
Logical reasoning and programming
SAT solving (cont’d)—CDCL

Karel Chvalovský

CIIRC CTU

Recap
We deal with formulae in conjunctive normal form (CNF)

(· · · ∨ · · · ∨ · · ·) ∧ · · · ∧ (· · · ∨ · · · ∨ · · ·)

and we represent them using

{{. . . }, . . . , {. . . }}.

Our problem, given a set of clauses 𝜙:

Is 𝜙 ∈ SAT?

We have seen various approaches how to solve this problem
I resolution,
I Davis–Putnam algorithm,
I DPLL algorithm.

1 / 31

DPLL algorithm

Require: A set of clauses 𝜙
function DPLL(𝜙)

while 𝜙 contains a unit clause {𝑙} do ◁ unit propagation
delete clauses containing 𝑙 from 𝜙 ◁ unit subsumption
delete 𝑙 from all clauses in 𝜙 ◁ unit resolution

if 2 ∈ 𝜙 then return false ◁ empty clause
while 𝜙 contains a pure literal 𝑙 do

delete clauses containing 𝑙 from 𝜙

if 𝜙 = ∅ then return true ◁ no clause
else

𝑙← select a literal occurring in 𝜙 ◁ a choice of literal
if DPLL(𝜙 ∪ {{𝑙}}) then return true
else if DPLL(𝜙 ∪ {{𝑙}}) then return true
else return false

2 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

Example: DPLL (without pure literal elimination)

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3 / 31

DPLL — data structures

In real implementations we use trail — we keep whole set and
construct a partial assignment during a computation. An efficient
implementation of unit propagations is crucial.

Watched literals
Instead of checking whole clauses all the time we select two
distinct literals, called watched literals, in each clause. We also
remember in which clauses a literal is selected. If we assign a value
to a literal 𝑙, then we check only clauses where 𝑙 is a watched
literal. In these clauses we try to select another literal as a watched
literal. If that is no longer possible, then we have a unit clause.

It has nice properties during backtracking, because there is no need
to update current watched literals.

For details see, e.g., Knuth 2015; Biere et al. 2009.

4 / 31

How to improve backtracking in DPLL?

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

7

𝑢

𝑡

𝑠

7

𝑢

𝑠

𝑟

𝑞

𝑝

3

𝑞

𝑝

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Clearly detected conflicts do not depend on 𝑞 and 𝑟. Hence there
is no need to check different assignments for them and we have a
non-chronological backtracking.

5 / 31

Implication graph — analyzing conflicts
Red vertices are decision points and blue vertices are caused by
unit propagations. Red edges show the direction of decisions and
blue edges the reasons for unit propagations.

𝑝

𝑠

𝑞

𝑟 𝑡

𝑢 7
𝑐3

𝑐3

𝑐5

𝑐5

𝑐7

𝑐7

𝑐7

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Hence (𝑝 ∧ 𝑠)→ ⊥ that is equivalent to {𝑝, 𝑠}. We can learn this
clause and add it to our set of clauses. This prevents us from
visiting the same conflict in a different branch.

6 / 31

Implication graph — analyzing conflicts

We can also analyze the second conflict now.

𝑝

𝑠

𝑢 7
𝑐4

𝑐4

𝑐6

𝑐6

𝑐6

𝑐8

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}
𝑐8 = {𝑝, 𝑠}

Hence we learn 𝑐9 = {𝑝}.

7 / 31

Implication graph — various cuts
It was possible to learn a different clause.

𝑝

𝑠

𝑞

𝑟 𝑡

𝑢 7
𝑐3

𝑐3

𝑐5

𝑐5

𝑐7

𝑐7

𝑐7

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

We usually prefer to learn {𝑝, 𝑡} instead of {𝑝, 𝑠}. Because 𝑡 is so
called dominator—all paths from 𝑠 to the conflict go through 𝑡.

We call such dominators unique implication points (UIP) and a
popular strategy is to learn the first UIP (the one closest to the
conflict) on the path to the last decision point.

