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Verify a CPU

Assume that you are developing CPUs and you want to know that
your new CPU does what it is supposed to do. For example, you
want to verify the floating point unit in it.

How would you do that?
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Verify a CPU

Assume that you are developing CPUs and you want to know that
your new CPU does what it is supposed to do. For example, you
want to verify the floating point unit in it.

How would you do that?

Of course, use formal methods!
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Pentium FDIV bug

It was a bug in the floating point unit that affected early Intel
Pentium processors and costed Intel $475 M (1995). The reason
was that 5 cells were missing in a programmable logic array.

An elegant demonstration of the problem is that

4195835/3145727

should return
1.333820. ..

but affected processors returned
1.333739...

As a consequence, Intel improved investments in formal verification
efforts. For example, various floating-point algorithms were
formally verified in HOL Light. Maybe surprisingly, it requires a

non-trivial mathematics.
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Foundations of mathematics

Mathematicians faced similar problems in the 19th century,
because mathematics became more abstract and hence more
surprising and “paradoxical” results were obtained.

This started a rapid development of logic in the late 19th century
and early 20th century and led to even more paradoxes. Many of
them occurred in set theory.

Russell's paradox
Let R={xz:2 ¢z}, then R€ Riff R¢ R.

The moral of this is that without solid formal foundations
surprising problems can emerge. In reality, even in mathematics
fully formal reasoning is hardly ever used.
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Mistakes in mathematical proofs

Vladimir Voevodsky (1966-2017) was a very famous
mathematician, a professor at the Institute for Advanced Studies
and a Fields medalist, whole later in his career became interested
in formal methods.

In 1999-2000 ... [l discovered] that the proof of a key
lemma in my paper contained a mistake and that the
lemma, as stated, could not be salvaged. ... This story
got me scared. Starting from 1993, multiple groups of
mathematicians studied my paper at seminars and used it
in their work and none of them noticed the mistake. And
it clearly was not an accident. A technical argument by a
trusted author, which is hard to check and looks similar to
arguments known to be correct is hardly ever checked in
detail.

Voevodsky, The Institute Letter Summer 2014
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https://www.ias.edu/ideas/2014/voevodsky-origins

Formal methods in Amazon

Amazon experimented with TLA (Temporal Logic of Actions):
In industry, formal methods have a reputation for requir-
ing a huge amount of training and effort to verify a tiny
piece of relatively straightforward code, so the return on
investment is justified only in safety-critical domains (such
as medical systems and avionics). Our experience with
TLA+ shows this perception to be wrong. At the time
of this writing, Amazon engineers have used TLA+ on
10 large complex real-world systems. In each, TLA+ has
added significant value, either finding subtle bugs we are
sure we would not have found by other means, or giving us
enough understanding and confidence to make aggressive
performance optimizations without sacrificing correctness.

We also initially avoid mentioning what TLA stands for, as
doing so would give an incorrect impression of complexity.

(Newcombe et al. 2015)
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What is a formal logic?

It studies inferences. Given a statement ¢ and a collection of
statements I', the main problem is whether

 follows logically from I'.

The word “formal” here means that only the logical forms of
statements matter.

Example

Let statements in I" describe the rules of chess and ¢ be “black
can always draw".

Declarative programming

Specify a problem and ask queries.
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Syntax and semantics in logic

Syntax

We describe our language and hence we define well-formed
statements, called formulae. We want a mechanical calculus that
describes how to derive (prove) formulae.

Semantics
We describe the meaning of formulae. The main notions are
validity and semantic consequence.

We always want our syntax and semantics to be adequate:
correctness only valid formulae are derivable (provable),

completeness all valid formulae are derivable (provable).
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Fragments from the history of logic

> Aristotle (384-322 BC) — syllogisms

» Gottfried Wilhelm Leibniz (1646-1716) — the first attempt to
reduce a logical reasoning to a mechanical process

» George Boole (1815-1864) — Boolean logic

» Modern logic (Frege,...) was developed mainly to deal with
issues in the foundations of mathematics in the late 19th
century and early 20th century. Moreover, it is closely
connected with the development of computers.
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Automated theorem proving (ATP)

We have machines so use them to prove things for us. How to do
that?

