

WINDOWING

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount]

Version from 26.11.2020

Windowing queries - examples

Windowing versus range queries

- Range queries (see range trees in Lecture 03)
- Points
- Often in higher dimensions
- Windowing queries
- Line segments, curves, ...
- Usually in low dimension (2D, 3D)
- The goal for both:

Preprocess the data into a data structure

- so that the objects intersected by the query rectangle can be reported efficiently

DCGI
(3/67)

Windowing queries on line segments

1. Axis parallel line segments

2. Arbitrary line segments (non-crôssing)

Windowing queries on line segments

1. Axis parallel line segments

2. Arbitrary line segments (non-crôssing)

Windowing queries on line segments

1. Axis parallel line segments

2. Arbitrary line segments (non-crôssing)

1. Windowing of axis parallel line segments

(5 / 67)

1. Windowing of axis parallel line segments

Window query

- Given

- a set of orthogonal line segments S (preprocessed),
- and orthogonal query rectangle $W=\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$
- Count or report all the line segments of S that intersect W
- Such segments have
a) one endpoint in
b) two end points in - included
c) no end point in - cross over

Line segments with 1 or 2 points inside

a) one point inside

- Use a 2D range tree (lesson 3)
- $O(n \log n)$ storage
- $O\left(\log ^{2} n+k\right)$ query time or
- $O(\log n+k)$ with fractional cascading

b) two points inside - as a) one point inside
- Avoid reporting twice:
\longrightarrow Mark segment when reported (clear after the query) and skip marked segments or
when end point found, check the other end-point and $\ldots+$ report only the leftmost or bottom endpoint

DCGI

Line segments with 1 or 2 points inside

a) one point inside

- Use a 2D range tree (lesson 3)
- $O(n \log n)$ storage
- $O\left(\log ^{2} n+k\right)$ query time or
- $O(\log n+k)$ with fractional cascading

b) two points inside - as a) one point inside
- Avoid reporting twice:
\longrightarrow Mark segment when reported (clear after the query) and skip marked segments or
when end point found, check the other end-point and $\ldots+$ report only the leftmost or bottom endpoint

DCGI

Line segments with 1 or 2 points inside

a) one point inside

- Use a 2D range tree (lesson 3)
- $O(n \log n)$ storage
- $O\left(\log ^{2} n+k\right)$ query time or
- $O(\log n+k)$ with fractional cascading

b) two points inside - as a) one point inside
- Avoid reporting twice:
\longrightarrow Mark segment when reported (clear after the query) and skip marked segments or
when end point found, check the other end-point and $\ldots+$ report only the leftmost or bottom endpoint

DCGI

Line segments with 1 or 2 points inside

a) one point inside

- Use a 2D range tree (lesson 3)
- $O(n \log n)$ storage
- $O\left(\log ^{2} n+k\right)$ query time or
- $O(\log n+k)$ with fractional cascading

b) two points inside - as a) one point inside
- Avoid reporting twice:
\longrightarrow Mark segment when reported (clear after the query) and skip marked segments or
when end point found, check the other end-point and report only the leftmost or bottom endpoint

DCGI

2D range tree (without fractional cascading-more in Lecture 3)
Search space: points
Query: Orthogonal intervals $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$

Line segments that cross over the window

c) No points inside

- Such segments not detected using end-point range tree
- Cross the boundary twice or contain one boundary edge
- It is enough to
 detect segments intersected by the left and bottom boundary edges (not having end point inside)
- For left boundary: Report the horizontal segments intersecting vertical query line segment (1/ii.)
- Let's discuss vertical query line first (1/i.)
- Similarly for bottom boundary - rotated 90°

Line segments that cross over the window

c) No points inside

- Such segments not detected using end-point range tree
- Cross the boundary twice or contain one boundary edge
- It is enough to
 detect segments intersected by the left and bottom boundary edges (not having end point inside)
- For left boundary: Report the horizontal segments intersecting vertical query line segment (1/ii.)
- Let's discuss vertical query line first (1/i.)
- Similarly for bottom boundary - rotated 90°

Line segments that cross over the window

c) No points inside

- Such segments not detected using end-point range tree
- Cross the boundary twice or contain one boundary edge
- It is enough to
 detect segments intersected by the left and bottom boundary edges (not having end point inside)
- For left boundary: Report the horizontal segments intersecting vertical query line segment (1/ii.)
- Let's discuss vertical query line first (1/i.)
- Similarly for bottom boundary - rotated 90°

Line segments that cross over the window

c) No points inside

- Such segments not detected using end-point range tree
- Cross the boundary twice or contain one boundary edge
- It is enough to
 detect segments intersected by the left and bottom boundary edges (not having end point inside)
- For left boundary: Report the horizontal segments intersecting vertical query line segment (1/ii.)
- Let's discuss vertical query line first (1/i.)
- Similarly for bottom boundary - rotated 90°

Line segments that cross over the window

c) No points inside

- Such segments not detected using end-point range tree
- Cross the boundary twice or contain one boundary edge
- It is enough to
 detect segments intersected by the left and bottom boundary edges (not having end point inside)
- For left boundary: Report the horizontal segments intersecting vertical query line segment (1/ii.)
- Let's discuss vertical query line first (1/i.)
- Similarly for bottom boundary - rotated 90°

