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Single objective

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥 𝑓(𝑥)

𝑓 = objective function

𝑥 ∈ 𝑋 = some region of n-dimensional space

EXAMPLES of 𝑓 :

Cost, time, loss, …



Example: k-Means

• Set of observations X = [𝑥1, 𝑥2, … 𝑥𝑛]

• Minimize inertia,  𝑖=0
𝑛 min

𝜇𝑗∈𝐶
( 𝑥𝑖 − 𝜇𝑗

2
)





More than one objective

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥 {𝑓 𝑥 , 𝑔 𝑥 , ℎ 𝑥 ,… }

If objectives are not conflicting, solution is trivial

EXAMPLE:

Cost vs. time



Combining objectives

• Cost and time
• Average

• Weighted Average

• 𝜀-constraint method

• Evangelista

• ….

• Hotel problem: Cost vs. star review?



Combining objectives

• Constructing joined objective:
1. Model building

2. Decision making (preference articulation)

3. Optimization



Combining objectives

• Multi objective solution:
1. Model building

2. Optimization

3. Decision making (preference articulation)



Notation

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥 {𝑓1 𝑥 , 𝑓2 𝑥 ,…𝑓𝑘 𝑥 }

• 𝑥 ∈ 𝑋 are decision vectors

• 𝑓 𝑥 = (𝑓1 𝑥 , 𝑓2 𝑥 ,…𝑓𝑘 𝑥 ) are objective vectors

• Optimality of objective vector:
no component can be improved without deteriorating another.



Notation – Pareto set

• Set of all Pareto optimal solutions is P(X), respectively WP(X)

𝑥′ is Pareto optimal if there is no 𝑥 such that f𝑖 𝑥 ≤ fi x
′

for all 𝑖.
Respectively it is Weakly Pareto optimal if the inequality is 
sharp.
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Multi objective clustering – NSGA-II

• Algorithm for generating Pareto front



Multi objective clustering

• Objectives:

Maximize 𝑠𝑒𝑝 = min
k≠𝑙

{𝐷2(𝜇𝑘 , 𝜇𝑙)}

Minimize 𝐽2 =  𝑘=1
#𝐶  𝑖=1

𝑛 𝑢𝑘𝑖
2 𝐷2(𝜇𝑘 , 𝑥𝑖)

Where 𝑢𝑘𝑖is the membership of node 𝑥𝑖 to cluster 𝑘.



LANDSAT dataset



LANDSAT – single objective



LANDSAT – multi objective

Which solution is the best?



Problem – which solution is the best?

• Example: Cars, trains and planes



Multi objective clustering

• In case of clustering, solutions are vectors (matrices) of cluster 
membership. 
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Multi objective clustering

• In case of clustering, solutions are vectors (matrices) of cluster 
membership. 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

Solution 1 1 1 2 3 3

Solution 2 1 2 2 3 1

Solution 3 1 3 2 3 3

Solution 4 1 1 1 3 3

SVM

Final solution 1 1 2 3 3



LANDSAT – multi objective



Conclusion

• Multiple objectives can perform better than single objective

• Selecting objectives is important
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Fuzzy C-Means

• Initialize U=[uij] matrix, U(0)

• At k-step: calculate the centers vectors C(k)=[cj] with U(k)

• Update U(k) , U(k+1)

• If || U(k+1) - U(k)||< epsilon then STOP; otherwise return to step 2.