British Museum algorithm

Exhaustively check all possibilities one by one.
If monkeys are placed in front
of typewriters and they type
in a guaranteed random fash-
ion, they will reproduce all the
books of the library of the
British Museum, provided they
could type long enough.
(Wirth et al. 2009).

We usually have much better options. However, formal methods
have their theoretical limits.
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Limits of formal methods
Two famous fundamental theoretical problems are:

Incompleteness

Godel’s first incompleteness theorem says that it is impossible to
describe basic arithmetic of the natural numbers by a set of axioms
that is algorithmically recognizable.

Undecidability

Church and Turing famously proved that there is no decision
procedure (algorithm) for validity in first-order logic (FOL). For
example the halting problem is expressible in FOL.

It is good to be aware of these results, however, it is also good not
to exaggerate them. We usually face more basic problems.

We may hope that machines will eventually compete with
men in all purely intellectual fields.

(Turing 1950, p. 460)
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Practical limits of formal methods

We know from complexity theory many practically important
decidable problems that are infeasible given current algorithms and
computers, e.g., prime factorization.

Example (Find vs. verify a proof)

Is it possible to express 42 as a sum of three cubes of integers?
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https://share.cocalc.com/share/900eec7e-0710-4e2f-a03a-dba01ca9bd8e/TheUltimateQuestion.ipynb?viewer=share
https://en.wikipedia.org/wiki/Sums_of_three_cubes

Practical limits of formal methods

We know from complexity theory many practically important
decidable problems that are infeasible given current algorithms and
computers, e.g., prime factorization.

Example (Find vs. verify a proof)

Is it possible to express 42 as a sum of three cubes of integers?

(—80538738812075974)% + 80435758145817515°
+ 12602123297335631% = 42

Found by Booker and Sutherland in 2019, check their cocalc and
Sum of three cubes for other similar problems.
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What are some areas where formal methods occur?

» model finding, planning, ...

» conda package manager — the package data and constraints
are expressed as a SAT problem, for details see Understanding
and Improving Conda's performance

> verification
» hardware
» chip verification at Intel
» software

»> many companies — Amazon, Facebook, Microsoft,. ..
P> selL4 — verified operating system microkernel

» CompCert — verified C compiler

» EURO-MILS — verified virtualization platform

» CakeML — verified compiler for Standard ML

» mathematics
> the Kepler conjecture
» mathematics

» the Robbins problem
» the Boolean Pythagorean triples problem
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https://www.anaconda.com/understanding-and-improving-condas-performance/
https://www.anaconda.com/understanding-and-improving-condas-performance/
http://research.microsoft.com/en-us/groups/rise/
http://sel4.systems/
http://compcert.inria.fr/
http://www.euromils.eu/
https://cakeml.org/

How to select a formal system?

We choose a formal system that is expressive enough to
(reasonably) describe the problem and we usually prefer the
weakest such system for computational reasons.
Examples of used formal systems include

> propositional logic — for problems in NP (or co-NP),

» quantified Boolean formulae (QBF) — for problems in
PSPACE,

modal (temporal) logics — in verification,

satisfiability modulo theories (SMT) — decidable problems,
first-order logic (FOL),

higher-order logics (HOL).

vvyyypy
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This course

We will introduce several systems with an increasing expressive
power and they can be roughly divided into three groups:

» propositional logic and its “extensions” — SAT and SMT,

> a “fragment” of first-order logic with nice properties — logic
programming, Prolog, ASP,

> full first-order logic.
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Propositional logic (recap)

Simple, yet quite powerful, formal system. We have elementary
propositions called atomic formulae, or atoms, which can be
assigned truth values®, and combine them using Boolean
connectives (functions) into more complex propositions.

Example
If it rains, then | will stay at home.

