvable using DP?

Through Experience!
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Problem: Maximum Subarray Problem

Input: An array of numbers, a1, a2, . . . , an.

Output: Find a continuous subarray within the given array which
has the largest sum.

Solution:

1 Subproblems: S [i ] - the largest sum of a subarray ending at
i-th element (inclusive).

2 Induction: S [i ]← ai if S [i − 1] <= 0 else ai + S [i − 1].
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Problem: Longest Common Subsequence

Input: Two strings a1a2 · · · an and b1b2 · · · bm.

Output: The largest k for which there are indices

1 ≤ i1 < i2 < · · · < ik ≤ n
and

1 ≤ j1 < j2 < · · · < jk ≤ m
with

ai1ai2 · · · aik = bj1bj2 · · · bjk .

Solution:

1 Subproblems: S [i ][j ] - the longest common subsequence of
the prefixes of the two strings a1a2 · · · ai and b1b2 · · · bj .

2 Induction: (diff (a, b) is 1 if a = b else 0)
S [i ][j ]← max{S [i−1][j ], S [i ][j−1],S [i−1][j−1]+diff (ai , bj)}.
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Problem: Knapsack Problem

Input: A list of items with their weights w1,w2, . . . ,wn and costs
c1, c2, . . . , cn, a total weight W the knapsack can hold (capacity).

Output: A subset of items for which the sum of their costs is max-
imum and the knapsack can hold them, i.e. I ⊆ {1, 2, . . . , n} such
that

∑
i∈I ci is maximum and

∑
i∈I wi <= W .

Solution:

1 Subproblems: C [ŵ ][i ] - the maximum achievable value of the
items from a set {1, 2, . . . , i} with the knapsack capacity ŵ .

2 Induction: C [ŵ ][i ] = max{C [ŵ ][i − 1],C [ŵ − wi ][i − 1] + ci}
if ŵ ≥ wi else C [ŵ ][i − 1].
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Top-Down vs. Bottom-up
Approach

Consider the knapsack problem again. The following solution of it
is referred to as the bottom-up approach:

for i ← 0 to n do
C [0][i ]← 0

end

for ŵ ← 0 to W do
C [ŵ ][0]← 0

end

for i ← 1 to n do
for ŵ ← 1 to W do

if ŵ < wi then
C [ŵ ][i ]← C [ŵ ][i − 1]

else
C [ŵ ][i ]← C [ŵ − wi ][i − 1] + ci

end

end

end

return C [W ][n]



Top-Down vs. Bottom-up
Approach

Now consider the following which is referred to as the top-down
approach:

function solve(ŵ ,i)
if C [ŵ ][i ] = −1 then

if ŵ ≥ wi then
C [ŵ ][i ]←solve(ŵ − wi ,i − 1)+ci

end
C [ŵ ][i ]← max{C [ŵ ][i ], solve(ŵ ,i − 1)}

end
return C [ŵ ][i ]

end

for ŵ ← 0 to W do
for i ← 0 to n do

C [ŵ ][i ]← −1
end

end

return solve(W,n)



Problem: Chain Matrix Multiplication

Input: An expression A1×A2×· · ·×An, where the Ai ’s are matrices
with dimensions m0 ×m1,m1 ×m2, . . . ,mn−1 ×mn.

Output: A parenthesization of the expression such that the num-
ber of multiplications needed to be done in order to evaluate it is
minimum.

Hint:

A1 × ((A2 × A3)× A4)

×

A1 ×

×

A2 A3

A4



Problem: Chain Matrix Multiplication

Solution:

1 Subproblems: C [i ][j ] - the minimum number of multiplications
to evaluate Ai × Ai+1 × · · · × Aj .

2 Induction: C [i ][j ]← mini≤k<j{C [i ][k]+C [k][j ]+mi−1·mk ·mj}.



DP Problem Complexities

The problems that have been presented are typical representants of
the following complexity classes:

O(n) Maximum Subarray Sum

O(mn) Longest Common Subsequence

O(n3) Chain Matrix Multiplication