Windowing problem summary

Cases a) and b)

- Segment end-point in the query rectangle (window)
- Solved by 2D range trees (see lecture 3, $O(n \log n)$ time \& memory)
- We will discuss case c) $\quad 1 \quad$:
- Segment crosses the window
 (three variants)

Data structures for case c)

Interval tree (1D IT)

stores 1D intervals (end-points in sorted lists)
computes intersections with query interval
see intersection of axis angle rectangles - there is y-overlap used, here is x-overlap
We must extend IT to 2D
variants differ in storage of interval end-points M_{L}, M_{R}
-2D range trees priority search trees

Segment tree

splits the plane to slabs in X in elementary intervals

Talk overview

1. Windowing of axis parallel line segments in 2D

- 3 variants of interval tree - IT in x-direction
- Differ in storage of segment end points M_{L} and M_{R}

1 D i. Line stabbing (standard $I T$ with sorted lists) lecture - - inersections
ii. Line segment stabbing (IT with range trees)

2D
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

2D - segment tree + BST

(12/67)

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
1D i. Line stabbing (standard $I T$ with sorted lists)
ii. Line segment stabbing (IT with range trees)

2D iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

2D - segment tree

i. Segment intersected by vertical line

- Query line $\ell:=\left(x=q_{x}\right)$

Report the segments stabbed by a vertical line
= 1 dimensional problem (ignore y coordinate)

\Rightarrow Report the interval $\left[x: x^{\prime}\right]$ containing query point q_{x}

DS: Interval tree with sorted lists

Interval tree principle

i. Segment intersected by vertical line

Principle

- Store input segments in static interval tree
- In each interval tree node
- Check the segments in the set M
- These segments contain node's x Mid value
- M_{L} are left end-points
- M_{R} are right end-points
- q_{x} is the query value
- If ($q_{x}<x$ Mid) Sweep M_{L} from left $\mathrm{p} \in M_{L}$: if $p_{x} \leq q_{x} \Rightarrow$ intersection
- If ($q_{x}>x$ Mid) Sweep M_{R} from right $\mathrm{p} \in M_{R}$: if $p_{x} \geq q_{x} \Rightarrow$ intersection

Segment intersection (left from xMid)

All line segments from M pass through $x M i d$
$\Rightarrow q_{x}$ must be between $p_{x, i}$ and xMid to intersect the line segment i
$\Rightarrow p_{x, i} \leq q_{x} \Rightarrow$ intersection

Intersection with line ℓ

Segment intersection (left from xMid)

All line segments from M pass through $x M i d$
$\Rightarrow q_{x}$ must be between $p_{x, i}$ and xMid to intersect the line segment i
$\Rightarrow p_{x, i} \leq q_{x} \Rightarrow$ intersection

Segment intersection (left from xMid)

All line segments from M pass through $x M i d$
$\Rightarrow q_{x}$ must be between $p_{x, i}$ and $x M i d$ to intersect the line segment i
$\Rightarrow p_{x, i} \leq q_{x} \Rightarrow$ intersection

Intersection with line ℓ means Intersection with half'space q

Principle once more

> Instead of
> intersecting edges by line
search points in half-space

i. Segment intersected by vertical line

De facto a 1D problem

- Query line $\ell:=q_{x} \times[-\infty: \infty]$
- Horizontal segment of M stabs the query line ℓ left of $x M i d$ iff its (segments) left endpoint lies in half-space

$$
q:=\left(-\infty: q_{x}\right] \times[-\infty: \infty]
$$

- In IT node with stored median xMid report all segments from M $\Lambda-M_{L}:$ whose left point lies in
$\left(-\infty: q_{x}\right]$
if ℓ lies left from xMid
- M_{R} : whose right point lies in
$\left[q_{x}:+\infty\right)$
if ℓ lies right from xMid

DCGI

Static interval tree [Edelsbrunner80]

Tree over sorted segment end-points

Primary structure - static tree for endpoints

Static

Secondary lists of incident interval end-pts.

Interval tree construction

ConstructIntervalTree(S) I/ Intervals all active - no active lists Input: \quad Set S of intervals on the real line - on x-axis
Output: The root of an interval tree for S

1. if $(|S|==0)$ return null // no more intervals
2. else
3. $\quad \mathrm{xMed}=$ median endpoint of intervals in $\mathrm{S} \quad / /$ median endpoint
4. $L=\{[x \mid o$, xhi] in $S \mid x h i<x M e d\} \quad / /$ left of median
5. $R=\{[x l o, x h i]$ in $S|x| 0>x M e d\} \quad / /$ right of median
6. $-\mathrm{M}=\{[\mathrm{xlo}, \mathrm{xhi}]$ in $\mathrm{S} \mid \mathrm{xlo}<=\mathrm{xMed}<=\mathrm{xhi}\} \quad / /$ contains median
7. $\longrightarrow \mathrm{ML}=$ sort M in increasing order of xlo
// sort M
MR = sort M in decreasing order of xhi
8. $t=$ new IntTreeNode(x Med, ML, MR)
// this node
9. t.left $=$ ConstructIntervalTree(L) // left subtree
10. t.right $=$ ConstructIntervalTree $(R)+{ }^{2}+{ }^{2}++$ // right subtree
11. return t

steps 4.,5.,6. done in one step if presorted

Line stabbing query for an interval tree

Stab(t, xq)
Input: IntTreeNode t, Scalar xq
Output: prints the intersected intervals

