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Formal Ontologies

Formalizing Ontologies

@ We heard about
e RDF,
e ontologies as “some shared knowledge structures often visualized
through UML-like diagrams” ...
@ But how to check they are designed correctly? How to reason about
the knowledge inside?

@ No single language — many graphical /textual languages ranging from
informal to formal ones can be used, e.g. relational algebra, Prolog,
RDFS, OWL, topic maps, thesauri, conceptual graphs
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Logics for Ontologies

@ propositional logic

“John is clever.” = —“John fails at exam.” I

o first order predicate logic

(Vx)(Clever(x) = —((3y)(Exam(y) A Fails(x,y)))).

@ modal logic

O((Vx)(Clever(x) = <—((3y)(Exam(y) A Fails(x, y)))))-

@ ... what is the meaning of these formulas 7

Petr Kfemen (petr.kremen@fel.cvut.cz) Description Logics and OWL November 19, 2020 4/33



Logics for Ontologies (2)

Logics are defined by their

e Syntax — to represent concepts (defining symbols)

Logics trade-off

A logical calculus is always a trade-off between expressiveness and
tractability of reasoning.

Petr Kfemen (petr.kremen@fel.cvut.cz) Description Logics and OWL November 19, 2020 5/33



Logics for Ontologies (2)

Logics are defined by their
e Syntax — to represent concepts (defining symbols)

@ Semantics — to capture meaning of the syntactic constructs (defining
concepts)

Logics trade-off

A logical calculus is always a trade-off between expressiveness and
tractability of reasoning.

A St

Petr Kfemen (petr.kremen@fel.cvut.cz) Description Logics and OWL November 19, 2020 5/33



Logics for Ontologies (2)

Logics are defined by their
e Syntax — to represent concepts (defining symbols)

@ Semantics — to capture meaning of the syntactic constructs (defining
concepts)

@ Proof Theory — to enforce the semantics

Logics trade-off

A logical calculus is always a trade-off between expressiveness and
tractability of reasoning.
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How to check satisfiability of the formula AV (=(BAA)V BAC)? I

syntax — atomic formulas and —, A, V, =

semantics (=) — an interpretation assigns true/false to each formula.
proof theory (=) — resolution, tableau
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Formal Ontologies

Propositional Logic

How to check satisfiability of the formula AV (=(BAA)V BAC)?

syntax — atomic formulas and —, A, V, =
semantics (=) — an interpretation assigns true/false to each formula.

proof theory (=) — resolution, tableau

complexity — NP-Complete (Cook theorem)
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First Order Predicate Logic

What is the meaning of this sentence 7

(Vx1)((Student(x1) A (Ix2)( GraduateCourse(x2) A isEnrolled To(x1, x2)))
= (Vx3)(isEnrolledTo(x1, x3) = GraduateCourse(x3)))

Student M disEnrolled To. GraduateCourse T VisEnrolled To. GraduateCourse

v,
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Formal Ontologies

First Order Predicate Logic — quick informal review

syntax — constructs involve
term (variable x, constant symbol JOHN, function

symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x, JOHN), possibly glued together
with =, A, V, =, ¥,3)

universally closed formula formula without free variable
((Vx)(3y)hasFather(x,y) A Person(y))

semantics — an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory — resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity — undecidable (Goedel)
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Open World Assumption

FOPL accepts Open World Assumption, i.e. whatever is not known is not
necessarily false.

As a result, FOPL is monotonic, i.e.

monotonicity
No conclusion can be invalidated by adding extra knowledge.

This is in contrary to relational databases, or Prolog that accept Closed
World Assumption.

A St
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Towards Description Logics

Languages sketched so far aren’t enough 7

@ Why not First Order Predicate Logic ?
® FOPL is undecidable — many logical consequences cannot be verified in
finite time.
e We often do not need full expressiveness of FOL.
@ Well, we have Prolog — wide-spread and optimized implementation of
FOPL, right ?
® Prolog is not an implementation of FOPL — OWA vs. CWA, negation
as failure, problems in expressing disjunctive knowledge, etc.
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Concepts and Roles

@ Basic building blocks of DLs are :
(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person 1 3hasChild - Person.
(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild
individuals - represent ground terms / individuals, e.g. JOHN
@ Theory KL = (7,.A) (in OWL refered as Ontology) consists of a
TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man C Person}
ABOX A - representing a particular relational structure (data),
e.g. A= {Man(JOHN), loves(JOHN, MARY)}
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ALC Language

