

COMPUTATIONAL GEOMETRY INTRODUCTION

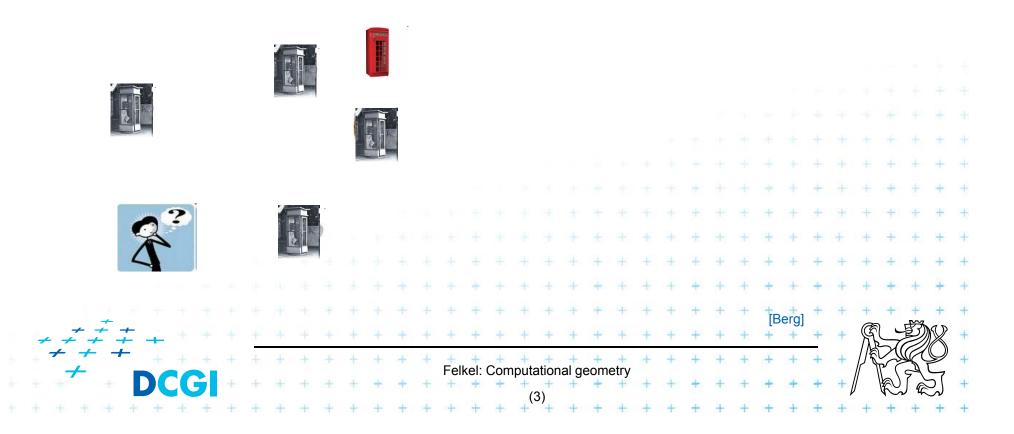
Computational Geometry

- 1. What is Computational Geometry (CG)?
- 2. Why to study CG and how?
- 3. Typical application domains
- 4. Typical tasks
- 5. Complexity of algorithms
- 6. Programming techniques (paradigms) of CG
- 7. Robustness Issues

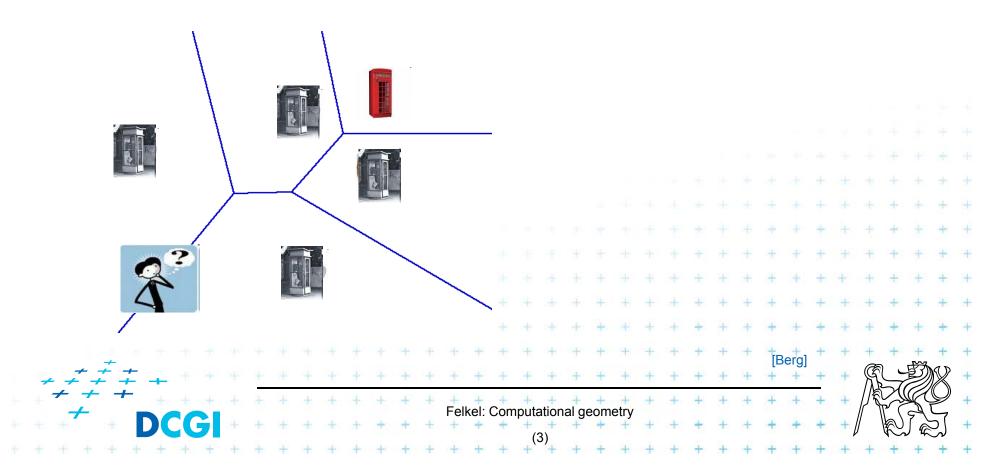
Felkel: Computational geometry

- 8. CGAL CG algorithm library intro
- 9. References and resources
- 10. Course summary

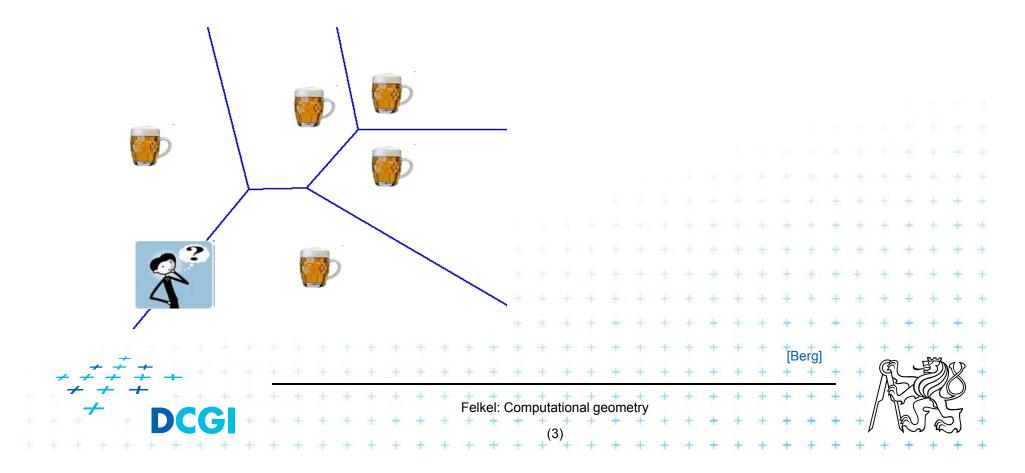
- CG Solves geometric problems that require clever geometric algorithms
- Ex 1: Where is the nearest phone, metro, pub,...?



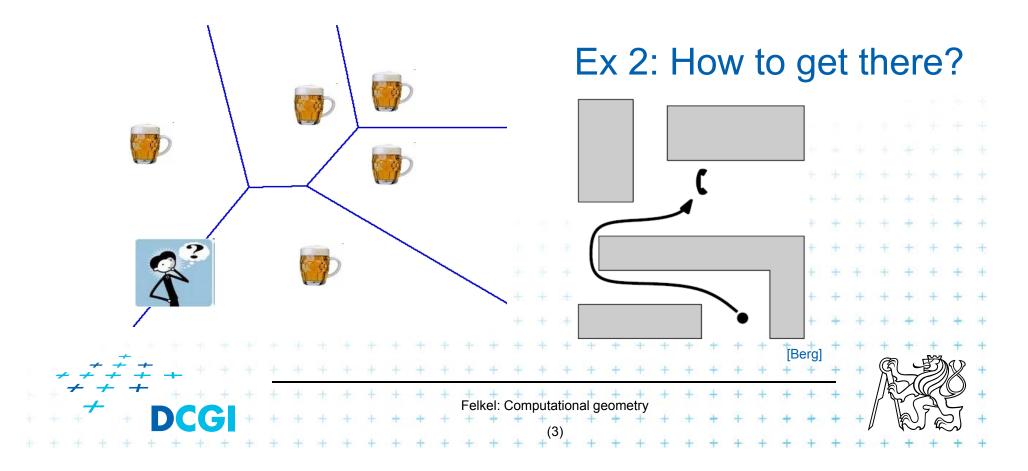
- CG Solves geometric problems that require clever geometric algorithms
- Ex 1: Where is the nearest phone, metro, pub,...?