P> “it rains” and “I will stay at home" are propositions, say p and
q, respectively.

> “if ..., then ..." is a connective, called implication and
denoted —.

» Hence the logical form of the sentence in propositional logic is
D—4q.

11 is true and O is false.
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Formulae

Placeholders for atomic formulae (propositions) are called
propositional variables Var, say p,q,r,... . We also have a unary
connective negation (—) and binary connectives conjunction (A),
disjunction (V), and implication (—).2
Definition
The set of propositional formulae Fml is the smallest set
satisfying:

» every propositional variable from Var is a formula,

» if ¢ is a formula, then (—¢) is a formula,

» if ¢ and v are formulae, then (p A ), (¢ V¥), and (p — 1)
are formulae.

We usually write only parentheses that are necessary for
unambiguous reading.

2We also use ¢ ¢+ 1) as a shortcut for (p — 1) A (b — ¢).
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Semantics

We formally describe the meaning of formulae.

A valuation v is an assignment of truth values to propositional
variables, that is a function v: Var — {0,1}. It can be uniquely
extended to all formulae, because connectives are functions of
truth values, and we freely use valuations this way.

Hence v(—¢) =1 — v(p) and v(p o)) = v(p) e v(v)), for
o € {A\,V,—}, where e is the Boolean function defining o.

If v(¢) =1, then we also write v |= ¢ and say “formula ¢ is
satisfied by valuation v" or “valuation v satisfies formula ¢".
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Truth tables

Example v(p) | v(g) | vip = q)
0| 0 1
0o | 1 1
1|0 0
1| 1 1

Let ¢ be a formula and v, v’ be two valuations such that they are
equal on all propositional variables occurring in ¢, then clearly
v(p) = v'(p). Hence only the valuation of variables occurring in a
formula matters.
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Semantic consequence |.

A formula ¢ follows from (or is a consequence of) a formula v, we
write ¥ |= o, if ¢ is satisfied by every valuation v that satisfies 1.

Relation = is clearly reflexive and transitive, but not symmetric.

Two formulae ¢ and v are equivalent, we write ¢ = 1 or ¢ H 1,

if o =1 and ¢ =

A very important property of propositional logic is that we can
freely replace a subformula® by an equivalent formula. Formally, let
1 be a subformula of ¢ and 1) = x. If we replace ¥ in ¢ by x,
then the resulting formula is equivalent to ¢.

3A formula v is a subformula of a formula ¢ if 1 is a substring of ¢.
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Some useful properties of {—, A, V}

The following equivalences hold

> o=, (double negation)
> p=pop, foroe {AV} (idempotency)
> potp=1op, foroe {A,V} (commutativity)
> po(hox)=(por)ox foroe {A V} (associativity)
> S(pAY) =V, (DeMorgan’s law)
> (e VY) = A, (DeMorgan’s law)
> o AWV X)=(eAY) V(P AX), (distributivity)
> oV (W AX)=(eVY)A(pVX) (distributivity)

for all formulae ¢, %, and .

Thanks to associativity we can write ¢; o - - - o ¢, without
parentheses, for o € {A, V}.
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Some useful properties of —

The following equivalences hold
> o= =p VY,
=Y =(p A1),
=Y == g,
p= W —=x)=¢ = (p—x)
=W —=x)=(pAY) =X,
> (1A Apn) = (Y1Ve - Vi) = 2p1Ve - Vaop Vi Ve s Vb,
for all formulae , ¥, x, @;, and ;.

>
>
>
>
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Semantic consequence II.

A formula ¢ follows from a set of formulae I", we write T = ¢, if ¢
is satisfied by every valuation v that satisfies all formulae in T'.

I' = ¢ iff Vo(if v =T then v = o),
where v |=T" means that v |= 1 for all ¢ € I'. We also say that ¢
is a consequence of I'.

The relation is clearly monotone; if I' = ¢, then TU A = .

We have (semantic) deduction theorem U = ¢ iff I' = p — 4.
Hence ¢ = v iff E ¢ — 1. Hence ¢ = ¢ iff = ¢ < 4.