Concepts and Roles

@ Basic building blocks of DLs are :
(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person 1 3hasChild - Person.
(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild
individuals - represent ground terms / individuals, e.g. JOHN

@ Theory KL = (7,.A) (in OWL refered as Ontology) consists of a
TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man C Person}
ABOX A - representing a particular relational structure (data),
e.g. A= {Man(JOHN), loves(JOHN, MARY)}
@ DLs differ in their expressive power (concept/role constructors, axiom

types).
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ALC Language

Semantics, Interpretation

@ as ALC is a subset of FOPL, let's define semantics analogously (and
restrict interpretation function where applicable):
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ALC Language

Semantics, Interpretation

@ as ALC is a subset of FOPL, let's define semantics analogously (and
restrict interpretation function where applicable):

o Interpretation is a pair Z = (AZ, 1), where A is an interpretation
domain and -Z is an interpretation function.

@ Having atomic concept A, atomic role R and individual a, then

AIQAI
RT c AT x AT
af e AT
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ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for
interpretation 7 :

concept  conceptt description

T AT (universal concept)

€ 0 (unsatisfiable concept)
-C AT\ CT (negation)

anG cEnct (intersection)

auG ctudt (union)

VR-C {a|Vb((a,b) € RT = bec CT)} (universal restriction)
3rR-C {a|3b((a,b) € RT A b€ CT)} (existential restriction)

Ltwo different individuals denote two different domain elements
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ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for
interpretation 7 :

concept  conceptt description
T AT (universal concept)
€ 0 (unsatisfiable concept)
-C AT\ CT (negation)
anG cEnct (intersection)
auG ctudt (union)
VR-C {a|Vb((a,b) € RT = bec CT)} (universal restriction)
3rR-C {a|3b((a,b) € RT A b€ CT)} (existential restriction)
axiom 7 |= axiom iff  description
TBOX G LCG Ci C Ci (inclusion)
G=0G G =¢G (equivalence)
ABOX (UNA = unique name assumption!)
axiom T [= axiom iff  description
C(a) atect (concept assertion)

R(a1,a2) (af,af) € RT  (role assertion)

Ltwo different individuals denote two different domain elements
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ALC — Example

Consider an information system for genealogical data integrating multiple
geneological databases. Let's have atomic concepts
Person, Man, GrandParent and atomic role hasChild.

@ Set of persons that have just men as their descendants (if any)
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ALC — Example

Consider an information system for genealogical data integrating multiple
geneological databases. Let's have atomic concepts
Person, Man, GrandParent and atomic role hasChild.
@ Set of persons that have just men as their descendants (if any)
o Person M YhasChild - Man
@ How to define concept GrandParent ? (specify an axiom)
o GrandParent = Person 1 3hasChild - 3hasChild - T

@ How does the previous axiom look like in FOPL 7

Vx (GrandParent(x) = (Person(x) A Jy (hasChild(x, y)
A3z (hasChild(y, z)))))
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ALC Example = T

Woman = Personl1 Female
Man = Person —~Woman
Mother = Woman 1 dhasChild - Person
Father = Man T dhasChild - Person
Parent = Father LI Mother
Grandmother = Mother M JhasChild - Parent

MotherWithoutDaughter Mother MY hasChild - =Woman
Wife = Woman T 3hasHusband - Man
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ALC Language

Interpretation — Example

o Consider a theory K1 = ({ GrandParent =
Person M 3hasChild - 3hasChild - T}, { GrandParent(JOHN)}). Find
some model.
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@ a model of K1 can be interpretation Z; :
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ALC Language

Interpretation — Example

o Consider a theory K1 = ({ GrandParent =
Person M 3hasChild - 3hasChild - T}, { GrandParent(JOHN)}). Find
some model.
@ a model of K1 can be interpretation Z; :
o ATt = Man™t = Person™ = {John, Phillipe, Martin}
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ALC Language

Interpretation — Example

o Consider a theory K1 = ({ GrandParent =
Person M 3hasChild - 3hasChild - T}, { GrandParent(JOHN)}). Find
some model.
@ a model of K1 can be interpretation Z; :
o ATt = Man™t = Person™ = {John, Phillipe, Martin}
o hasChild®: = {(John, Phillipe), (Phillipe, Martin)}
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o ATt = Man™t = Person™ = {John, Phillipe, Martin}
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ALC Language

Interpretation — Example

o Consider a theory K1 = ({ GrandParent =
Person M 3hasChild - 3hasChild - T}, { GrandParent(JOHN)}). Find
some model.

