Multi objective clustering
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Single objective

minimize, f(x)
f = objective function

x € X = some region of n-dimensional space

EXAMPLES of f :

Cost, time, loss, ...



Example: k-Means

* Set of observations X = [xq, x5, ...

 Minimize inertia, )i, min(Hxl- —

pUjeC

X!

Hj




60 80 100 120 140

40

60 80 100 120 140

40

Random means drawn from the data

@® ®
_ ° o
_ ® o
- @® ®
®
- ®
1@ e
@®
I | I I I |
40 60 80 100 120 140 160
X
Iteration 3
(o) @]
_ ° °
_ ° o
- (@] @®
@®
- ]
1@ @
@ @
[ ]
I | I I I |
40 60 80 100 120 140 160

60 80 100 120 140

40

60 80 100 120 140

40

Iteration 1
o (@]
- ° o
- ° ®
- (0] @
(0]
- @
J® )
@
T T T T T T
40 60 80 100 120 140 160
x
Iteration 4
o @]
- ° °
- ° °
- (@] ®
@
- He
J® o
® )
[ ]
I I I 1 I I
40 60 80 100 120 140 160

60 80 100 120 140

40

60 80 100 120 140

40

Iteration 2
(@) (@]
i ° o
i o o
- (0] @
o [ |
] @
1@ @
@® . ®
®
T T T T T T
40 60 80 100 120 140 160
X
Iteration 5
(@) o]
_ ° o
i ® °
- (o] @®
@
7] @®
1@ @
® @
@®
I | I I I I
40 60 80 100 120 140 160



More than one objective
minimize, {f (x), g(x), h(x),...}
If objectives are not conflicting, solution is trivial

EXAMPLE:
Cost vs. time



Combining objectives

e Cost and time
* Average
* Weighted Average
e g-constraint method
* Evangelista

* Hotel problem: Cost vs. star review?



Combining objectives

* Constructing joined objective:
1. Model building
2. Decision making (preference articulation)
3. Optimization



Combining objectives

* Multi objective solution:
1. Model building
2. Optimization
3. Decision making (preference articulation)



Notation

minimize, {f1(x), f2(x), ... f(x)}

e x € X are decision vectors

* f(x) = (f1(x), f2(x), ... fr(x)) are objective vectors

e Optimality of objective vector:
no component can be improved without deteriorating another.



Notation — Pareto set

x' is Pareto optimal if there is no x such that f; (x) < f;(x")
for all i.

Respectively it is Weakly Pareto optimal if the inequality is
sharp.

* Set of all Pareto optimal solutions is P(X), respectively WP(X)
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Notation — Pareto set

x' is Pareto optimal if there is no 1,
for all i. 1
Respectively it is Weakly Pareto o
sharp.
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» Set of all Pareto optimal solutions is P(¥ |
* Pareto optimal sets are unordered
* Pareto optimal ~ non dominated

* If the space X is continuous, P(X) can contain infinite number of
solutions




Multi objective clustering — NSGA-I
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Multi objective clustering

* Objectives:

Maximize sep = TIEI;?{DZ(#R;ML)}
Minimize | = Zﬁgl ?:1 ulzciDz(ﬂk»xi)

Where u,;is the membership of node x; to cluster k.



DSAT dataset




LANDSAT — single objective
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Which solution is the best?



Problem — which solution is the best?

* Example: Cars, trains and planes



Multi objective clustering

* In case of clustering, solutions are vectors (matrices) of cluster
membership.



Multi objective clustering

* In case of clustering, solutions are vectors (matrices) of cluster
membership.
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Multi objective clustering
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Multi objective clustering

* In case of clustering, solutions are vectors (matrices) of cluster
membership.
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LANDSAT — multi objective
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Conclusion

* Multiple objectives can perform better than single objective
* Selecting objectives is important
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Fuzzy C-Means

* Initialize U=[uij] matrix, U(0)
* At k-step: calculate the centers vectors C(k)=[cj] with U(k)
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e If || U(k+1) - U(k)| | < epsilon then STOP; otherwise return to step 2.