8 / 31

Conflict-Driven Clause Learning (CDCL)

It is the DPLL algorithm with non-chronological backtracking,
called back jumping, and clause learning. However, CDCL with all
the restarts and the deletions of learned clauses has little in
common with a systematic search done by DPLL.

Restarts
It is useful to restart a CDCL solver from time to time. We forget
all assignments but keep the learned clauses.

Delete learned clauses
It is necessary to delete some learned clauses to avoid space
problems and hence we try to keep only the most useful clauses.

Preprocessing
We usually try to minimize the input problem using subsumptions
and variable eliminations.

9 / 31

Decision heuristics

How to select a literal? Many approaches, but it has to be fast.

Historically
Based on the number of occurrences of variables in unsatisfied
clauses. Many variants, for example,
I considered only the shortest unsatisfied clauses,
I weight their occurrences (Jeroslow–Wang)

𝑤(𝑙) =
∑︁

𝑐∈𝜙,𝑙∈𝑐

2−|𝑐|

We can compute it at the beginning or dynamically, however, that
is expensive to do, cf. watched literals.

Why do we prefer short clauses?

10 / 31

Decision heuristics — modern

Focus heuristics
In CDCL we try to find small unsatisfiable subsets and hence prefer
variables involved in recent conflicts.

Modern solvers usually use a variant of VSIDS (Variable State
Independent Decaying Sum). We start with the number of
occurrences of a variable in all clauses. If a conflict clause 𝑐 is
detected, then the score of all variables in 𝑐 is increased. Moreover,
we periodically divide our scores by a constant to prioritize recently
learned clauses.

Global heuristics
We look-ahead on a literal 𝑙. It means that we assume 𝑙, then we
apply unit propagations and check clauses that are shortened by
this assignment, but not completely satisfied. We prefer literals
that produce shorter clauses. We also learn if possible. Good for
random 𝑘-SAT.

11 / 31

Decision heuristics — value

We have selected a variable, but what value (positive/negative)
should we try first? It is also called phase picking and it is
especially important for satisfiable instances.

Historically
I based on the number of occurrences of variables in unsatisfied

clauses; many variants
I a version of MiniSAT always sets literals to false

Phase saving
We do not concentrate directly on clauses, but instead we cache
the behavior of variables during propagations and backtracking; we
want to reach similar regions of the search space. Also very useful
in combination with rapid restarts; we keep exploring the same
region of the search space.

12 / 31

Planning

In classical planning we want to produce a sequence of actions that
translate an initial state into a goal state.

It is well-known that the plan existence problem is
PSPACE-complete. Hence it is not (assuming NP ̸= PSPACE)
easily solvable using SAT. However, if we consider only plans up to
some length, then it is solvable by SAT, because the lengths of
plans are usually polynomially bounded.

Planning as a SAT problem
We encode as a CNF formula “there exists a plan of length 𝑘”,
denoted 𝜙𝑘, and search iterativelly.
I If 𝜙𝑘 ∈ SAT, then we extract a plan from a satisfying

assignment.
I If 𝜙𝑘 /∈ SAT, then we continue with 𝜙𝑘+1.

13 / 31

Classical planning (recap)
We have a set of state variables 𝑋 = {𝑥1, . . . , 𝑥𝑛} that are
assigned values from a finite set. A state 𝑠 is such an assignment
for 𝑋, we write {𝑥1 = 𝑣1, . . . , 𝑥𝑛 = 𝑣𝑛}. A set of conditions is a
subset of a state.

We have
I an initial state,
I a set of goal conditions—a goal state is such a state that

satisfies all the goal conditions.
Moreover, we have a set of actions 𝐴 where every 𝑎 ∈ 𝐴 has
preconditions and effects which are both sets of conditions.

Example
We have a chessboard and 𝑋 = {𝑥1, . . . , 𝑥64} are the squares of
the chessboard. An assignment says how pawns, pieces, and the
empty square are distributed. A goal condition can be that the
white king and queen are at 𝑥10 and 𝑥28, respectively.