@ a model of K1 can be interpretation Z; :

o ATt = Man™t = Person™ = {John, Phillipe, Martin}
hasChild™* = {(John, Phillipe), (Phillipe, Martin)}
GrandParent™ = {John}

JOHN®: = {John}
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ALC Language

Interpretation — Example

o Consider a theory K1 = ({ GrandParent =
Person M 3hasChild - 3hasChild - T}, { GrandParent(JOHN)}). Find
some model.

@ a model of K1 can be interpretation Z; :
o ATt = Man™t = Person™ = {John, Phillipe, Martin}
o hasChild®: = {(John, Phillipe), (Phillipe, Martin)}
o GrandParent™ = {John}
o JOHN®: = {John}
@ this model is finite and has the form of a tree with the root in the
node John :

| Person, Man, GrandParent: John - Person, Man: Phillipe - Person, Man : Martin
hasChild hasChild
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Shape of DL Models

The last example revealed several important properties of DL models:
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Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent KL = ({},{C(/)}) has a model in the shape of a rooted
tree.
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Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent KL = ({},{C(/)}) has a model in the shape of a rooted
tree.

Finite model property (FMP)

Every consistent IC = (7, .A) has a finite model.
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Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent KL = ({},{C(/)}) has a model in the shape of a rooted
tree.

Finite model property (FMP)

Every consistent IC = (7, .A) has a finite model.

Both properties represent important characteristics of ALC that
significantly speed-up reasoning.
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Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent KL = ({},{C(/)}) has a model in the shape of a rooted
tree.

Finite model property (FMP)

Every consistent IC = (7, .A) has a finite model.

Both properties represent important characteristics of ALC that
significantly speed-up reasoning.

In particular (generalized) TMP is a characteristics that is shared by
most DLs and significantly reduces their computational complexity. |
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Example - CWA x OWA

hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
ABOX  hasChild(OEDIPUS, POLYNEIKES)  hasChild(POLYNEIKES, THERSANDROS)
Patricide( OEDIPUS) — Patricide( THERSANDROS)
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Example - CWA x OWA

hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
ABOX  hasChild(OEDIPUS, POLYNEIKES)  hasChild(POLYNEIKES, THERSANDROS)
Patricide( OEDIPUS) — Patricide( THERSANDROS)

Edges represent role assertions of hasChild; red/green colors distinguish
concepts instances — “atricide a = Patricide

JOCASTA —————— POLYNEIKES — THERSANDROS
T~ ==
OEDIPUS
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Example - CWA x OWA

hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
ABOX  hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS)
Patricide( OEDIPUS) — Patricide( THERSANDROS)

Edges represent role assertions of hasChild; red/green colors distinguish
concepts instances — a —Patricide

JOCASTA —————— POLYNEIKES — THERSANDROS
T~ ==

Q1 (3hasChild - (Patricide M 3hasChild - —Patricide))(JOCASTA),

JOCASTA—= ¢« —= o
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Example - CWA x OWA

hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
ABOX  hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS)
Patricide( OEDIPUS) — Patricide( THERSANDROS)

Edges represent role assertions of hasChild; red/green colors distinguish
concepts instances — a —Patricide

JOCASTA ———— POLYNEIKES —= THERSANDROS
T~ ==

Q1 (3hasChild - (Patricide M 3hasChild - —Patricide))(JOCASTA),
JOCASTA —= o —> o
Q2 Find individuals x such that K | C(x), where C is

—Patricide 1 3hasChild™ - (Patricide M 3hasChild~ - { JOCASTA})

What is the difference, when considering CWA 7

JOCASTA — ¢ — x
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ALC Language

Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (7 ,.A), where
S=TUA):
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ALC Language

Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (T ,.A), where
S=TUA):

IESifZE=aforallae$S (Zisamodelof S, resp. K) |

[ &
R
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Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (T ,.A), where
S=TUA):

IESifZE=aforallae$S (Zisamodelof S, resp. K) |

[ &
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ALC Language

Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (7,.A), where
S=TUA):

IESiIfZEaforallae$S (Zisamodelof S, resp. K)

Logical Consequence

SE BifZ = B whenever Z =S (f is a logical consequence of S, resp. K)
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ALC Language

Logical Consequence

For an arbitrary set S of axioms (resp. theory K = (7,.A), where
S=TUA):

IESiIfZEaforallae$S (Zisamodelof S, resp. K) I
Logical Consequence
SE BifZ = B whenever Z =S (f is a logical consequence of S, resp. K)

@ S is consistent, if S has at least one model
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From ALC to OWL

o From ALC to OWL(2)-DL

From ALC to OWL(2)-DL
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Extending ... ALC ...