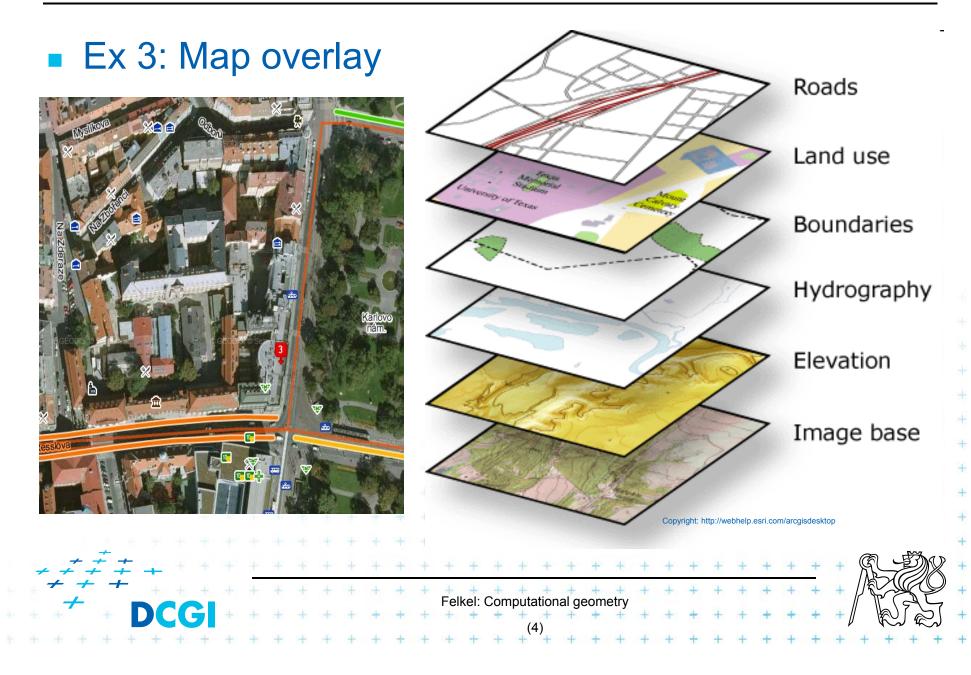


- CG Solves geometric problems that require clever geometric algorithms
- Ex 1: Where is the nearest phone, metro, pub,...?



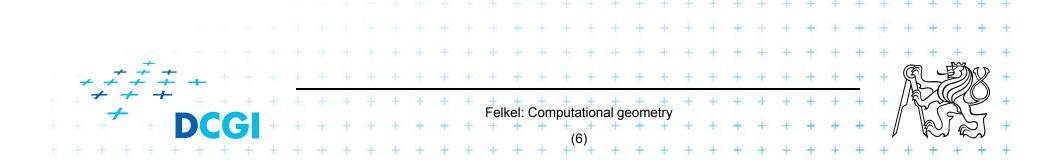
- CG Solves geometric problems that require clever geometric algorithms
- Ex 1: Where is the nearest phone, metro, pub,...?





- Good solutions need both:
 - Understanding of the geometric properties of the problem
- Proper applications of algorithmic techniques (paradigms) and data structures
 Felkel: Computational geometry (6)

- Computational geometry in 1975
 = systematic study of algorithms and data structures for geometric objects (points, lines, line segments, n-gons,...) with focus on exact algorithms that are asymptotically fast
 - "Born" in 1975 (Shamos), boom of papers in 90s
 (first papers sooner: 1850 Dirichlet, 1908 Voronoi,...)
 - Many problems can be formulated geometrically (e.g., range queries in databases)



Problems:

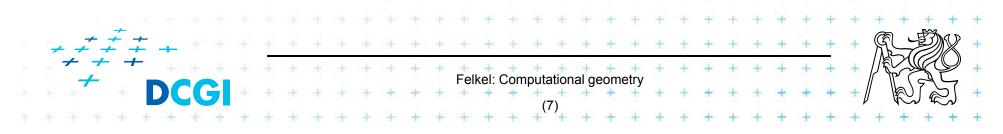
- Degenerate cases (points on line, with same x,...)
 - Ignore them first, include later

Robustness - correct algorithm but not robust

- Limited numerical precision of real arithmetic
- Inconsistent *eps* tests (a=b, b=c, but $a \neq c$)

Nowadays:

- focus on practical implementations
 - not just on asymptotically fastest algorithms
 - robust
- nearly correct result is better than nonsense or crash



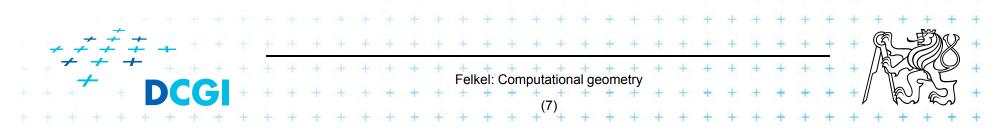
Problems:

- Degenerate cases (points on line, with same x,...)
 - Ignore them first, include later
- Robustness correct algorithm but not robust
 - Limited numerical precision of real arithmetic
 - Inconsistent *eps* tests (a=b, b=c, but $a \neq c$)

Nowadays:

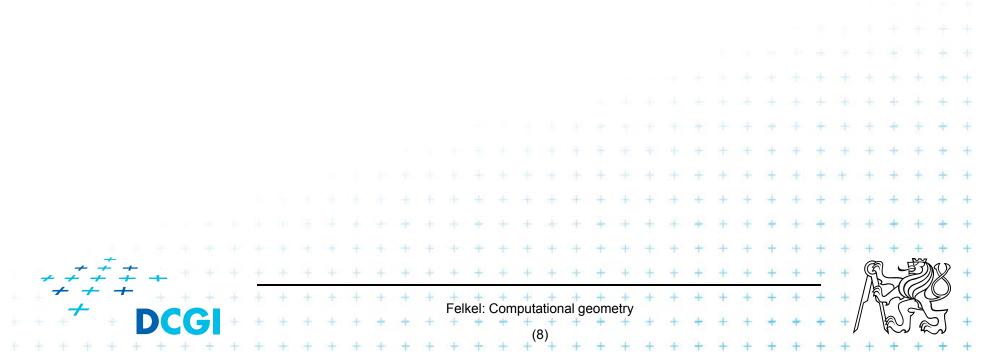
- focus on practical implementations
 - not just on asymptotically fastest algorithms
 - robust
- nearly correct result is better than nonsense or crash

exac



2. Why to study computational geometry?

- Graphics- and Vision- Engineer should know it ("Data structures and algorithms in nth-Dimension")
 - DSA, PRP
- Set of ready to use tools
- Cool ideas
- You will know new approaches to choose from



2.1 How to teach computational geometry?

- Typical "mathematician" method:
 - definition-theorem-proof
- Our "practical" approach:
 - practical algorithms and their complexity
 - practical programing using a geometric library
- Is it OK for you?