14 / 31

There exists a plan of length 𝑘 in SAT
We introduce propositional variables for
I actions—meaning the action 𝑎 is used in the step 𝑡,
I assignments—meaning 𝑥 = 𝑣 holds before an action in the

step 𝑡 is applied,
for every 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑋, possible value 𝑣 of 𝑥, and step 𝑡 ≤ 𝑘.

Then we describe all the required properties of a valid plan by a
conjunction of clauses:
I the initial state,
I the goal conditions are satisfied after 𝑘 steps,
I state variables are assigned exactly one value,
I exactly one action is performed in one step,
I the values of state variables change only by actions,
I an applied action must satisfy preconditions and effects.

15 / 31

Planning using SAT

We can do various improvements, e.g.,
I perform more actions in a step if they are non-conflicting,
I introduce variables for transitions instead of assignments,
I symmetry breaking.

Incremental SAT solving
Instead of solving a new problem for every 𝑘, we can observe that
many parts remain the same—we solve a sequence of similar SAT
problems. We want to add and remove clauses, but keep learned
clauses and variable scores.

Note that in our problem we only add clauses and change the goal
conditions, which are described by unit clauses, when we go from
𝜙𝑘 to 𝜙𝑘+1.

16 / 31

Assumptions

Clearly, adding clauses is possible in CDCL, but removing clauses
can lead to various problems. However, we have
I a formula 𝜙 and
I assumptions 𝑙1, . . . , 𝑙𝑛, where 𝑙𝑖 are literals.

The question is whether 𝜙 ∧ 𝑙1 ∧ · · · ∧ 𝑙𝑛 ∈ SAT. It is incremental,
because we can change assumptions and add new clauses.

We can select all the assumptions as decision variables and
continue as always. Hence we can keep all learned clauses from
CDCL!

17 / 31

Bounded model checking

It is very similar to planning. We want to verify a property of an
automaton with transition states, an initial state, and a given
property 𝑃 that has to be valid at each step.

Bounded model checking as a SAT problem
We bound the number of steps to 𝑘 and try to reach in 𝑘 steps a
state where 𝑃 fails. Hence 𝜙𝑘 means “there is a state reachable in
𝑘 steps where 𝑃 fails”.
I If 𝜙𝑘 ∈ SAT, then we extract a bug from a satisfying

assignment.
I If 𝜙𝑘 /∈ SAT, then we continue with 𝜙𝑘+1.

18 / 31

How to encode typical constraints
We want to express

𝑝1 + 𝑝2 + · · ·+ 𝑝𝑛 ◁▷ 𝑘,

where ◁▷∈ {≤,≥,=}, 𝑘 is a positive integer, and
∑︀

1≤𝑖≤𝑛 𝑝𝑖 is
equal to the number of true 𝑝𝑖s.
I = is expressed as both ≤ and ≥,
I ≥ 1 is {𝑝1, . . . , 𝑝𝑛},
I ≤ 1 is

I pairwise—𝒪(𝑛2) clauses by { {𝑝𝑖, 𝑝𝑗} : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 },
I sequential counter—𝒪(𝑛) clauses and 𝒪(𝑛) new variables,
I bitwise encoding—𝒪(𝑛 log𝑛) clauses and 𝒪(log𝑛) new

variables,
I ≥ 𝑘 is no more than 𝑛− 𝑘 literals can be false,
I ≤ 𝑘 use generalized pairwise, sequential counters, BDDs,

sorting networks, (pairwise) cardinality networks, . . .
Or use a pseudo-Boolean (PB) solver for

∑︀
𝑎𝑖𝑝𝑖 ◁▷ 𝑘.

19 / 31

Consistency and arc-consistency

A very nice property of encodings, e.g., for an encoding of
constraints. We say that an encoding is

consistent if any partial assignment that cannot be extended to
a satisfying assignment (is inconsistent) leads to a
conflict by unit propagation,

arc-consistent if consistent and unit propagations eliminate values
that are inconsistent.