1. if ($t==$ null) return
2. if ($x q<t . x M e d$)
3. for $(i=0 ; i<t . M L . l e n g t h ; ~ i++)$
4. if (t.ML[i].lo $\leq x q$) print (t.ML[i])
5. else break
6. Stab (t.left, xq)
7. else // (xq $\geq t . x M e d)$
8. for $(i=0 ; i<t . M R$.length; $i++)$ \{
9. if (t.MR[i].hi $\geq x q$) print (t.MR[i]) else break
10. Stab (t.right, xq)

Less effective variant of QueryInterval (b, e, T) on slide 34 in lecture 09 with merged parts: fork and search right
// no leaf: fell out of the tree
// left of median?
// traverse M_{L} left end-points
// ..report if in range
// ..else done
// recurse on left
// right of or equal to median
// traverse M_{R} right end-points
// ..report if in range
// ..else done
// recurse on right

Note: Small inefficiency for $x q==t . x M e d-$ recurse on right

Complexity of line stabbing via interval tree

with sorted lists

- Construction $-O(n \log n)$ time
- Each step divides at maximum into two halves or less (minus elements of M) $=>$ tree of height $h=O(\log n)$
- If presorted endpoints in three lists L,R, and M then median in $\mathrm{O}(1)$ and copy to new $\mathrm{L}, \mathrm{R}, \mathrm{M}$ in $O(n)$
- Vertical line stabbing query $-O(k+\log n)$ time
- One node processed in $O\left(1+k^{\prime}\right)$, k^{\prime} reported intervals
- v visited nodes in $O(v+k), \quad k$ total reported intervals
$-v=h=$ tree height $=O(\log n) k=\Sigma k^{\prime}$
- Storage - $O(n)$
- Tree has $O(n)$ nodes, each segment stored twice (two endpoints)

Talk overview

1. Windowing of axis parallel line segments in 2D (variants of interval tree - IT)

| 1D | i. Line stabbing (standard IT with sorted lists) |
| :--- | :--- | :--- |
| 2D $_{\text {2D }}$ ii. Line segment stabbing (IT with range trees) | |
| | iii. Line segment stabbing (IT with priority search trees) |

2. Windowing of line segments in general position

2D - segment tree

Line segment stabbing (IT with range trees)

Enhance 1D interval trees to 2D

$$
q_{x} \times[-\infty: \infty] \text { (no y-test) }
$$

$q_{x} \times\left[q_{y}: q_{y}^{\prime}\right]$ (additional y-test)

Sorted lists
Range trees

i. Segments \times vertical line

De facto a 1D problem

- Query line $\ell:=q_{x} \times[-\infty: \infty]$
- Horizontal segment of $M_{\llcorner }$stabs the query line ℓ left of x Mid iff its left endpoint lies in half-space

$$
q:=\left(-\infty: q_{x}\right] \times[-\infty: \infty]
$$

- In IT node with stored median xMid report all segments from M - M_{L} : whose left point lies in $\left(-\infty: q_{x}\right]$ if ℓ lies left from xMid
- M_{R} : whose right point lies in $\left[q_{x}:+\infty\right)$

ii. Segments \times vertical line segment $\cdot 1$:

- Horizontal segment of M_{L} stabs the query segment q left of x Mid iff its left endpoint lies in semi-infinite rectangular region

$$
q:=\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]
$$

- In IT node with stored median xMid report all segments

Data structure for endpoints

- Storage of M_{L} and M_{R}
- 1D Sorted lists is not enough for line segments
- Use two 2D range trees (one for M_{L} and one for M_{R})
- Instead $O(n)$ sequential search in M_{L} and M_{R} perform $O(\log n)$ search in range tree with fractional cascading

2D range tree (without fractional cascading-more in Lecture 3)

Complexity of range tree line segment stabbing

- Construction $-O(n \log n)$ time
- Each step divides at maximum into two halves L,R or less (minus elements of M) $=>$ tree height $O(\log n)$
- If the range trees are efficiently build in $O(n)_{\text {ater points sorted }}$
- Vertical line segment stab. q. $-O\left(k+\log ^{2} n\right)$ time
- One node processed in $O\left(\right.$ in ronge $\left.n+k^{2}\right), k^{\prime}$ reported segm.
- v-visited nodenaldee in $O\left(v \log ^{2} n+k\right), k$ total reported segm.
- $v=$ interval tree height $=O(\log n) \quad \mathrm{k}=\sum k^{\prime}$
$-O\left(k+\log ^{2} n\right)$ time - range tree with fractional cascading
- $O\left(k+\log ^{3} n\right)$ time - range tree without fractional casc.
- Storage - $O(n \log n)$
$\neq \pm$ Dominated by the range trees
DCGI