3. Typical application domains

- Computer graphics
 - Collisions of objects
 - Mouse localization
 - Selection of objects in region
 - Visibility in 3D (hidden surface removal)
 - Computation of shadows

Robotics

- Motion planning (find path - environment with obstacles)

Felkel: Computational geometr

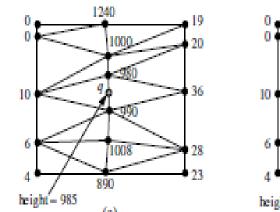
[Farag]

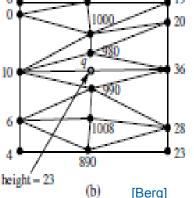
- Task planning (motion + planning order of subtasks)
- Design of robots and working cells

3.1 Typical application domains (...)

GIS

- How to store huge data and search them quickly
- Interpolation of heights
- Overlap of different data



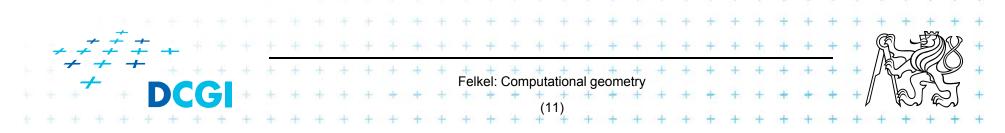


1240

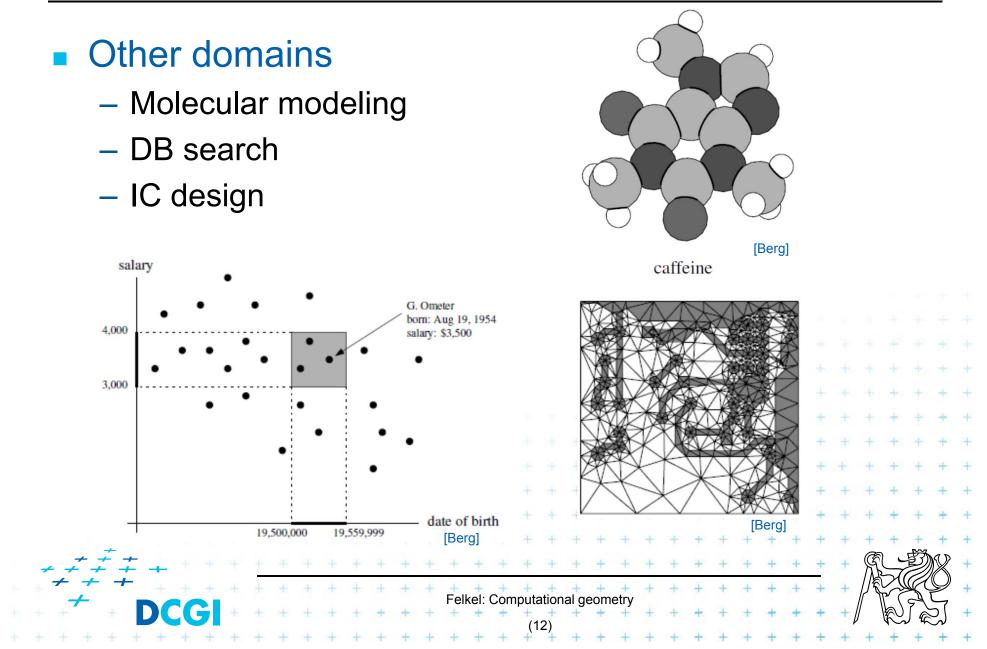
- Extract information about regions or relations between data (pipes under the construction site, plants x average rainfall,.
- Detect bridges on crossings of roads and rivers...

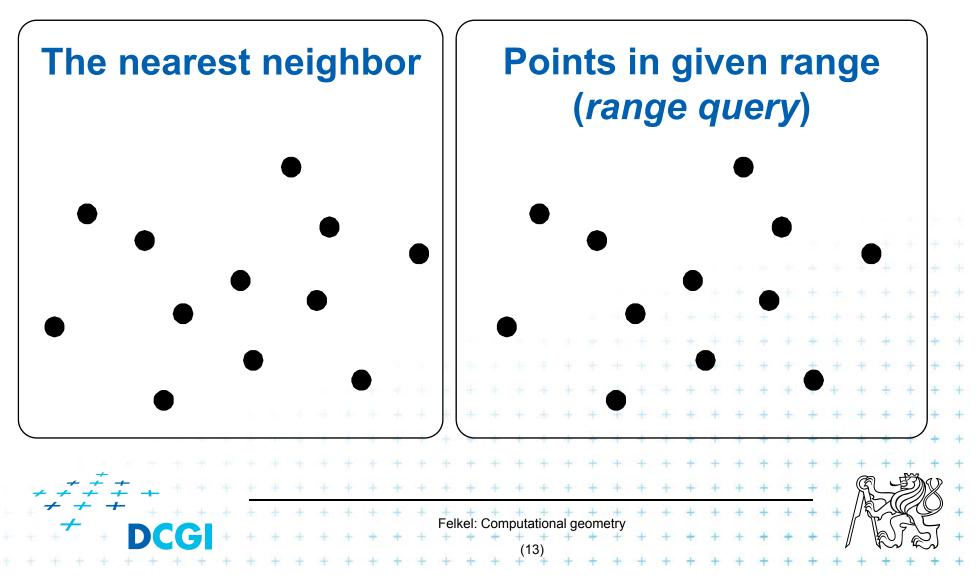
CAD/CAM

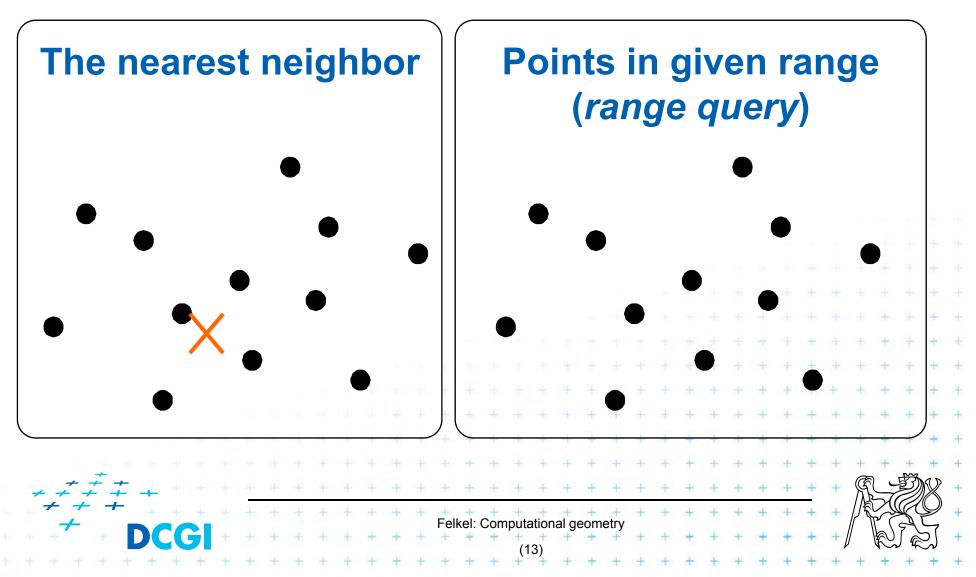
- Intersections and unions of objects
- Visualization and tests without need to build a prototype
- Manufacturability

