GRAPHICAL MARKOV MODELS (WS2020)
 5. SEMINAR

Assignment 1. Consider the task of finding the most probable sequence of (hidden) states for a (Hidden) Markov model on a chain.
a) Show that the Dynamic Programming approach applied for this task can be interpreted as an equivalent transformation (re-parametrisation) of the model.
b) Show that the transformed functions (potentials) encode an explicit description of all optimisers of the problem
Assignment 2. Consider a GRF for binary valued labellings $x: V \rightarrow\{0,1\}$ of a graph (V, E) given by

$$
p(x)=\frac{1}{Z} \exp \left[\sum_{i j \in E} u_{i j}\left(x_{i}, x_{j}\right)+\sum_{i \in V} u_{i}\left(x_{i}\right)\right] .
$$

Show that is is always possible to find an equivalent transformation (re-parametrisation)

$$
u_{i j} \rightarrow \tilde{u}_{i j}, \quad u_{i} \rightarrow \tilde{u}_{i}
$$

such that the new pairwise functions $\tilde{u}_{i j}$ have the form

$$
\tilde{u}_{i j}\left(x_{i}, x_{j}\right)=\alpha_{i j}\left|x_{i}-x_{j}\right|
$$

with some real numbers $\alpha_{i j} \in \mathbb{R}$.
Assignment 3. Transform the Travelling Salesman Problem into a (min, +)-problem.
Assignment 4. Prove that a sum of submodular functions is submodular.
Assignment 5. Let K be a completely ordered finite set. We assume w.l.o.g. that $K=$ $\{1,2, \ldots, m\}$. For a function $u: K \rightarrow \mathbb{R}$ define its discrete "derivative" by $D u(k)=u(k+$ 1) $-u(k)$.
a) Let u be a function $u: K^{2} \rightarrow \mathbb{R}$ and denote by D_{1} and D_{2} the discrete derivatives w.r.t. its first and second argument. Prove the following equality

$$
D_{1} D_{2} u\left(k_{1}, k_{2}\right)=u\left(k_{1}+1, k_{2}+1\right)+u\left(k_{1}, k_{2}\right)-u\left(k_{1}+1, k_{2}\right)-u\left(k_{1}, k_{2}+1\right) .
$$

Conclude that all mixed derivatives $D_{1} D_{2} u\left(k_{1}, k_{2}\right)$ of a submodular functions are negative.
b) Prove that the condition established in a) is not only necessary but also sufficient for a function to be submodular.

Hint: Start from the observation that the following equality holds for a function of one variable

$$
u(k+l)-u(k)=\sum_{i=k}^{k+l-1} D u(i)
$$

and generalise it for functions of two variables.
c) Prove that any function $u: K^{2} \rightarrow \mathbb{R}$ can be represented as a sum of a submodular and a supermodular function.

Hint: Consider the mixed derivative $D_{1} D_{2} u\left(k_{1}, k_{2}\right)$, decompose it into its negative and positive part and "integrate" them back separately.
Assignment 6. Examine the following functions w.r.t. submodularity
a) $f\left(k, k^{\prime}\right)=\left|k-k^{\prime}\right|$, where $k, k^{\prime} \in \mathbb{Z}$.
b) $f\left(k, k^{\prime}\right)=\left(k-k^{\prime}\right)^{2}$, where $k, k^{\prime} \in \mathbb{Z}$.
c) $f\left(k_{1}, \ldots, k_{n}\right)=\max _{i} k_{i}-\min _{i} k_{i}$, where $k_{i} \in \mathbb{Z}$.