Complexity of range tree line segment stabbing

- Construction $-O(n \log n)$ time
- Each step divides at maximum into two halves L,R or less (minus elements of M) $=>$ tree height $O(\log n)$
- If the range trees are efficiently build in $O(n)_{\text {ater points sorted }}$
- Vertical line segment stab. q. $-O\left(k+\log ^{2} n\right)$ time
- One node processed in $O\left(\right.$ in ronge $\left.n+k^{2}\right), k^{\prime}$ reported segm.
- v-visited nodenaldee in $O\left(v \log ^{2} n+k\right), k$ total reported segm.
- $v=$ interval tree height $=O(\log n) \quad \mathrm{k}=\sum k^{\prime}$
$-O\left(k+\log ^{2} n\right)$ time - range tree with fractional cascading
- $O\left(k+\log ^{3} n\right)$ time - range tree without fractional casc.
- Storage $-O(n \log n)$

Can be done better?
$\rightarrow \neq$ Dominated by the range trees
DCGI

Talk overview

1. Windowing of axis parallel line segments in 2D (variants of interval tree - IT)
1D i. Line stabbing (standard IT with sorted lists)
2D ii. Line segment stabbing (IT with range trees)
2. Windowing of line segments in general position

2D - segment tree

iii. Priority search trees

- Another variant for case c) on slide 9

- Exploit the fact that query rectangle in range queries is unbounded (in x direction)
- Priority search trees
- as secondary data structure for both left and right endpoints (M_{L} and M_{R}) of segments in nodes of interval tree - one for ML, one for MR
- Improve the storage to $O(n)$ for horizontal segment intersection with left window edge (2D range tree has $O(n \log n)$)
- For cases a) and b) $-O(n \log n)$ storage remains
- we need range trees for windowing segment endpoints

Rectangular range queries variants

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is set of points in plane
- Goal: rectangular range queries of the form $(\underbrace{\left(-\infty: q_{x}\right.}] \times\left[q_{y}: q_{y}^{\prime}\right]-$ unbounded (in x direction)
- In 1D: search for nodes v with $v_{x} \in\left(-\infty: q_{x}\right]$
- range tree $\quad O(\log n+k)$ time (search the end, report left)
- ordered list $\quad O(1+k)$ time $\quad 1$ is for oossiby fall test of the first (start in the leftmost, stop on v with $v_{x}>q_{x}$)
- use heap $\quad O(1+k)$ time !
(traverse all children, stop when $v_{x}>q_{x}$)
- In 2D - use heap for points with $x \in\left(-\infty: q_{x}\right]$
+ integrate information about y -coordinate

Rectangular range queries variants

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is set of points in plane
- Goal: rectangular range queries of the form $(\underbrace{\left(-\infty: q_{x}\right.}] \times\left[q_{y}: q_{y}^{\prime}\right]-$ unbounded (in x direction)
- In 1D: search for nodes v with $v_{x} \in\left(-\infty: q_{x}\right]$
- range tree $\quad O(\log n+k)$ time (search the end, report left)
- ordered list $\quad O(1+k)$ time $\quad 1$ is for oossiby fall test of the first (start in the leftmost, stop on v with $v_{x}>q_{x}$)
- use heap $\quad O(1+k)$ time !
(traverse all children, stop when $v_{x}>q_{x}$)
- In 2D - use heap for points with $x \in\left(-\infty: q_{x}\right]$
+ integrate information about y-coordinate
= Priority search tree

Heap for 1D unbounded range queries

- Traverse all children, stop if $v_{x}>q_{x}$

Principle of priority search tree

- Heap \leq_{x}

- relation between parent and its child nodes only
- no relation between the child nodes themselves
- Priority search tree
- relate the child nodes according to $y \leq_{y}$

Priority search tree (PST)

- Heap in 2D can incorporate info about both x, y
- BST on y-coordinate (horizontal slabs) ~ range tree
- Heap on x-coordinate (minimum x from slab along x)
- If P is empty, PST is empty leaf
- else
- $p_{\text {min }}=$ point with smallest x-coordinate in P - a heap root
- $y_{\text {med }}=y$-coord. median of points $P \backslash\left\{p_{\text {min }}\right\}$ - BST root
- $P_{\text {below }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y} \leq y_{\text {med }}\right\}$
- $P_{\text {above }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y}>y_{\text {med }}\right\}$
- Point $p_{\text {min }}$ and scalar $y_{\text {med }}$ are stored in the PST root
- The left subtree is PST of $P_{\text {below }}$
- The right subtree is PST of $P_{\text {above }}$

Priority search tree construction example

[Schirra]

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction example

Priority search tree construction

PrioritySearchTree(\boldsymbol{P})

Input: set P of points in plane
Output: priority search tree T

1. if $P=\varnothing$ then PST is an empty leaf
2. else
3. $\quad p_{\min }=$ point with smallest x-coordinate in $P \quad / /$ heap on x root
4. $y_{\text {med }}=y$-coord. median of points $P \backslash\left\{p_{\min }\right\} \quad / /$ BST on y root
5. Split points $P \backslash\left\{p_{\text {min }}\right\}$ into two subsets - according to $y_{\text {med }}$
6. $\quad P_{\text {below }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y} \leq y_{\text {med }}\right\}$
7. $\quad P_{\text {above }}:=\left\{p \in P \backslash\left\{p_{\text {min }}\right\}: p_{y}>y_{\text {med }}\right\}$
8. $\quad T=$ newTreeNode() ... Notation on the next slide:
9. T. $p=p_{\min } \quad / /$ point $[x, y] \quad \ldots p(v), v=$ tree node
10. T.y $=y_{\text {med }} \quad / /$ scalar
$\ldots y(v)$
11. \quad T.left $=$ PrioritySearchTree $\left(P_{\text {below }}\right) \quad \ldots l(v)$
12. \quad T.rigft $=$ PrioritySearchTree $\left(P_{\text {above }}\right)+\ldots r(v)$
13. $O(n \log n)$, but $O(n)$ if presorted on y-coordinate and bottom up

