Support Vector Machines




‘ Perceptron Revisited:

m Linear Classifier:  y(x) =sign(wx + b)

wXx+b>0 WX +b=0




‘ Which one is the best?




Notion ot Margin

_|w-x+Db]|
Distance from a data point to the boundary: ~ |w]
Data points closest to the boundary are called support vectors
Margin d is the distance between two classes.




Maximum Margin Classification

= Intuitively, the classifier of the maximum margin is the best solution
= Vapnik formally justifies this from the view of Structure Risk Minimization

= Also, it seems that only support vectors matter (1s SVM a statistical classifier?)




Quantitying the Margin:

Canonical hyper-planes: y(X) = sign(w - X + b)
0 Redundancyin the choice of w and b: )
=sign(kw-x+k-b)

0 To break this redundancy, assuming the closest data points are on the hyper-planes (canonical

hyper-planes):
W-X+b==1

The margin is: )
d=_2%_
wi

The condition of correct classification

wx,+b>1 ify,=1

wx;, +b<-1 ify,=-1



Maximizing Margin:

The guadratic optimization problem:

Find w and b such that

d=—2 IS maximized; and for all {(x; ,y;)}

|
wx;+b>11fy=1, wx,+b<-1 ify,=-1

A simpler formulation:

Mimimizing %||w||2

Subjectto:y.(w-x. +b)>1 fori=1.., N



The dual problem (1)

Quadratic optimization problems are a well-known class of mathematical

programming problems, and many (rather intricate) algorithms exist for solving
them.

The solution involves constructing a dual problem:

0 The Lagrangian I

1 N
L(w,b;h) = 2 w _Z hily;(w-X; +b)—1]
i=1
where h = (h,,..., hy ) is the vector of non - negative Lagrange multipliers

0  Minimizing I. over w and b:

=W — ihm.=

i=1

L N
5= 2N,

D %‘Q)

0

)



The dual problem (2)

N
Therefore, the optimal value of wis: = Z hi Y. X
=1

Using the above result we have:
N
1. .
L(hy=2_h, —SIw I
i=1
N
=3 —=h-D-h
= 2
where D=y, y,X; - X;
The dual optimization problem Maximizing . L(h) _ i h _lh .D-h
—~ 1 9
=1

Subjectto:h-y =0
h>0



Important Observations (1):

The solution of the dual problem depends on the zuner-product between data
points, i.e., X;-X; rather than data points themselves.

The dominant contribution of support vectors:
0 The Kuhn-Tucker condition

At the solution, (w', b™, h), the follwoing relationships hold
hly. (W -x,+b")-1]=0, for i=1,...,N

0 Only support vectors have non-zero / values

y.(W -x, +b") =1, h. >0



‘ Important Observations (2):

m The form of the final solution:

W= Zhiyixi
ieSV
f(X)=w -Xx+Db
= > hyX -X+b

ieSV

m Two features:

0 Only depending on support vectors

0  Depending on the inner-product of data vectors

= Fixing b: Choose any support vector, X,

b =y, —w -Xx




‘ Soft Margin Classification

= What if data points are not linearly separable?

w Slack variables & can be added to allow misclassification of
difficult or noisy examples.




The formulation of soft margin

The original problem:

N
Mimimizing %||w||2 +CY &
i=1

Subject to
yi(w-x; +b)=1-¢&, fori=1,..,N
& >0, fori=1,...,N

The dual problem:

N
Maximizing: L(h)=>_h, —%h-D-h
i=1
Subjectto:h-y =0
0<h<C
where D; =Y, Y;X; - X;



Linear SVMs: Overview

The classitier is a separating hyperplane.

Most “important” training points are support vectors; they

define the hyperplane.

Quadratic optimization algorithms can identify which training
points X, are support vectors with non-zero Lagrangian
multipliers /.

Both in the dual formulation of the problem and in the solution
training points appear only inside inner-products.



‘Who really need linear classitiers

= Datasets that are linearly separable with some noise, linear SVM
work well:

= But if the dataset is non-linearly separable?