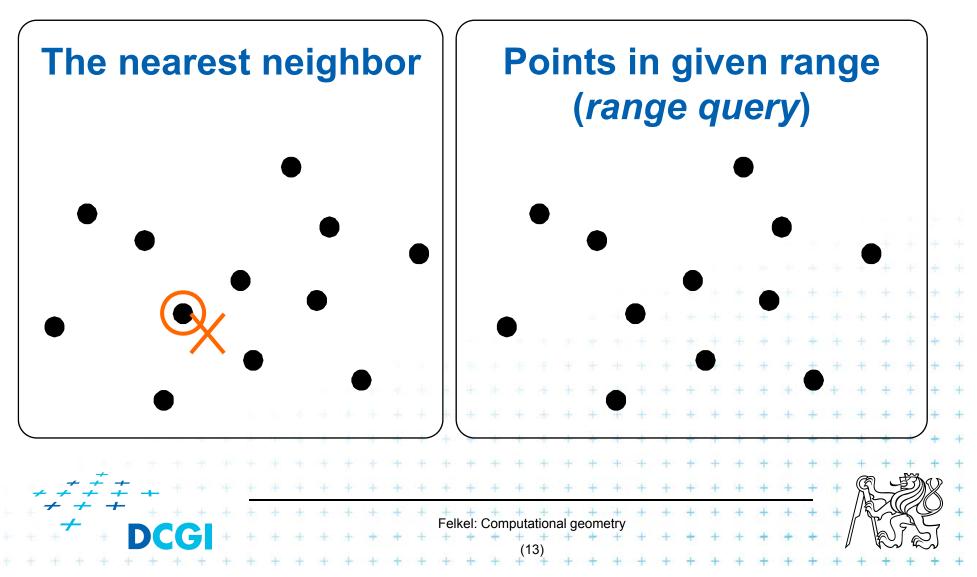


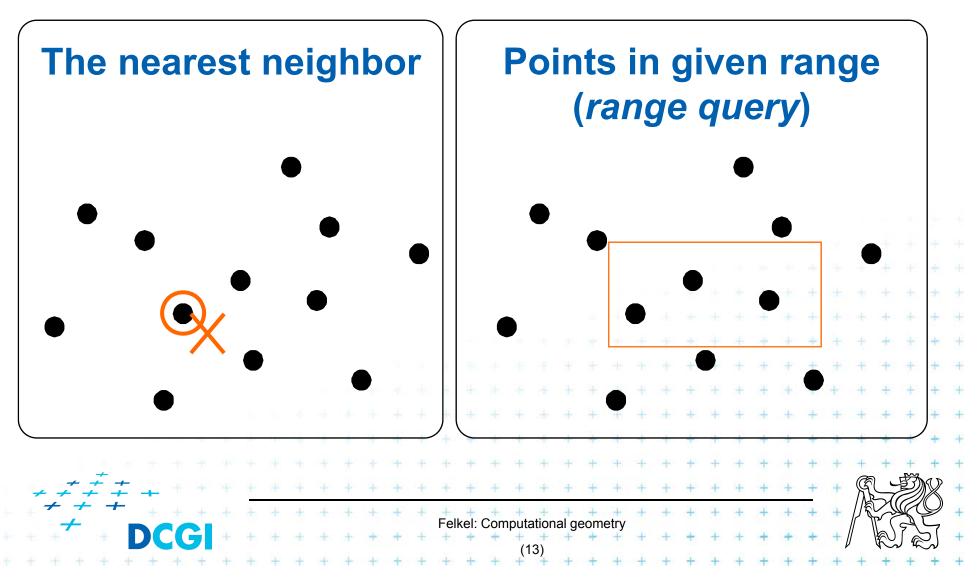
3.2 Typical application domains (...)

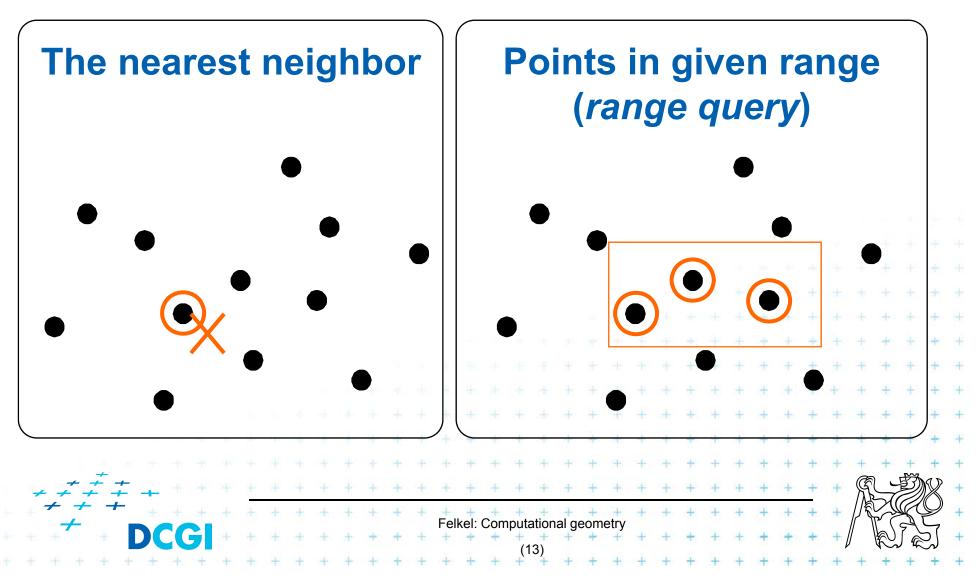












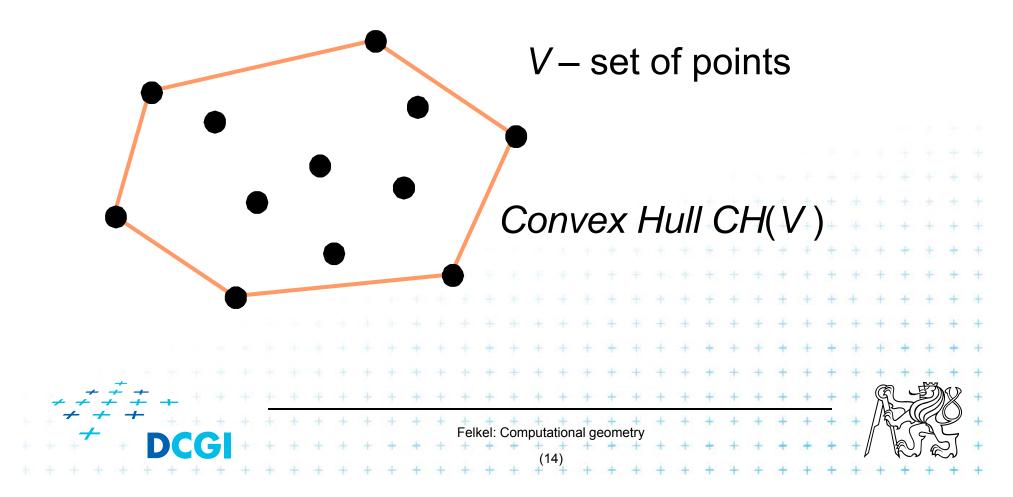
- Convex hull
 - = smallest enclosing convex polygon in E² or n-gon in E³ containing all the points