@ We have introduced ALC. Its expressiveness is higher than the
expressiveness of the propositional calculus, still it lacks many
constructs needed for practical applications.

Petr Kfemen (petr.kremen@fel.cvut.cz) Description Logics and OWL November 19, 2020 21/33



Extending ... ALC ...

@ We have introduced ALC. Its expressiveness is higher than the
expressiveness of the propositional calculus, still it lacks many
constructs needed for practical applications.

o Let's take a look, how to extend ALC while preserving decidability.
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Extending ... ALC ... (2)

N (Number restructions) are used for restricting the number of
successors in the given role for the given concept.

syntax (concept) semantics

(= nR) al| |{b[(ab)e R} >n
(£ nR) al |{b|(a,b) e RT}| <n
(=nR) al |{b]|(a,b)eR*} =n

o Concept Woman (< 3 hasChild) denotes women who have at most 3
children.
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N (Number restructions) are used for restricting the number of
successors in the given role for the given concept.

syntax (concept) semantics

(= nR) al| |{b[(ab)e R} >n
(£nR) a| |{b]|(a,b) €R*} <n
(=nR) al |{b]|(a,b)eR*} =n

o Concept Woman (< 3 hasChild) denotes women who have at most 3
children.

o What denotes the axiom Car C (> 4 hasWheel) ?
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Extending ... ALC ... (2)

N (Number restructions) are used for restricting the number of
successors in the given role for the given concept.

syntax (concept) semantics

(= nR) al| |{b[(ab)e R} >n
(£ nR) a| |{b]|(a,b) €R*} <n
(=nR) al |{b|(a,b) e R*} =n

o Concept Woman (< 3 hasChild) denotes women who have at most 3
children.

o What denotes the axiom Car C (> 4 hasWheel) ?
o ... and Bicycle = (= 2 hasWheel) ?
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Extending ... ALC ... (3)

Q (Qualified number restrictions) are used for restricting the number of
successors of the given type in the given role for the given concept.

syntax (concept) semantics

(> nRC) al [{b|(a,b) e REABT € CF}|>n
(£ nRCQ) a| |{b]|(a,b) e REABT € CT}| < n
(= nRCQ) a| |{b]|(a,b) e REABT € CT}| =n

o Concept Woman (> 3 hasChild Man) denotes women who have at least 3
sons.
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Extending ... ALC ... (3)

Q (Qualified number restrictions) are used for restricting the number of
successors of the given type in the given role for the given concept.

syntax (concept) semantics

>n a a,b) e R* ANb" € >n

RC b b)e RTAbt e Cc*

<n a a,b) e A S <n
RC b b)e REAbT e CT

(= nRCQ) a| |{b]|(a,b) e REABT € CT}| =n

o Concept Woman (> 3 hasChild Man) denotes women who have at least 3
sons.

o What denotes the axiom Car C (> 4 hasPart Wheel) ?
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Extending ... ALC ... (3)

Q (Qualified number restrictions) are used for restricting the number of
successors of the given type in the given role for the given concept.

syntax (concept) semantics

>n a a,b) e R* ANb" € >n

RC b b)e RTAbt e Cc*

<n a a,b) e A S <n
RC b b)e REAbT e CT

(= nRCQ) a| |{b]|(a,b) e REABT € CT}| =n

o Concept Woman (> 3 hasChild Man) denotes women who have at least 3
sons.

o What denotes the axiom Car C (> 4 hasPart Wheel) ?

o Which qualified number restrictions can be expressed in ALC 7
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Extending ... ALC ... (4)

O (Nominals) can be used for naming a concept elements explicitely.
syntax (concept) semantics

{a1,...,an} {alz,...,af}

o Concept {MALE, FEMALE} denotes a gender concept that must be
interpreted with at most two elements. Why at most ?