DCGI

Query Priority Search Tree

QueryPrioritySearchTree($\left.T,\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]\right)$
Input: A priority search tree and a range, unbounded to the left
Output: All points lying in the range

1. Search with q_{y} and q_{y}^{\prime} in $T \quad / /$ BST on y-coordinate - select y range Let $v_{\text {split }}$ be the node where the two search paths split (split node)
2. for each node v on the search path of q_{y} or $q_{y}^{\prime} / /$ points along the paths
3. if $p(v) \in\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$ then Report $p(v) / /$ starting in tree root
4. for each node v on the path of q_{y} in the left subtree of $v_{\text {split }} / /$ inner trees
5. if the search path goes left at v
6. ReportInSubtree $\left(r(v), q_{x}\right)$ // report right subtree
7. for each node v on the path of q_{y}^{\prime} in right subtree of $v_{\text {split }}$
8. if the search path goes right at v
9. ReportInSubtree($\left.l(v), q_{x}\right)$ // rep. left subtree

[Berg]

Query Priority Search Tree

QueryPrioritySearchTree($\left.T,\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]\right)$
Input: A priority search tree and a range, unbounded to the left
Output: All points lying in the range

1. Search with q_{y} and q_{y}^{\prime} in $T \quad / /$ BST on y-coordinate - select y range Let $v_{\text {split }}$ be the node where the two search paths split (split node)
2. for each node v on the search path of q_{y} or $q_{y}^{\prime} / /$ points \cdot along the paths
3. if $p(v) \in\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$ then Report $p(v) / /$ starting in tree root
4. for each node v on the path of q_{y} in the left subtree of $v_{\text {split }} / /$ inner trees
5. if the search path goes left at v
6. ReportInSubtree $\left(r(v), q_{x}\right)$ // report right subtree
7. for each node v on the path of q_{y}^{\prime} in right subtree of $v_{\text {split }}$
8. if the search path goes right at v
9. ReportInSubtree($\left.l(v), q_{x}\right)$ // rep. left subtree

[Berg]

Query Priority Search Tree

QueryPrioritySearchTree($\left.T,\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]\right)$
Input: A priority search tree and a range, unbounded to the left
Output: All points lying in the range

1. Search with q_{y} and q_{y}^{\prime} in $T \quad / /$ BST on y-coordinate - select y range Let $v_{\text {split }}$ be the node where the two search paths split (split node)
2. for each node v on the search path of q_{y} or $q_{y}^{\prime} / /$ points \cdot along the paths
3. if $p(v) \in\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$ then Report $p(v) / /$ starting in tree root
4. for each node v on the path of q_{y} in the left subtree of $v_{\text {split }} / /$ inner trees
5. if the search path goes left at v
6. ReportInSubtree $\left(r(v), q_{x}\right)$ // report right subtree
7. for each node v on the path of q_{y}^{\prime} in right subtree of $v_{\text {split }}$
8. if the search path goes right at v
9. ReportInSubtree($\left.l(v), q_{x}\right)$ // rep. left subtree

Query Priority Search Tree

QueryPrioritySearchTree($\left.T,\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]\right)$
Input: A priority search tree and a range, unbounded to the left
Output: All points lying in the range

1. Search with q_{y} and q_{y}^{\prime} in $T \quad / /$ BST on y-coordinate - select y range Let $v_{\text {split }}$ be the node where the two search paths split (split node)
2. for each node v on the search path of q_{y} or $q_{y}^{\prime} / /$ points \cdot along the paths
3. if $p(v) \in\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$ then Report $p(v) / /$ starting in tree root
4. for each node v on the path of q_{y} in the left subtree of $v_{\text {split }} / /$ inner trees
5. if the search path goes left at v
6. ReportlnSubtree($\left.r(v), q_{x}\right)$ // report right subtree \triangle
7. for each node v on the path of q_{y}^{\prime} in right subtree of $v_{\text {split }}$
8. if the search path goes right at v
9. ReportInSubtree($\left.l(v), q_{x}\right)$ // rep. left subtree

Query Priority Search Tree

QueryPrioritySearchTree($\left.T,\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]\right)$
Input: A priority search tree and a range, unbounded to the left
Output: All points lying in the range

1. Search with q_{y} and q_{y}^{\prime} in $T \quad / /$ BST on y-coordinate - select y range Let $v_{\text {split }}$ be the node where the two search paths split (split node)
2. for each node v on the search path of q_{y} or $q_{y}^{\prime} / /$ points \cdot along the paths
3. if $p(v) \in\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$ then Report $p(v) / /$ starting in tree root
4. for each node v on the path of q_{y} in the left subtree of $v_{\text {split }} / /$ inner trees
5. if the search path goes left at v
6. ReportlnSubtree($\left.r(v), q_{x}\right)$ // report right subtree \triangle
7. for each node v on the path of q_{y}^{\prime} in right subtree of $v_{\text {split }}$
8. if the search path goes right at v
9. ReportInSubtree($\left.l(v), q_{x}\right)$ // rep. left subtree