Felkel: Computational geometry

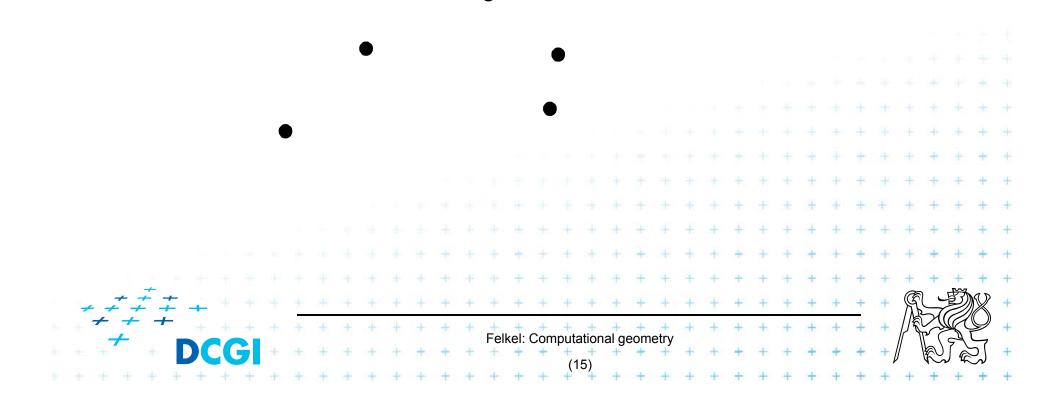
V-set of points

Convex hull

= smallest enclosing convex polygon in E² or n-gon in E³ containing all the points

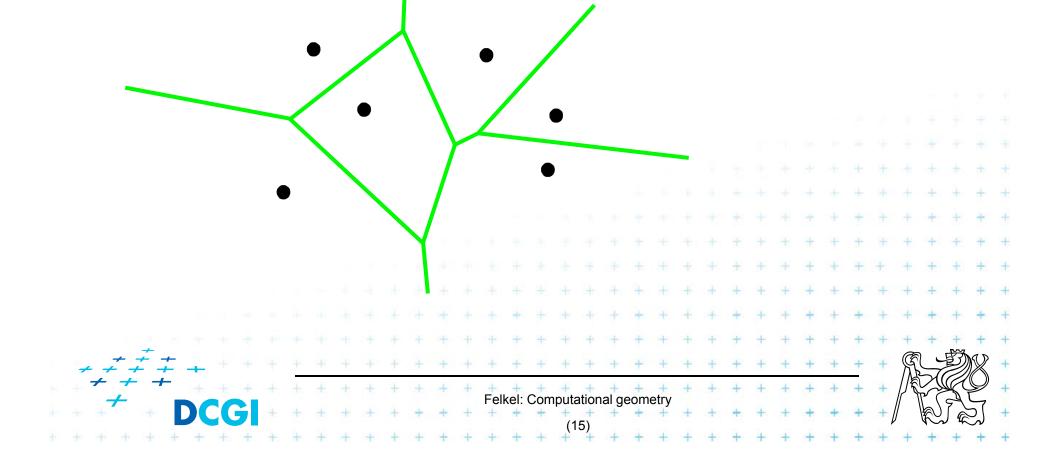


- Voronoi diagrams
 - Space (plane) partitioning into regions whose points are nearest to the given primitive (most usually a point)

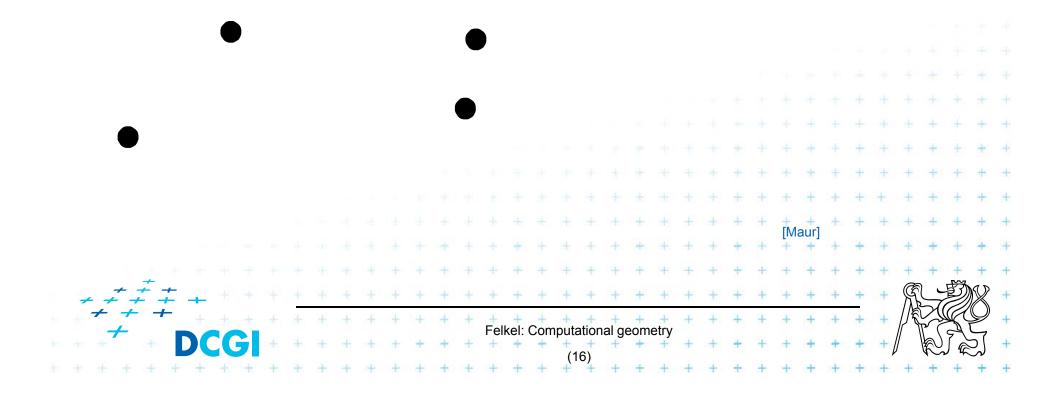


Voronoi diagrams

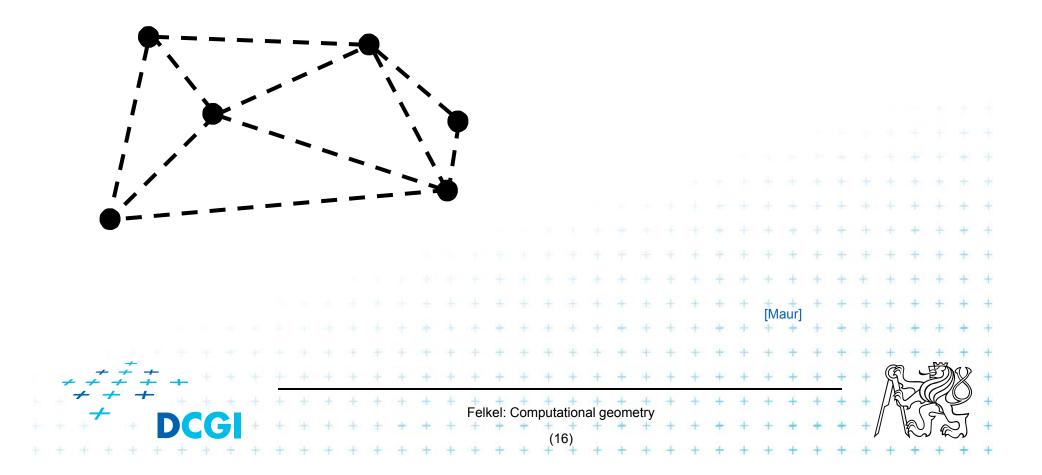
 Space (plane) partitioning into regions whose points are nearest to the given primitive (most usually a point)