/R
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Extending ... ALC ... (4)

O (Nominals) can be used for naming a concept elements explicitely.
syntax (concept) semantics

{3, - an} {af,.. ., ot}

o Concept {MALE, FEMALE} denotes a gender concept that must be
interpreted with at most two elements. Why at most ?

o Continent =
{EUROPE, ASIA, AMERICA, AUSTRALIA, AFRICA, ANTARCTICA} ?
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Extending ... ALC ... (5)

Z (Inverse roles) are used for defining role inversion.
syntax (role)  semantics
R~ (RI)—I

o Role hasChild~ denotes the relationship hasParent.
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Extending ... ALC ... (5)

Z (Inverse roles) are used for defining role inversion.
syntax (role)  semantics
R~ (RI)—I

o Role hasChild~ denotes the relationship hasParent.

o What denotes axiom Person C (= 2 hasChild~) ?
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Extending ... ALC ... (5)

Z (Inverse roles) are used for defining role inversion.
syntax (role)  semantics
R~ (RI)—I

o Role hasChild~ denotes the relationship hasParent.

o What denotes axiom Person C (= 2 hasChild~) ?
o What denotes axiom Person T JhasChild~ - JhasChild - T ?
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Extending ... ALC ... (6)

-frans (Role transitivity axiom) denotes that a role is transitive. Attention —

it is not a transitive closure operator.
syntax (axiom) semantics

trans(R) RT is transitive

o Role isPartOf can be defined as transitive, while role hasParent is not.
What about roles hasPart, hasPart~, hasGrandFather— ?
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Extending ... ALC ... (6)

-frans (Role transitivity axiom) denotes that a role is transitive. Attention —
it is not a transitive closure operator.
syntax (axiom) semantics
trans(R) RT is transitive

o Role isPartOf can be defined as transitive, while role hasParent is not.
What about roles hasPart, hasPart~, hasGrandFather— ?

o What is a transitive closure of a relationship ? What is the difference
between a transitive closure of hasDirectBossZ and hasBoss<.

November 19, 2020 26 /33
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Extending ... ALC ...(7)

7 (Role hierarchy) serves for expressing role hierarchies (taxonomies) —
similarly to concept hierarchies.
syntax (axiom) semantics
RCS R* C s*

o Role hasMother can be defined as a special case of the role hasParent.
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Extending ... ALC ...(7)

7 (Role hierarchy) serves for expressing role hierarchies (taxonomies) —
similarly to concept hierarchies.
syntax (axiom) semantics
RCS R* C s*

o Role hasMother can be defined as a special case of the role hasParent.

o What is the difference between a concept hierarchy Mother C Parent and
role hierarchy hasMother C hasParent.

Petr Kfemen (petr.kremen@fel.cvut.cz) Description Logics and OWL November 19, 2020 27/33



Extending ... ALC ... (8)

R (role extensions) serve for defining expressive role constructs, like role
chains, role disjunctions, etc.
syntax semantics
RoSC P RZToSTLP?
Dis(R,S) R*nS* =90
3R - Self  {a|(a,a) € RT}

o How would you define the role hasUncle by means of hasSibling and
hasParent 7
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Extending ... ALC ... (8)

R (role extensions) serve for defining expressive role constructs, like role
chains, role disjunctions, etc.
syntax semantics
RoSC P RZToSTLP?
Dis(R,S) R*nS* =90
3R - Self  {a|(a,a) € RT}

o How would you define the role hasUncle by means of hasSibling and
hasParent 7

o how to express that R is transitive, using a role chain ?
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Extending ... ALC ... (8)

R (role extensions) serve for defining expressive role constructs, like role
chains, role disjunctions, etc.
syntax semantics
RoSC P RZToSTLP?
Dis(R,S) R*nS* =90
3R - Self  {a|(a,a) € RT}

o How would you define the role hasUncle by means of hasSibling and
hasParent 7

o how to express that R is transitive, using a role chain ?

o Whom does the following concept denote Person 1 likes - Self ?
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From ALC to OWL(2)-DL

Global restrictions

e Simple roles have no (direct or indirect) subroles that are either
transitive or are defined by means of property chains

hasFather o hasBrother T  hasUncle
hasRelative
hasFather

hasUncle C
C

hasBiologicalFather

hasRelative and hasUncle are not simple.

@ Each concept construct and each axiom from this list contains only
simple roles:
e number restrictions — (> nR), (= nR), (< nR) + their qualified
versions
o IR - Self
o functionality/inverse functionality (leads to number restrictions)
o irreflexivity, asymmetry, and disjoint object properties.
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From ALC to OWL(2)-DL

Extending ... ALC ... — OWL-DL a OWL2-DL

@ From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:
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Extending ... ALC ... — OWL-DL a OWL2-DL

@ From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:

o SHOTIN is a description logics that backs OWL-DL.
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@ From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:
o SHOTIN is a description logics that backs OWL-DL.
e SROIQ is a description logics that backs OWL2-DL.
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Extending ... ALC ... — OWL-DL a OWL2-DL