Query Priority Search Tree

QueryPrioritySearchTree($\left.T,\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]\right)$
Input: A priority search tree and a range, unbounded to the left
Output: All points lying in the range

1. Search with q_{y} and q_{y}^{\prime} in $T \quad / /$ BST on y-coordinate - select y range Let $v_{\text {split }}$ be the node where the two search paths split (split node)
2. for each node v on the search path of q_{y} or $q_{y}^{\prime} / /$ points \cdot along the paths
3. if $p(v) \in\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$ then Report $p(v) / /$ starting in tree root
4. for each node v on the path of q_{y} in the left subtree of $v_{\text {split }} / /$ inner trees
5. if the search path goes left at v
6. ReportInSubtree $\left(r(v), q_{x}\right)$ // report right subtree Δ
7. for each node v on the path of q_{y}^{\prime} in right subtree of $v_{\text {split }}$
8. if the search path goes right at v
9. ReportInSubtree($\left.l(v), q_{x}\right) / / /$ rep. left subtree \triangle

Query Priority Search Tree

QueryPrioritySearchTree($\left.T,\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]\right)$
Input: A priority search tree and a range, unbounded to the left
Output: All points lying in the range

1. Search with q_{y} and q_{y}^{\prime} in $T \quad / /$ BST on y-coordinate - select y range Let $v_{\text {split }}$ be the node where the two search paths split (split node)
2. for each node v on the search path of q_{y} or $q_{y}^{\prime} / /$ points \cdot along the paths
3. if $p(v) \in\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$ then Report $p(v) / /$ starting in tree root
4. for each node v on the path of q_{y} in the left subtree of $v_{\text {split }} / /$ inner trees
5. if the search path goes left at v
6. ReportlnSubtree($\left.r(v), q_{x}\right)$ // report right subtree \triangle
7. for each node v on the path of q_{y}^{\prime} in right subtree of $v_{\text {split }}$
8. if the search path goes right at v
9. ReportInSubtree($\left.l(v), q_{x}\right) / / /$ rep. left subtree \triangle

Reporting of subtrees between the paths

ReportInSubtree(v, q_{x})

Input: \quad The root v of a subtree of a priority search tree and a value q_{x}.
Output: All points p in the subtree with x-coordinate at most q_{x}.

1. if v is not a leaf and $x(p(v)) \leq q_{x} \quad / / x \in\left(-\infty: q_{x}\right] \quad$-- heap condition
2. Report point $p(v)$.
3. ReportInSubtree $\left(l(v), q_{x}\right)$
4. ReportInSubtree($\left.r(v), q_{x}\right)$

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

1. select y range (y-BVS $\sim 1 \mathrm{D}$ range tree)
2. report points on paths (x-heap)

Given interval $\left[q_{y}: q_{y}^{\prime}\right.$]

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

1. select y range (y-BVS $\sim 1 D$ range tree)

Given interval [$q_{y}: q_{y}^{\prime}$]
2. report points on paths (x-heap)

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

1. select y range (y-BVS $\sim 1 D$ range tree)

Given interval [$q_{y}: q_{y}^{\prime}$]
2. report points on paths (x-heap)

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

1. select y range (y-BVS $\sim 1 D$ range tree)

Given interval [$q_{y}: q_{y}^{\prime}$]
2. report points on paths (x-heap)

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

1. select y range (y-BVS $\sim 1 D$ range tree)

Given interval [$q_{y}: q_{y}^{\prime}$]
2. report points on paths (x-heap)

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

1. select y range (y-BVS $\sim 1 D$ range tree)

Given interval [$q_{y}: q_{y}^{\prime}$]
2. report points on paths (x-heap)

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

1. select y range (y-BVS $\sim 1 D$ range tree)

Given interval [$q_{y}: q_{y}^{\prime}$]
2. report points on paths (x-heap)

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

Priority search tree query $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$

Priority search tree complexity

For set of n points in the plane

- Build $O(n \log n)$
- Storage $O(n)$
- Query $O(k+\log n)$
- points in query range $\left(-\infty: q_{x}\right] \times\left[q_{y}: q_{y}^{\prime}\right]$
- k is number of reported points
- Use Priority search tree as associated data structure for interval trees for storage of set M (one for M_{L}, one for M_{R})

DCGI

Talk overview

1. Windowing of axis parallel line segments in 2D (variants of interval tree - IT)
1D i. Line stabbing (standard IT with sorted lists)
ii. Line segment stabbing (IT with range trees)

2D iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

2D - segment tree

2. Windowing of line segments in general position

Windowing of arbitrary oriented line segments

- Two cases of intersection
a,b) Endpoint inside the query window $\quad=>$ range tree
c) Segment intersects side of query window $=>$???
- Intersection with BBOX (segment bounding box)?
- Intersection with $4 n$ sides of the segment BBOX?
- But segments may not intersect the window -> query y

(47 / 67)

Windowing of arbitrary oriented line segments

- Two cases of intersection
a,b) Endpoint inside the query window $\quad=>$ range tree
c) Segment intersects side of query window $=>$???
- Intersection with BBOX (segment bounding box)?
- Intersection with 4 n sides of the segment BBOX?
- But segments may not intersect the window -> query y