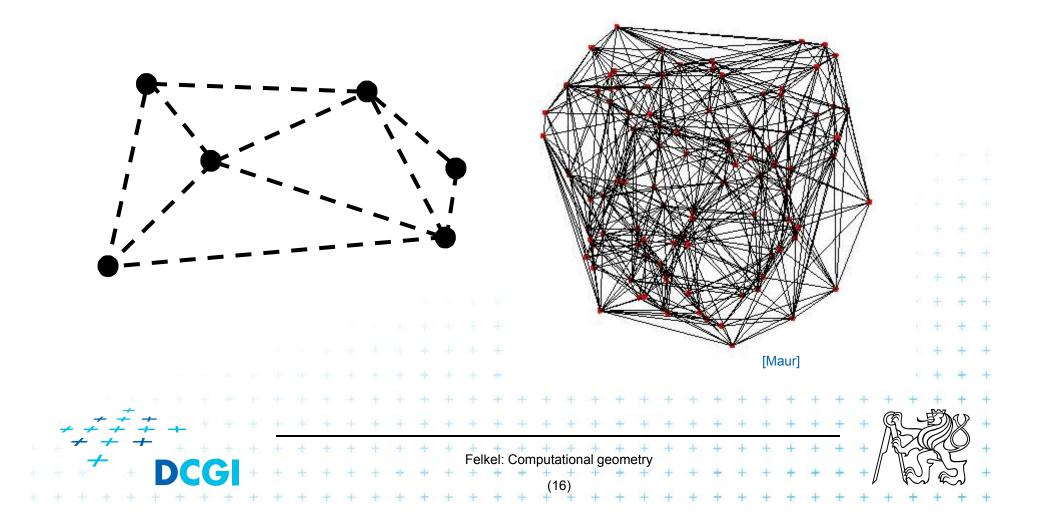
 Planar triangulations and space tetrahedronization of given point set



 Planar triangulations and space tetrahedronization of given point set

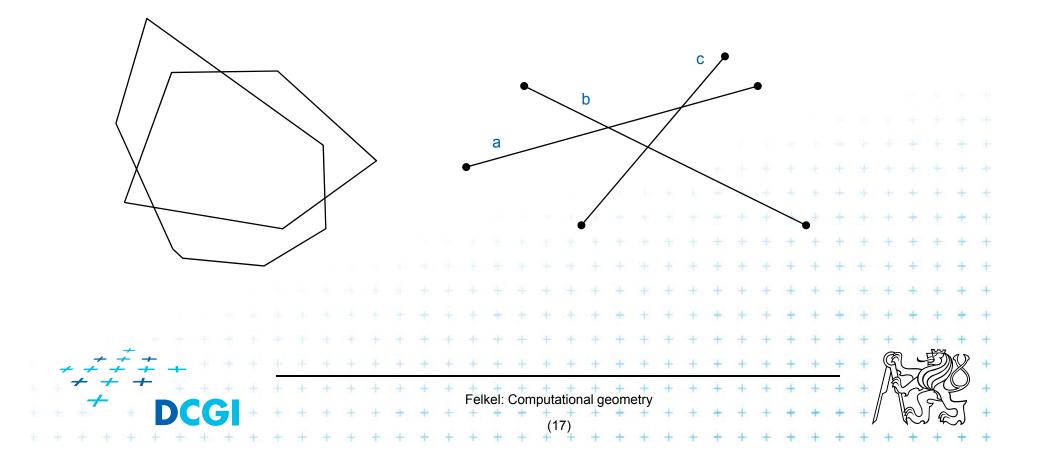


 Planar triangulations and space tetrahedronization of given point set



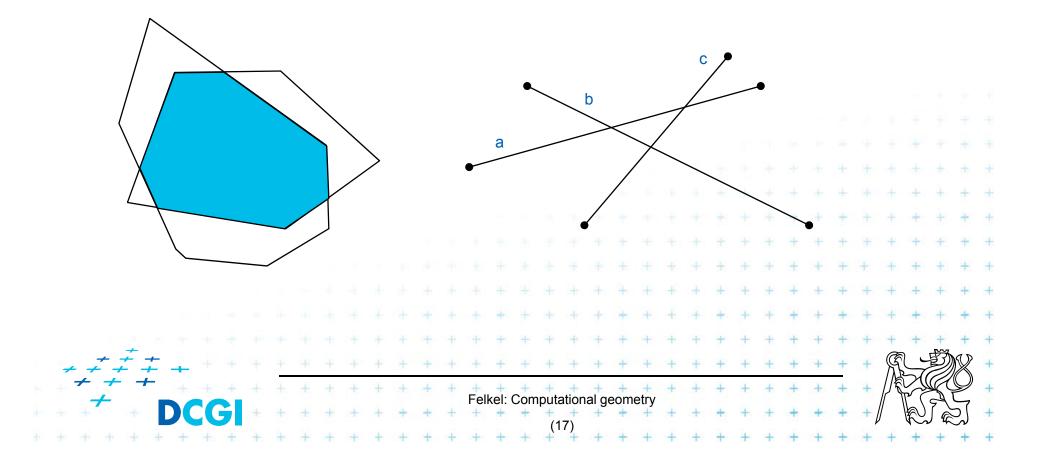
Intersection of objects

- Detection of common parts of objects
- Usually linear (line segments, polygons, n-gons,...)



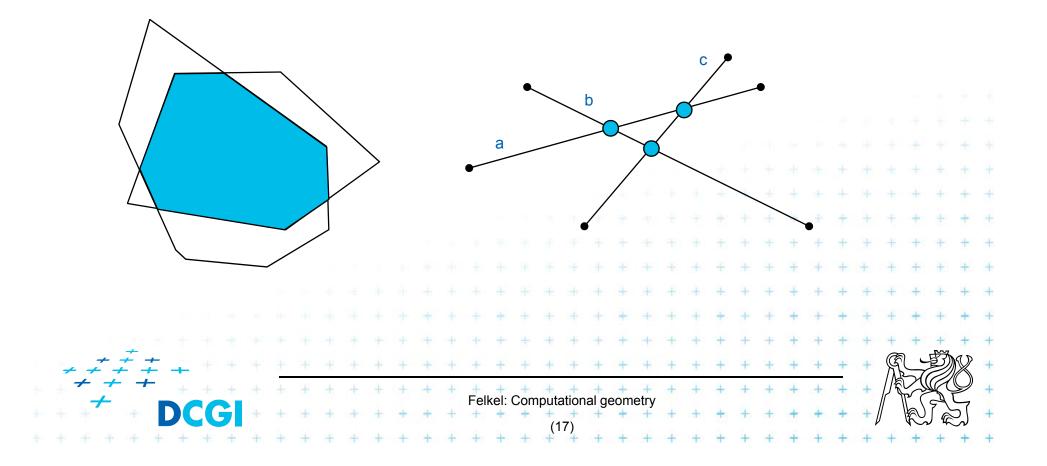
Intersection of objects

- Detection of common parts of objects
- Usually linear (line segments, polygons, n-gons,...)