Example
For ≤ 1 we have
consistency if two variables are true, then unit propagation

produces a conflict,
arc-consistency if a variable is true, then unit propagation assigns

false to all other variables. (+consistency)

20 / 31

Finite-domain encoding
We encode that a variable 𝑥 takes one of the values {1, . . . , 𝑛}.

One-hot encoding
I we use 𝑥𝑖 for 𝑥 takes value 𝑖 (𝑛 variables),
I we need 𝑥 has exactly one value,
I easy to use constraints and other rules

Unary encoding (order encoding)
I 1 . . . 1⏟ ⏞

𝑖−1

0 . . . 0⏟ ⏞
𝑛−𝑖

for 𝑥 takes value 𝑖 (𝑛− 1 variables),

I we need {𝑥𝑗+1, 𝑥𝑗} for 1 ≤ 𝑗 < 𝑛− 1

Binary encoding
I we encode 𝑖 as a binary number (⌈log𝑛⌉ variables),
I if 𝑛 ̸= 2𝑘 some values are not valid,
I using constraints and other rules can be non-trivial

21 / 31

Parallel solving
SAT solving is difficult to parallelize. Moreover, our data
structures, e.g. watched literals, make it even harder.

Cube and conquer (look-ahead and CDLC)
We generate many partial assignments, e.g., by a breath-first
search with a limited maximal depth, and try to solve them.

Good for hard combinatorial problem, e.g., the Boolean triples
problem.

Portfolio approach
We run multiple solvers (usually the same one) with different
settings on the same formula. We share clauses, which is especially
important for unsatisfiable instances, among solvers. The main
problems are how to diversify our portfolio and share clauses
(which clauses, how many of them, when, . . .).

It works very well on large problems that are easy to solve.
22 / 31

Probabilistic algorithms — stochastic local search
We start with a random complete valuation and try to minimize
the number of unsatisfied clauses by flipping variables.
These methods are incomplete and it is an open problem how to
use these techniques for showing unsatisfiability.

GSAT
Require: A set of clauses 𝜙

function GSAT(𝜙)
for 𝑖 ∈ (1,𝑀𝐴𝑋𝐼𝑇𝐸𝑅𝑆) do

𝑣 ← a random valuation on 𝜙
for 𝑗 ∈ (1,𝑀𝐴𝑋𝐹𝐿𝐼𝑃𝑆) do

if 𝑣 |= 𝜙 then return 𝑣
else minimize #unsat clauses by flipping a variable

return None

Many extensions and variants, the most famous one is Walksat.
You can try some of them in UBCSAT.

23 / 31

http://ubcsat.dtompkins.com/

Walksat

We try to avoid local minima by combining the greedy moves of
GSAT with random walk moves.

I Select randomly an unsatisfied clause 𝑐.
I If by flipping a variable 𝑥 occurring in 𝑐 no satisfied clause

becomes unsatisfied, then flip 𝑥. (“freebie” move)
I Otherwise with a probability

I 𝑝 flip a random variable 𝑥 in 𝑐 (“random walk” move),
I (1 − 𝑝) perform a GSAT step (“greedy” move) on variables

from 𝑐; flip the best variable 𝑥 ∈ 𝑐.

For details see Walksat Home Page. It works effectively on random
𝑘-SAT. Also historically good for planning and circuit design
problems.

24 / 31

https://www.cs.rochester.edu/u/kautz/walksat/

MaxSAT

There are various variants of SAT. For example, many problems in
computer science are expressible as the maximum satisfiability
problem—what is the maximum number of clauses that can be
satisfied simultaneously.

We usually have (weighted) partial MaxSAT with two types of
clauses:
I hard—must be satisfied,
I soft—desirable to be satisfies (possibly with weights)

and we want to maximize the sum of the weights of satisfied soft
clauses.