Example
PP = q,q—=TET
p—=qq—=rEp—T
p—=qE(@—=r)—=>(@—r)
Fp—q9—(g—r)— (1)
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Satisfiable formulae and tautologies

We say that a formula ¢ is
» satisfiable if there is a valuation v s.t. v(p) = 1, that is v |= ¢,
» tautology if for every valuation v holds v(p) = 1, that is |= ¢,

» contradiction if for every valuation v holds v(¢) = 0, we also
call it unsatisfiable.

We call the set of all satisfiable and tautological formulae SAT and
TAUT, respectively.

For any formula ¢ and a finite set of formulae I' we have
¢ € TAUT iff —¢ ¢ SAT.

Hence

Iy iff AL —@eTAUT iff /\T A-¢p ¢ SAT.
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Some further useful properties

It is possible to have both ¢ € SAT and —¢ € SAT.
If ¢ € TAUT, then ¢ € SAT. Hence TAUT C SAT.

A set of formulae I is satisfiable, we write I' € SAT, if there is a
valuation v such that v |= ¢ for every formula ¢ € T'.

If ' UA € SAT, then I € SAT and A € SAT.

It is known that deciding ¢ € SAT is an NP-complete problem and
hence ¢ € TAUT is a CO-NP-complete problem. Therefore any
problem in NP can be formulated as a satisfiability question,
without greatly (see polynomial reductions) increasing the problem
size.
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Special formulae T and L

We either define special formulae T and _L directly as propositional
constants (nullary connectives), v(T) =1 and v(L) = 0 for every
valuation v, or equivalently we can define them as shortcuts
T=pV-pand L =pA —p.

The following relations hold
> =T,
> L
> if ¢ € TAUT, then p = T,
» if © ¢ SAT, then p = L

for every formula ¢.
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Various representations
A formula is just one possible representation of a Boolean function.

There are various ways how to represent Boolean functions

> truth tables,

» binary decision trees,

» binary decision diagrams,
> ..

Of course, the best representation
depends on what we want to do. There
is a popular way how to express
propositional formulae that fits our
purposes.

source: BDD (wiki)
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https://commons.wikimedia.org/wiki/File:BDD_simple.svg

Normal forms
A literal is a propositional variable p (positive |.) or a negation of
propositional variable —p (negative I.). In this context we write 7
instead of =p. A clause is any disjunction of finitely many literals.
An important special case is the empty clause, we write O.

A formula ¢ is in conjunctive normal form (CNF) if ¢ is a
conjunction of clauses.

Remark
Analogously disjunctive normal form (DNF) is defined as a
disjunction of conjunctions of literals.

Theorem
For every formula ¢ exist formulae ¢’ in CNF and " in DNF such
that ¢, ¢', and @ are all equivalent.

Example
Formula (p — q) A (¢ — p) is equivalent to (pV ¢) A (G V p) and
PAg) Vv (pAg).
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How to obtain DNFs and CNFs?

It is easy to obtain an equivalent DNF formula using truth tables:

| (=) A(g—p)

PAq

= = O o3

q A
0 1
1 0
0 0
1 1 pAq

A formula in DNF obtained this way is in so called full disjunctive
normal form. It is a unique representation up to ordering.

Analogously, we can produce a formula in CNF. How?

However, this is usually a very inefficient approach.
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Satisfiability and normal forms

It is quite common to express problems in terms of satisfiability.
It is easy to test whether a formula in DNF
(.. A A .) \VAV (... R )

is satisfiable, but transforming a formula into DNF can lead to an
exponential increase in the size of formula, see later. Hence we,
perhaps surprisingly, prefer CNF

(. R V2 VAR .) Ao A (. R VA VAR .)

for testing satisfiability. The reasons will be clear later on.