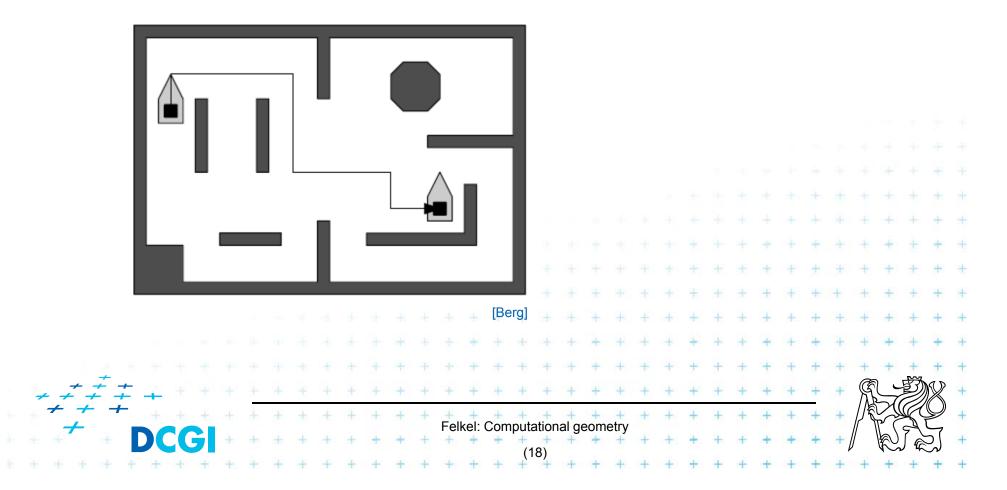


Intersection of objects

- Detection of common parts of objects
- Usually linear (line segments, polygons, n-gons,...)



- Motion planning
 - Search for the shortest path between two points in the environment with obstacles

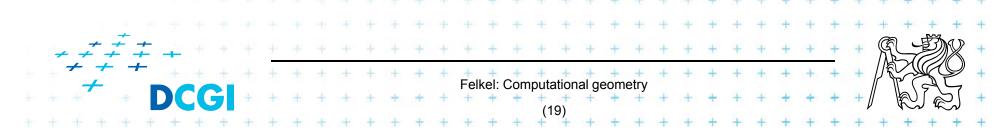


5. Complexity of algorithms and data struc.

- We need a measure for comparison of algorithms
 - Independent on computer HW and prog. language
 - Dependent on the problem size n
 - Describing the behavior of the algorithm for different data
- Running time, preprocessing time, memory size
 - Asymptotical analysis O(g(n)), $\Omega(g(n))$, $\Theta(g(n))$
 - Measurement on real data

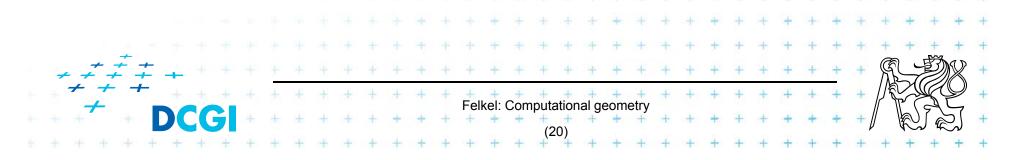
Differentiate:

- complexity of the algorithm (particular sort) and
- complexity of the problem (sorting)
 - given by number of edges, vertices, faces,... = problem size
 - equal to the complexity of the best algorithm



5.1 Complexity of algorithms

- Worst case behavior
 - Running time for the "worst" data
- Expected behavior (average)
 - expectation of the running time for problems of particular size and probability distribution of input data
 - Valid only if the probability distribution is the same as expected during the analysis
 - Typically much smaller than the worst case behavior
 - Ex.: Quick sort O(n²) worst and O(n logn) expected for standard data distribution



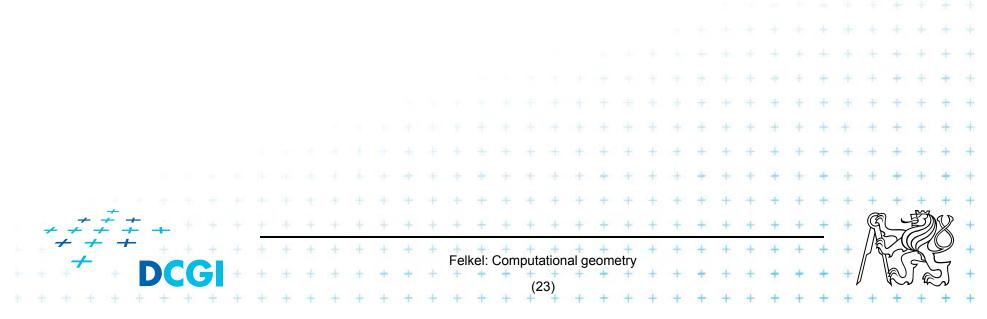
6. Programming techniques (paradigms) of CG

3 phases of a geometric algorithm development

- 1. Ignore all degeneracies and design an algorithm
- 2. Adjust the algorithm to be correct for degenerate cases
 - Degenerate input exists
 - Integrate special cases in general case
 - It is better than lot of case-switches (typical for beginners)
- e.g.: lexicographic order for points on vertical lines or Symbolic perturbation schemes
 Implement alg. 2 (use sw library)

6.1 Sorting

- A preprocessing step
- Simplifies the following processing steps
- Sort according to:
 - coordinates x, y,..., or lexicographically to [y,x],
 - angles around point
- O(n log n) time and O(n) space



6.2 Divide and Conquer (divide et impera)

Split the problem until it is solvable, merge results

DivideAndConquer(S)

- 1. If known solution then return it
- 2. else
- 3. Split input S to k distinct subsets S_i
- 4. Foreach *i* call DivideAndConquer(S_i)
- 5. Merge the results and return the solution

Prerequisite

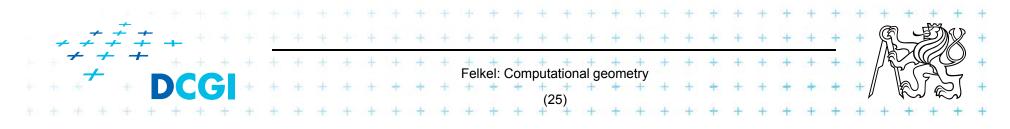
- The input data set must be separable
- Solutions of subsets are independent
- The result can be obtained by merging of sub-results

Felkel: Computational geometry

6.3 Sweep algorithm...

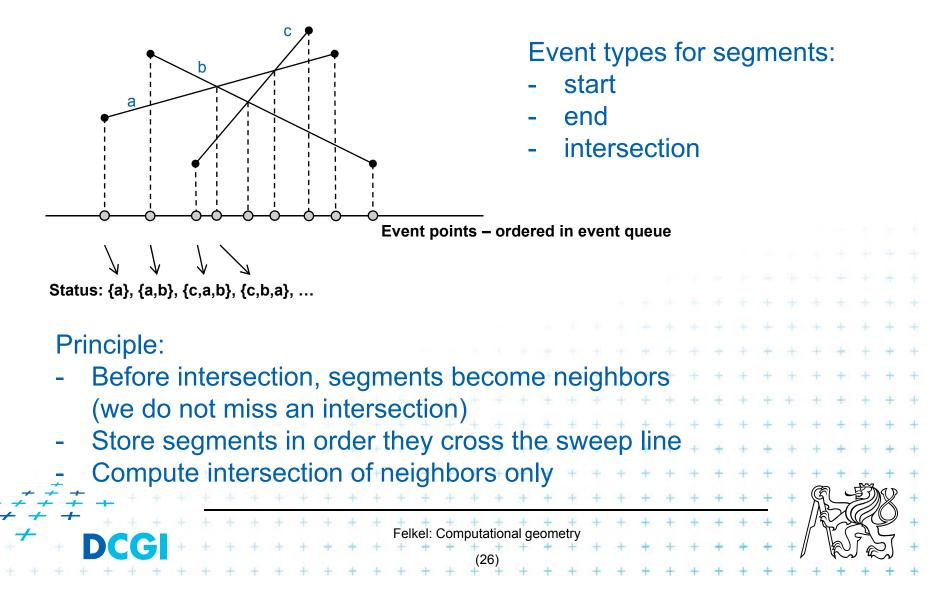
• Split the space by a hyperplane (2D: sweep line)