Talk overview

1. Windowing of axis parallel line segments in 2D (variants of interval tree - IT)
1D i. Line stabbing
(IT with sorted lists)
2D
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

Segment tree

- Exploits locus approach
- Partition parameter space into regions of same answer
- Localization of such region = knowing the answer
- For given set S of n intervals (segments) on real line
- Finds m elementary intervals (induced by interval end-points)
- Partitions 1D parameter space into these elementary

$$
\left(-\infty: x_{1}\right),\left[x_{1}: x_{1}\right],\left(x_{1}: x_{2}\right),\left[x_{2}: x_{2}\right], \ldots
$$

$$
\left(x_{m-1}: x_{m}\right),\left[x_{m}: x_{m}\right],\left(x_{m}:+\infty\right)
$$

- Stores line segments s_{i} with the elementary intervals
- Reports the segments s_{i} containing query point q_{x}.

Plain is partitioned into vertical slabs

Segment tree example

Segments $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
$s_{i}=\left[x_{i}, x_{i}^{\prime}\right]$

Elementary Intervals

$\left[x_{1}: x_{1}\right]$
$\left[x_{2}: x_{2}\right]\left[x_{3}: x_{3}\right]$
Intervals

(50 / 67)

Segment tree example

Segments $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
$s_{i}=\left[x_{i}, x_{i}^{\prime}\right]$

Elementary Intervals
$\left(-\infty: x_{1}\right) \quad\left(x_{1}: x_{2}\right)$
$\left[x_{1}: x_{1}\right]$
$\left[x_{2}: x_{2}\right]\left[x_{3}: x_{3}\right]$
$\left(x_{m}:+\infty\right)$
$\left[x_{m}: x_{m}\right]$
Intervals

(50 / 67)

Segment tree example

Segments $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
$s_{i}=\left[x_{i}, x_{i}^{\prime}\right]$

Elementary Intervals
$\left(-\infty: x_{1}\right) \quad\left(x_{1}: x_{2}\right)$
$\left[x_{1}: x_{1}\right]$
$\left[x_{2}: x_{2}\right]\left[x_{3}: x_{3}\right]$
$\left(x_{m}:+\infty\right)$
$\left[x_{m}: x_{m}\right]$
Intervals

(50 / 67)

Segment tree example

Segments $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
$s_{i}=\left[x_{i}, x_{i}^{\prime}\right]$

$$
\left[x_{2}: x_{2}\right]\left[x_{3}: x_{3}\right]
$$

Intervals

$$
\left[x_{1}: x_{1}\right]
$$

(50 / 67)

Number of elementary intervals for n segments

$$
\begin{equation*}
n=0 \tag{0}
\end{equation*}
$$

$n \quad$ Each end-point adds two elementary intervals $+\quad \#=4 n+1$
Each segment four...

Segment tree definition

Segment tree

- Skeleton is a balanced binary tree T
- Leaves ~ elementary intervals
- Internal nodes v
~ union of elementary intervals of its children
- Store: 1. interval $\operatorname{Int}(v)=$ union of elementary intervals of its children segments s_{i}

2. canonical set $S(v)$ of segments $\left[x_{i}: x_{i}{ }^{\prime}\right] \in S$

- Holds $\operatorname{Int}(v) \subseteq\left[x_{i}: x_{i}{ }^{\prime}\right]$ and $\operatorname{Int}(\operatorname{parent}(v)] \nsubseteq\left[x_{i}: x_{i}{ }^{\prime}\right]$ (node interval is not larger than the segment)
- Segments $\left[x_{i}: x_{i}{ }^{\prime}\right]$ are stored as high as possible, such that $\operatorname{Int}(v)$ is completely contained in the segment

Segments span the slab

Segments span the slab of the node, but not of its parent (stored as up as possible)

$$
S\left(v_{2}\right)=\left\{s_{1}, s_{2}\right\}
$$

Query segment tree - stabbing query (1D)

QuerySegmentTree $\left(v, q_{x}\right)$
Input: The root of a (subtree of a) segment tree and a query point q_{x} Output: All intervals (=segments) in the tree containing q_{x}.

1. Report all the intervals s_{i} in $S(v)$. // covered by the current node
2. if v is not a leaf
3. if $q_{x} \in \operatorname{Int}(l(v)) \quad / /$ go left
4. \quad QuerySegmentTree($\left.l(v), q_{x}\right)$
5. else // or go right
6. \quad QuerySegmentTree $\left(r(v), q_{x}\right)$

Query time $O(\log n+k)$, where k is the number of reported intervals $O\left(1+k_{v}\right)$ for one node Height $O(\log n)$

Segment tree construction

ConstructSegmentTree(S)
Input: \quad Set of intervals (segments) S
Output: segment tree

1. Sort endpoints of segments in S, get elementary intervals $\ldots O(n \log n)$
2. Construct a binary search tree T on elementary intervals $\ldots O(n)$ (bottom up) and determine the interval $\operatorname{Int}(v)$ it represents
3. Compute the canonical subsets for the nodes (lists of their segments):
4. $\quad \mathrm{v}=\operatorname{root}(T)$
5. for all segments $s_{i}=\left[x_{i}: x_{i}^{\prime}\right] \in S$
6. InsertSegmentTree($\left.v,\left[x_{i}: x_{i}^{\prime}\right]\right)$

Segment tree construction - interval insertion

InsertSegmentTree($\left.v,\left[x: x^{\prime}\right]\right)$
Input: The root of (a subtree of) a segment tree and an interval.
Output: The interval will be stored in the subtree.