@ From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:
o SHOTIN is a description logics that backs OWL-DL.
e SROIQ is a description logics that backs OWL2-DL.
o Both OWL-DL and OWL2-DL are semantic web languages — they
extend the corresponding description logics by:
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Extending ... ALC ... — OWL-DL a OWL2-DL

@ From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:
o SHOTIN is a description logics that backs OWL-DL.
e SROIQ is a description logics that backs OWL2-DL.
o Both OWL-DL and OWL2-DL are semantic web languages — they
extend the corresponding description logics by:

syntactic sugar — axioms NegativeObjectPropertyAssertion,
AllDisjoint, etc.
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Extending ... ALC ... — OWL-DL a OWL2-DL

@ From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:

o SHOTIN is a description logics that backs OWL-DL.

e SROIQ is a description logics that backs OWL2-DL.

o Both OWL-DL and OWL2-DL are semantic web languages — they
extend the corresponding description logics by:
syntactic sugar — axioms NegativeObjectPropertyAssertion,

AllDisjoint, etc.

extralogical constructs — imports, annotations
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Extending ... ALC ... — OWL-DL a OWL2-DL

@ From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:
o SHOTIN is a description logics that backs OWL-DL.
e SROIQ is a description logics that backs OWL2-DL.
o Both OWL-DL and OWL2-DL are semantic web languages — they
extend the corresponding description logics by:

syntactic sugar — axioms NegativeObjectPropertyAssertion,
AllDisjoint, etc.
extralogical constructs — imports, annotations
data types — XSD datatypes are used
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From ALC to OWL(2)-DL

Rules and Description Logics

@ How to express e.g. that “A cousin is someone whose parent is a
sibling of your parent.” ?
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From ALC to OWL(2)-DL

Rules and Description Logics

@ How to express e.g. that “A cousin is someone whose parent is a
sibling of your parent.” ?

@ ... we need rules, like

hasCousin(?cy,?cp) < hasParent(?c1, ?p1), hasParent(?ca, 7p2),
Man(?cy), hasSibling(?p1, ?p2)
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From ALC to OWL(2)-DL

Rules and Description Logics

@ How to express e.g. that “A cousin is someone whose parent is a
sibling of your parent.” ?

@ ... we need rules, like

hasCousin(?cy, 7c2) <— hasParent(?cy, ?p1), hasParent(?ca, 7p2),
Man(?cy), hasSibling(?p1, ?p2)

@ in general, each variable can bind domain elements (i.e. elements of
the interpretation domain, not only named individual); however, such
version is undecidable.
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From ALC to OWL(2)-DL

Rules and Description Logics

@ How to express e.g. that “A cousin is someone whose parent is a
sibling of your parent.” ?

@ ... we need rules, like

hasCousin(?cy,?cp) < hasParent(?c1, ?p1), hasParent(?ca, 7p2),
Man(?cy), hasSibling(?p1, ?p2)

@ in general, each variable can bind domain elements (i.e. elements of
the interpretation domain, not only named individual); however, such
version is undecidable.

DL-safe rules

DL-safe rules are decidable conjunctive rules where each variable only
binds individuals (not domain elements themselves).
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From ALC to OW

Other extensions

Modal Logic introduces modal operators — possibility /necessity, used in multiagent systems.
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Modal Logic introduces modal operators — possibility /necessity, used in multiagent systems.
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From ALC to OWL(2)-DL

Other extensions

Modal Logic introduces modal operators — possibility /necessity, used in multiagent systems.

@ (O represents e.g. the "believe” operator of an agent)
O(Man C Person M YhasFather - Man) (1)
@ As ALC is a syntactic variant to a multi-modal propositional logic, where each role

represents the accessibility relation between worlds in Kripke structure, the previous
example can be transformed to the modal logic as:

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions
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From ALC to OWL(2)-DL

Other extensions

Modal Logic introduces modal operators — possibility /necessity, used in multiagent systems.

@ (O represents e.g. the "believe” operator of an agent)
O(Man C Person M YhasFather - Man) (1)

@ As ALC is a syntactic variant to a multi-modal propositional logic, where each role
represents the accessibility relation between worlds in Kripke structure, the previous
example can be transformed to the modal logic as:

o

O(Man = Person A Opaseather Man) (2)

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions

Data Types (D) allow integrating a data domain (numbers, strings), e.g. Person 3hasAge - 23
represents the concept describing “23-years old persons”.
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