Contents

- Single objective clustering
- Combining objectives
- Multiple objectives
 - Pareto optimality
- Multi objective clustering
- LANDSAT example
- Selecting best result

Single objective

```
minimize_x f(x)
```

f = objective function

 $x \in X$ = some region of n-dimensional space

EXAMPLES of f:

Cost, time, loss, ...

Example: k-Means

- Set of observations $X = [x_1, x_2, ... x_n]$
- Minimize inertia, $\sum_{i=0}^n \min_{\mu_i \in C} (\|x_i \mu_j\|^2)$

More than one objective

$$minimize_x \{f(x), g(x), h(x), ...\}$$

If objectives are not conflicting, solution is trivial

EXAMPLE:

Cost vs. time

Combining objectives

- Cost and time
 - Average
 - Weighted Average
 - ε -constraint method
 - Evangelista
 -
- Hotel problem: Cost vs. star review?

Combining objectives

- Constructing joined objective:
 - 1. Model building
 - 2. Decision making (preference articulation)
 - 3. Optimization

Combining objectives

- Multi objective solution:
 - 1. Model building
 - 2. Optimization
 - 3. Decision making (preference articulation)

Notation

$$minimize_x \{f_1(x), f_2(x), ... f_k(x)\}$$

- $x \in X$ are decision vectors
- $f(x) = (f_1(x), f_2(x), ... f_k(x))$ are objective vectors
- *Optimality* of objective vector: no component can be improved without deteriorating another.

x' is *Pareto optimal* if there is no x such that $f_i(x) \le f_i(x')$ for all i.

Respectively it is Weakly Pareto optimal if the inequality is sharp.

• Set of all Pareto optimal solutions is P(X), respectively WP(X)

x' is *Pareto optimal* if there is no x such that $f_i(x) \le f_i(x')$ for all i.

Respectively it is Weakly Pareto optimal if the inequality is sharp.

- Set of all Pareto optimal solutions is P(X), respectively WP(X)
- Pareto optimal sets are unordered
- Pareto optimal ~ non dominated

x' is *Pareto optimal* if there is no x such that $f_i(x) \le f_i(x')$ for all i.

Respectively it is Weakly Pareto optimal if the inequality is sharp.

- Set of all Pareto optimal solutions is P(X), respectively WP(X)
- Pareto optimal sets are unordered
- Pareto optimal ~ non dominated

 If the space X is continuous, P(X) can contain infinite number of solutions

x' is *Pareto optimal* if there is no x' for all i.

Respectively it is *Weakly Pareto of* sharp.

Set of all Pareto optimal solutions is P(X)

Pareto optimal sets are unordered

Pareto optimal ~ non dominated

 If the space X is continuous, P(X) can contain infinite number of solutions

Multi objective clustering – NSGA-II

Algorithm for generating Pareto front

Objectives:

Maximize
$$sep = \min_{k \neq l} \{D^2(\mu_k, \mu_l)\}$$

Minimize
$$J_2 = \sum_{k=1}^{\#C} \sum_{i=1}^n u_{ki}^2 D^2(\mu_k, x_i)$$

Where u_{ki} is the membership of node x_i to cluster k.

LANDSAT dataset

LANDSAT – single objective

LANDSAT – multi objective

Which solution is the best?

Problem – which solution is the best?

• Example: Cars, trains and planes

	x_1	x_2	x_3	x_4	x_5
Solution 1	1	1	2	3	3
Solution 2	1	2	2	3	1
Solution 3	1	3	2	3	3
Solution 4	1	1	1	3	3

	x_1	x_2	x_3	x_4	x_5
Solution 1	1	1	2	3	3
Solution 2	1	2	2	3	1
Solution 3	1	3	2	3	3
Solution 4	1	1	1	3	3

	x_1	x_2	x_3	x_4	x_5
Solution 1	1	1	2	3	3
Solution 2	1	2	2	3	1
Solution 3	1	3	2	3	3
Solution 4	1	1	1	3	3

m	e۱	m	h	ρı	۲۲	าi	p.	
	CI		V	CI	<u>ا</u>		μ.	

		B			K		
	x_1	x_2	x_3	x_4	x_5	· ·	
Solution 1	1	1	2	3	3		
Solution 2	1	2	2	3	1		S۱
Solution 3	1	3	2	3	3	V	
Solution 4	1	1	1	3	3		

• In case of clustering, solutions are vectors (matrices) of cluster

membership.

		D			k
	x_1	x_2	x_3	x_4	x_5
Solution 1	1	1	2	3	3
Solution 2	1	2	2	3	1
Solution 3	1	3	2	3	3
Solution 4	1	1	1	3	3
		,			
Final solu	tion	1	1 2	3	3

LANDSAT – multi objective

Conclusion

- Multiple objectives can perform better than single objective
- Selecting objectives is important

References

- K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," in *IEEE Transactions on Evolutionary Computation*, vol. 6, no. 2, pp. 182-197, Apr 2002.
- Branke, Jürgen, et al., eds. *Multiobjective optimization: Interactive and evolutionary approaches*. Vol. 5252. Springer, 2008.
- Maulik, Ujjwal, Sanghamitra Bandyopadhyay, and Anirban Mukhopadhyay. Multiobjective Genetic Algorithms for Clustering: Applications in Data Mining and Bioinformatics. Springer Science & Business Media, 2011.

Fuzzy C-Means

- Initialize U=[uij] matrix, U(0)
- At k-step: calculate the centers vectors C(k)=[cj] with U(k)

$$c_j = \frac{\sum_{i=1}^N u_{ij}^m \cdot x_i}{\sum_{i=1}^N u_{ij}^m}$$

Update U(k) , U(k+1)

$$u_{ij} = \frac{1}{\sum\limits_{k=1}^{C} \left(\frac{\left\|x_{i} - c_{j}\right\|}{\left\|x_{i} - c_{k}\right\|}\right)^{\frac{2}{m-1}}}$$

• If || U(k+1) - U(k)|| < epsilon then STOP; otherwise return to step 2.