1. if $\operatorname{Int}(\mathrm{v}) \subseteq\left[x: x^{\prime}\right] \quad / / \operatorname{Int}(\mathrm{v})$ contains $s_{i}=\left[x: x^{\prime}\right]$
2. store $\left[x: x^{\prime}\right]$ at v
3. else if $\operatorname{Int}(\mathrm{l}(\mathrm{v})) \cap\left[x: x^{\prime}\right] \neq \varnothing \quad / /$ part of s_{i} to the left
4. InsertSegmentTree(l(v), $\left[x: x^{\prime}\right]$)
5. if $\operatorname{Int}(\mathrm{r}(\mathrm{v})) \cap\left[x: x^{\prime}\right] \neq \varnothing \quad / /$ part of s_{i} to the right
6. InsertSegmentTree($\left.\mathrm{r}(\mathrm{v}),\left[x: x^{\prime}\right]\right)$

One interval is stored at most twice in one level =>
Single interval insert $O(\log n)$, insert n intervals $O(z n \log n)$
Construction total $O(n \log n)$
Storage $O(n \log n)$
Tree height $O(\log n)$, name stored max 2 x in one level
Storage total $O(n \log n)$ - see next slide
DCGI

Space complexity - notes

Segment tree complexity

A segment tree for set S of n intervals in the plane,

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $O(k+\log n)$
- Report all intervals that contain a query point
- k is number of reported intervals

Segment tree versus Interval tree

- Segment tree
- $O(n \log n)$ storage versus $O(n)$ of Interval tree
- But returns exactly the intersected segments s_{i}, interval tree must search the lists M_{L} and/or M_{R}
- Good for

1. extensions (allows different structuring of intervals)
2. stabbing counting queries

- store number of intersected intervals in nodes
$-O(n)$ storage and $O(\log n)$ query time $=$ optimal

3. higher dimensions - multilevel segment trees
(Interval and priority search trees do not exist in ^dims)

Talk overview

1. Windowing of axis parallel line segments in 2D (variants of interval tree - IT)
1D i. Line stabbing (standard IT with sorted lists)
ii. Line segment stabbing (IT with range trees)

2D iii. Line segment stabbing (IT with priority search trees)
2. Windowing of line segments in general position

2D - segment tree

- the windowing algorithm

2. Windowing of line segments in general position

Windowing of arbitrary oriented line segments

- Let S be a set of arbitrarily oriented line segments in the plane.
- Report the segments intersecting a vertical query segment $q:=q_{x} \times\left[q_{y}: q_{y}^{\prime}\right]-$ window border
- Segment tree T on x intervals of segments in S
- node v of T corresponds to vertical slab $\operatorname{Int}(v) \times(-\infty: \infty)$
- segments span the slab of the node, but not of its parent
- segments do not intersect
=> segments in the slab (node)
can be vertically ordered - BST

Segments between vertical segment endpoints

- Segments (in the slab) do not mutually intersect
=> segments can be vertically ordered and stored in BST
- Each node v of the x segment tree (vertical slab) has an associated y-BST
- BST $T(v)$ of node v stores the canonical subset $S(v)$ according to the vertical order
- Intersected segments can be found by searching $T(v)$ in $O\left(k_{v}+\log n\right), k_{v}$ is the number of intersected segments
(63 / 67)

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

(64 / 67)

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

DCGI
(64 / 67)

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

DCGI
(64 / 67)

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

DCGI
(64 / 67)

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

(64 / 67)

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

(64 / 67)

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

(64 / 67)

Segments between vertical segment endpoints

Segment s is intersected by vert.query segment q iff

- The lower endpoint (B) of q is below s and
- The upper endpoint (A) of q is above s

(64 / 67)

Structure associated to node (BST) uses storage linear in the size of $S(v)$

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $O\left(k+\log ^{2} n\right)$
- Report all segments that contain a query point
- k is number of reported segments

Windowing of line segments in 2D - conclusions

Construction: all variants $O(n \log n)$

1. Axis parallel
Search
Memory
1D i. Line (sorted lists)
$O(k+\log n) \quad O(n)$
ii. Segment (range trees) $O\left(k+\log ^{2} n\right) \quad O(n \log n)$

2 D
iii. Segment (priority s. tr.) $O(k+\log n) \quad O(n)$
2. In general position

2D - segment tree + BST $O\left(k+\log ^{2} n\right) O(n \log n)$

(66 / 67)

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, SpringerVerlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/
[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, University of Maryland, Lecture 33. http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
[Rourke] Joseph O'Rourke: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 http://maven.smith.edul~orourke/books/compgeom.html
[Vigneron] Segment trees and interval trees, presentation, INRA, France, http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.htm|
[Schirra] Stefan Schirra. Geometrische Datenstrukturen. Sommersemester 2009 http://wwwisg.cs.unimagdeburg.de/ag/lehre/SS2009/GDS/slides/S10.pdf