*—O 00— *0—0—0—& *—

0 X
= How about... mapping data to a higher-dimensional space:




‘ Non-linear SVMs: Feature spaces

= General idea: the original space can always be mapped to some
higher-dimensional feature space where the training set becomes

separable:
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The “Kernel Trick”

The SVM only relies on the inner-product between vectors x;x;

If every datapoint 1s mapped into high-dimensional space via
some transformation @: x — @(x), the inner-product becomes:

Kxi,%)= (1) (X))

K(x;,x;) is called the kernel function.

For SVM, we only need specify the kernel K(x;,x;), without need
to know the corresponding non-linear mapping, 9(x).



Non-linear SVMs

The dual problem:

N
Maximizing: L(h)=>_h, —%h-D-h
i=1
Subjectto:h-y =0
0<h<C
where D; = y;y;K(X;,X;)

Optimization techniques for finding /,’s remain the samel

The solution is:
W = Zhi Yip(X;)

f(X)=w"-@(x)+b
= > hy,K(x;,X)+b"

ieSV



'Examples of Kernel Trick (1)

= For the example in the previous figure:

0 The non-linear mapping

X = @(x) = (x,X%)

0 The kernel

§D(Xi) = (Xiixiz)’ §D(Xj) = (Xj , XJZ)
KX, %;) =0(x)-o(X;)
=xixj(1+xixj)

m  Where is the benefit?




Examples of Kernel Trick (2)

Polynomial kernel of degree 2 in 2 variables

0 The non-linear mapping:

X = (X, X;)
o(X) = (L2%, 2%, X, X3,V 2%,X,)
0 The kernel

o(X) = (L2%, V2%, X}, X2, 2%,%,)
o(y) = (LV2y,,V2y,, V2, 2 ,42Y,Y,)
K(X,y) = o(X)-o(y)

=(1+x-y)’



Examples of kernel trick (3)

Gaussian kernel: X =X [/ 252
K (x;, %) =e e

0 The mapping 1s of infinite dimension:

o(X)=(...,0,(X),...), for meR"
0, (X) = Ae B e

KoY) = [9,00¢"s(y)de

The moral: very high-dimensional and complicated non-linear mapping can
be achieved by using a simple kernel!



What Functions are Kernels?

For some functions K(x;,x;) checking that K(x;,x)= ¢(x;) ¢(X;)
can be cumbersome.

Mercer’s theorem:

Every semi-positive definite symmettic function is a ketnel



Examples of Kernel Functions
Linear kernel: K (Xi : Xj) =X Xj

Polynomial kernel of power p: K (Xi : Xj) — (]__|_ Xi . Xj ) p

2 2
_”Xi _Xj ” /20-

Gaussian kernel: K (Xi , Xj) —g

0 In the form, equivalent to RBFNN, but has the advantage of that the center of basis
functions, i.e., support vectors, are optimized 1n a supervised.

Two-layer perceptron: 4 Xj) = tanh(ax, - X + 5)



'SVM Overviews

» Main features:

0 By using the kernel trick, data is mapped into a high-
dimensional feature space, without introducing much
computational effort;

0 Maximizing the margin achieves better generation
performance;

0 Soft-margin accommodates noisy data;
a0 Not too many parameters need to be tuned.

s Demos(http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml)



http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml�
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml�

SVM so far

SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and
gained increasing popularity in late 1990s.

SVMs are currently among the best performers for many benchmark datasets.
SVM techniques have been extended to a number of tasks such as regression
[Vapnik ez al. 97].

Most popular optimization algorithms for SVMs are SMO [Platt *99] and
SVMight [Joachims® 99], both use decomposition to handle large size datasets.

It seems the kernel trick is the most attracting site of SVMs. This idea has now
been applied to many other learning models where the inner-product is
concerned, and they are called ‘kernel” methods.

Tuning SVMs remains to be the main research focus: how to an optimal kernel?
Kernel should match the smooth structure of data.
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