Moreover, it is very convenient to deal with CNFs if a problem is
expressible as a conjunction of properties.
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CNFs by rewriting

We obtain an equivalent formula in CNF using the following steps:

1. First, use the following rewriting rules as long as possible and
obtain so-called negation normal form (NNF):

g o VY
e o 9
(V1Y) ~ —pA- DeMorgan's law
(e AY) ~ V- DeMorgan's law

2. Second, distribute disjunctions until CNF is obtained:

eV (W AX) ~ (pVYP)A(pVX)
WAX) Ve ~ (Ve AxVe)
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Some properties of normal forms

Formulae can be transformed to normal forms in many ways and
this can significantly influence their size and also the behavior of
algorithms used for testing satisfiability.

Uniqueness

Normal forms are not unique, e.g.,

(=@ N(@—=r)N(r—Dp)

is equivalent to both

VoA @Vvr)ANTVp) and (PVr)A@VDP)A(TVa).
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Equivalent normal forms can be exponentially longer

Transforming
@Z(pl/\(h)\/"'v(pn/\(h)
into CNF leads to

¢ = /\ r1Vro V.-V ry,, where either r; = p;, or r; = q;.

T1yeesTm

Hence the length of ¢’ is O(2"), but the length of ¢ is O(n).
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Tseytin transformation

We can avoid this possible exponential blowup* by introducing new
variables that encode values of all subformulae in the original
formula. The obtained formula is not equivalent (it has new
variables) to the original one, but they are equisatisfiable—either
both formulae are satisfiable, or both are unsatisfiable.

Example

Foro=(pi1Aqi) V-V (pn A qn) we set
ri < (pi N @),
for 1 <1 < n, that is equivalent to
PiVG Vi) A(pi VT A(gi Vi)

Taking a conjunction of all these formulae and ry V - -- V 1, gives
us a formula ¢’ in CNF such that ¢ and ¢’ are equisatisfiable.
Moreover, || = O(|p]).

*If connectives occurring in the formula have linear clausal encodings.
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Tseytin transformation — algorithm
Let ¢ be a non-atomic formula and 1, ..., %, be all unique
non-atomic subformulae of ¢ such that no 1); is a subformula of 1),
if 1 <j<i<m. Hence ¢, = . Let {r1,...,r,} be fresh
variables not occurring in .

Start with A = (). Iteratively process v;, for 1 < i < m, as follows

if ;=D add (pV ) A (pVr;) to A,

ifi=pAqg  add ( )A(PVT) A(gVTi) to A,

ifi=pVqg add (pVgVT)APVri)A@Vri)toA,
( YJA(pVri)A(@Vr) to A

pVqVry

if;=p—q add (pVaqVT;
and replace all occurrences of ¢; in ¥ y1,...,%n by ;.
The formulae r,, A A A and ¢ are equisatisfiable.
The algorithm can be improved, e.g., there is no need to encode

negative literals, or one-sided variants.
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SAT problem

Given a formula ¢ in CNF decide whether ¢ € SAT.

We can use truth tables, but that is in many cases too complicated.
It means to test all possible valuations and for example

PADA(@LV -V qn)
is clearly unsatisfiable regardless of values of ¢1, ..., ¢y.

In the next lecture we will present better ways how to test
satisfiability. We can think about transformations of formulae that
preserve satisfiability; a trivial example is to handle clauses as sets
of literals and formulae in CNF as sets of clauses.
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The Boolean Pythagorean triples problem

It was a long-standing open problem in Ramsey theory that was
solved using a SAT solver in 2016. The proof requires 200TB
(compressed 68GB) and was computed on a cluster with 800 cores
in 2 days.

Positive integers a, b, c form a Pythagorean triple if a® 4+ b* = 2.

We know, e.g., 32442 =52,

Can the set {1,2,3...} of the positive integers be divided into two
parts in such a way that no part contains a Pythagorean triple?

The set {1,...,7824} can be divided into two such parts, but that
is not possible for {1,...,7825}.

Note that there are 2725 possible divisions in the later case and all
these divisions must be ruled out. Hence some “clever” reasoning
had to be used. For details see (Heule, Kullmann, and Marek
2016).
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