
Support Vector Machines



Perceptron Revisited:

 Linear Classifier:

w.x + b = 0

w.x + b < 0

w.x + b > 0

y(x) = sign(w.x + b)



Which one is the best?



Notion of Margin

 Distance from a data point to the boundary:
 Data points closest to the boundary are called support vectors  
 Margin d is the distance between two classes.

w
xw || br +⋅

=

r

d



Maximum Margin Classification

 Intuitively, the classifier of the maximum margin is the best solution
 Vapnik formally justifies this from the view of Structure Risk Minimization 
 Also, it seems that only support vectors matter (is SVM a statistical classifier?)



Quantifying the Margin:

 Canonical hyper-planes:
 Redundancy in the choice of w and b:

 To break this redundancy, assuming the closest data points are on the hyper-planes (canonical 
hyper-planes):

 The margin is:

 The condition of correct classification
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Maximizing Margin:

 The quadratic optimization problem:

 A simpler formulation:

Find w and b such that

is maximized; and for all {(xi ,yi)}

w.xi + b ≥ 1 if yi=1;   w.xi + b ≤ -1   if yi = -1
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The dual problem (1)

 Quadratic optimization problems are a well-known class of mathematical 
programming problems, and many (rather intricate) algorithms exist for solving 
them. 

 The solution involves constructing a dual problem:
 The Lagrangian L:

 Minimizing L over w and b:
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The dual problem (2)

 Therefore, the optimal value of w is:

 Using the above result we have:

 The dual optimization problem
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Important Observations (1):

 The solution of the dual problem depends on the inner-product between data 
points, i.e., rather than data points themselves. 

 The dominant contribution of support vectors:
 The Kuhn-Tucker condition

 Only support vectors have non-zero h values
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Important Observations (2):

 The form of the final solution:

 Two features:
 Only depending on support vectors
 Depending on the inner-product of data vectors

 Fixing b:
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Soft Margin Classification  
 What if data points are not linearly separable?
 Slack variables ξi can be added to allow misclassification of 

difficult or noisy examples.

ξi

ξi



The formulation of soft margin

 The original problem:

 The dual problem:
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Linear SVMs:  Overview

 The classifier is a separating hyperplane.

 Most “important” training points are support vectors; they 
define the hyperplane.

 Quadratic optimization algorithms can identify which training 
points xi are support vectors with non-zero Lagrangian 
multipliers hi.

 Both in the dual formulation of the problem and in the solution 
training points appear only inside inner-products.



Who really need linear classifiers
 Datasets that are linearly separable with some noise, linear SVM 

work well:

 But if the dataset is non-linearly separable? 

 How about… mapping data to a higher-dimensional space:
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Non-linear SVMs:  Feature spaces
 General idea:   the original space can always be mapped to some 

higher-dimensional feature space where the training set becomes 
separable:

Φ:  x → φ(x)



The “Kernel Trick”

 The SVM only relies on the inner-product between vectors xi
.xj

 If every datapoint is mapped into high-dimensional space via 
some transformation Φ:  x→ φ(x), the inner-product becomes:

K(xi,xj)= φ(xi) .φ(xj)

 K(xi,xj ) is called the kernel function.
 For SVM, we only need specify the kernel K(xi,xj ), without need 

to know the corresponding non-linear mapping, φ(x).



Non-linear SVMs

 The dual problem:

 Optimization techniques for finding hi’s remain the same!
 The solution is:
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Examples of Kernel Trick (1)

 For the example in the previous figure: 
 The non-linear mapping

 The kernel

 Where is the benefit?
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Examples of Kernel Trick (2)

 Polynomial kernel of degree 2 in 2 variables
 The non-linear mapping:

 The kernel
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Examples of kernel trick (3)

 Gaussian kernel: 

 The mapping is of infinite dimension:

 The moral:  very high-dimensional and complicated non-linear mapping can 
be achieved by using a simple kernel!
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What Functions are Kernels?

 For some functions K(xi,xj) checking that K(xi,xj)= φ(xi) .φ(xj) 
can be cumbersome. 

 Mercer’s theorem:  
Every semi-positive definite symmetric function is a kernel



Examples of Kernel Functions

 Linear kernel:

 Polynomial kernel of power p:

 Gaussian kernel:

 In the form, equivalent to RBFNN, but has the advantage of that the center of basis 
functions, i.e., support vectors, are optimized in a supervised.

 Two-layer perceptron:
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SVM Overviews

 Main features:
 By using the kernel trick, data is mapped into a high-

dimensional feature space, without introducing much 
computational effort;

 Maximizing the margin achieves better generation 
performance;

 Soft-margin accommodates noisy data;
 Not too many parameters need to be tuned.

 Demos(http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml)

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml�
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml�


SVM so far

 SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and 
gained increasing popularity in late 1990s.

 SVMs are currently among the best performers for many benchmark datasets.
 SVM techniques have been extended to a number of tasks such as regression 

[Vapnik et al. ’97].
 Most popular optimization algorithms for SVMs are SMO [Platt ’99] and 

SVMlight [Joachims’ 99], both use decomposition to handle large size datasets.
 It seems the kernel trick is the most attracting site of SVMs. This idea has now 

been applied to many other learning models where the inner-product is 
concerned, and they are called ‘kernel’ methods.

 Tuning SVMs remains to be the main research focus:  how to an optimal kernel? 
Kernel should match the smooth structure of data. 
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