You can check benchmark results at MaxSAT Evaluation 2019. For
example RC2 (Python, winner), MaxHS (also MIP solvers),
Open-WBO.

25 / 31

https://maxsat-evaluations.github.io/2019/
https://github.com/pysathq/pysat
http://www.maxhs.org/
https://github.com/sat-group/open-wbo

Unsatisfiable cores

Let 𝜙 and 𝜓 be unsatisfiable formulae in CNF such that 𝜙 ⊆ 𝜓.
We say that
I 𝜙 is an unsatisfiable core of 𝜓,
I 𝜙 is a minimal unsatisfiable core of 𝜓, if every proper subset

of 𝜙 is satisfiable.
A very important (and hard) practical problem is to extract
minimal unsatisfiable cores. For example, in MaxSAT and formal
verification.

26 / 31

How to select a SAT solver?
Try different solvers (based on CDCL), they use the same input
format and hence it is easy to experiment. However, the good
encoding of your problem is usually at least as important as a good
solver.

MiniSat is free, fast, and very popular implementation in C. It won
all three industrial categories in the SAT Competition 2005. A new
version is called MiniSat 2. However, it is not the state of the art.
A good choice if you want to use a SAT solver in your software.
Also popular CryptoMiniSAT.

For playing in Python you can use pycosat, a package that provides
bindings to PicoSAT on the C level. A rapidly developing toolkit is
PySAT (includes CaDiCaL and Glucose).

Check results of SAT Competition 2020 and from previous years
for the state of the art.

27 / 31

http://minisat.se/
https://github.com/msoos/cryptominisat
https://pysathq.github.io/
https://github.com/arminbiere/cadical
http://www.labri.fr/perso/lsimon/glucose/
https://satcompetition.github.io/2020/
https://satcompetition.github.io/

DIMACS format
The standard format for SAT solvers.
Variables are enumerated 1, 2, A variable 𝑥𝑖 is represented by
𝑖 and 𝑥𝑖 by −𝑖. A clause is a list of non-zero integers separated by
spaces, tabs, or newlines. The end of a clause is represented by
zero. The order of literals and clauses is irrelevant.
Input
c start with comments
c
p cnf 5 3 #variables #clauses
1 -5 4 0
-1 5 3 4 0
-3 -4 0

encodes

(𝑥1 ∨ 𝑥5 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥5 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥3 ∨ 𝑥4).

28 / 31

DIMACS output format

There are three possible outcomes
I s SATISFIABLE

I a satisfying assignment is returned: v 1 -2 -3 4 0
I s UNSATISFIABLE

I a possible certificate in an external file
I s UNKNOWN

29 / 31

Certifying unsatisfiability

It is easy to convince someone that a formula is satisfiable by
showing an assignment. To certificate that it is unsatisfiable is not
so easy. It can be exponentially long and usually such a certificate
is provided in a form of resolution proof.

A standard format currently used is called DRAT (Delete
Resolution Asymmetric Tautologies).

30 / 31

SAT solving summary
SAT solvers are very powerful, among other things, thanks to
I small representations in CNFs,
I preprocessing, (inprocessing),

I subsumption,
I variable elimination, (variable addition),
I symmetry breaking,

I unit propagations,
I good data structures for backtracking,

I clause learning and back-jumping,
I restarts,
I deletion of learned clauses,

I fast decision heuristics,
I and much much more techniques we have not mentioned.

We do clever tricks, but first and foremost they have to be fast!

31 / 31

Bibliography I

Biere, Armin et al., eds. (Feb. 2009). Handbook of Satisfiability.
Vol. 185. Frontiers in Artificial Intelligence and Applications. IOS
Press, p. 980. isbn: 978-1-58603-929-5.

Knuth, Donald E. (2015). The Art of Computer Programming,
Volume 4, Fascicle 6: Satisfiability. 1st. Addison-Wesley
Professional. isbn: 978-0-13-439760-3.

	References