- "Left" subspace solution known
- "Right" subspace solution unknown
- Stop in event points and update the status
- Data structures:
 - Event points points, where to stop the sweep line and update the status, sorted
 - Status state of the algorithm in the current position of the sweep line
- Prerequisite:
 - Left subspace does not influence the right subspace



6.3 ... Sweep-line algorithm

Intersection of line segments



- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

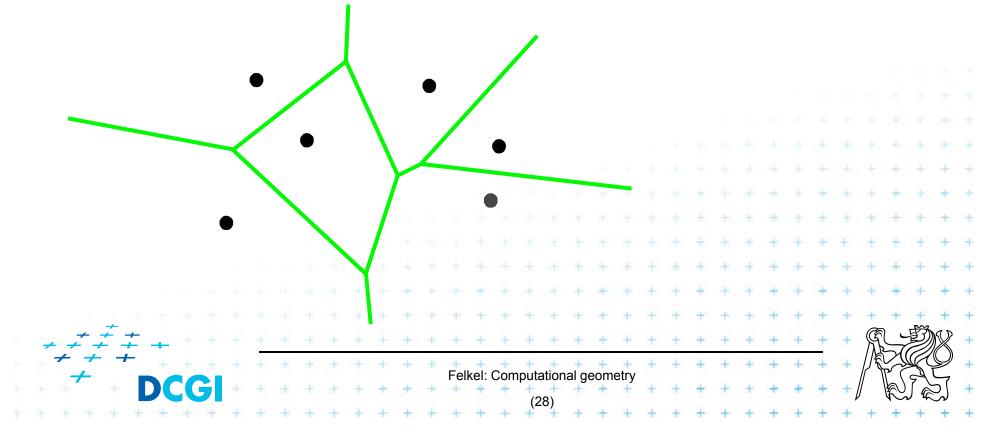
- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

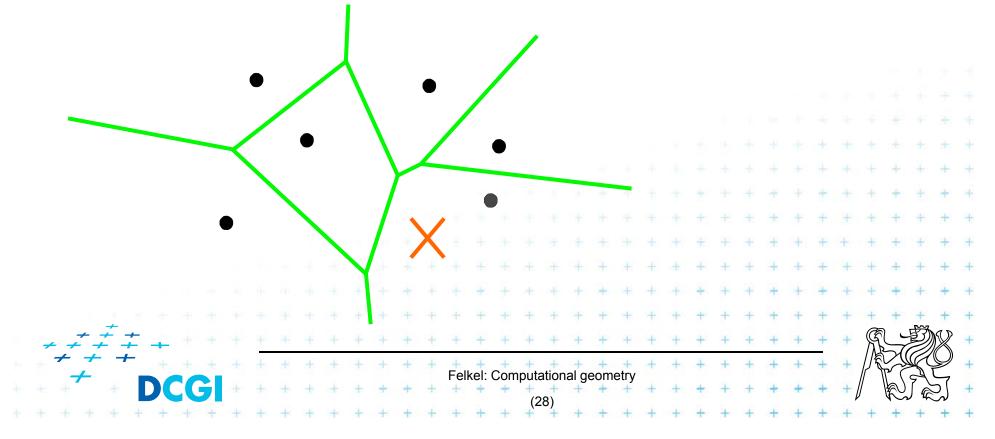
- Binary search

 Eliminate parts of the state space, where the solution clearly does not exist

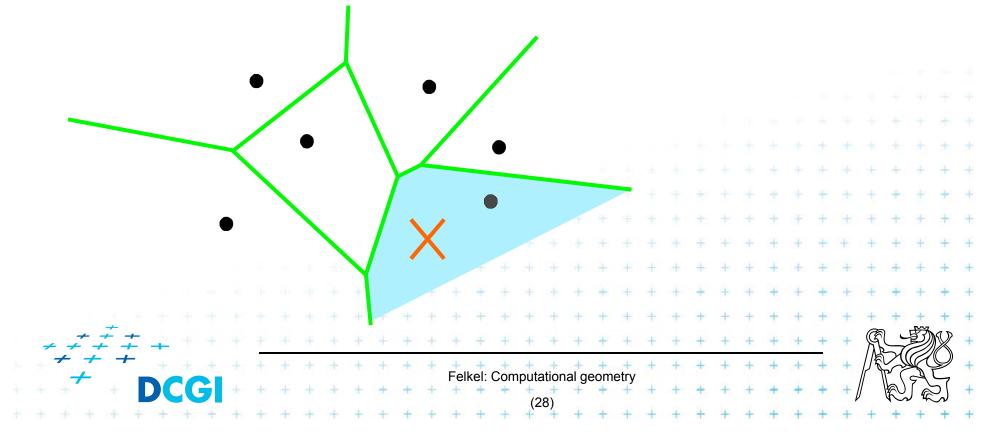
- Subdivide the search space into regions of constant answer
- Use point location to determine the region
 - Nearest neighbor search example



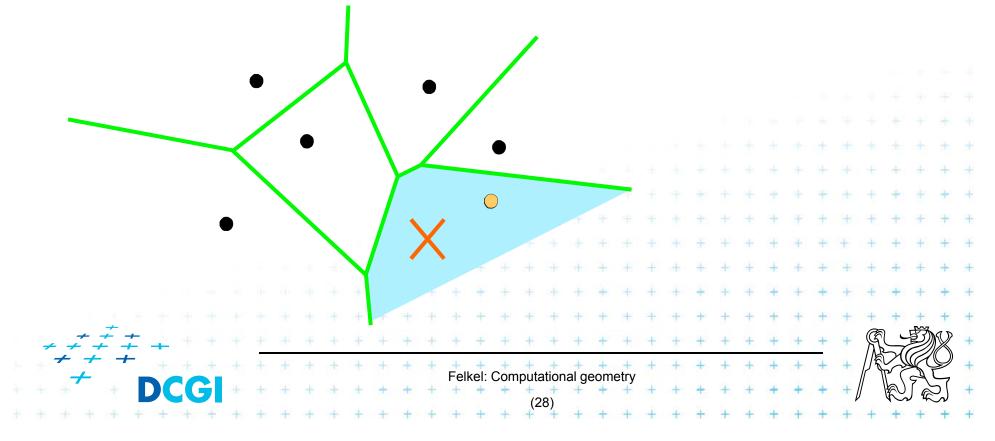
- Subdivide the search space into regions of constant answer
- Use point location to determine the region
 - Nearest neighbor search example



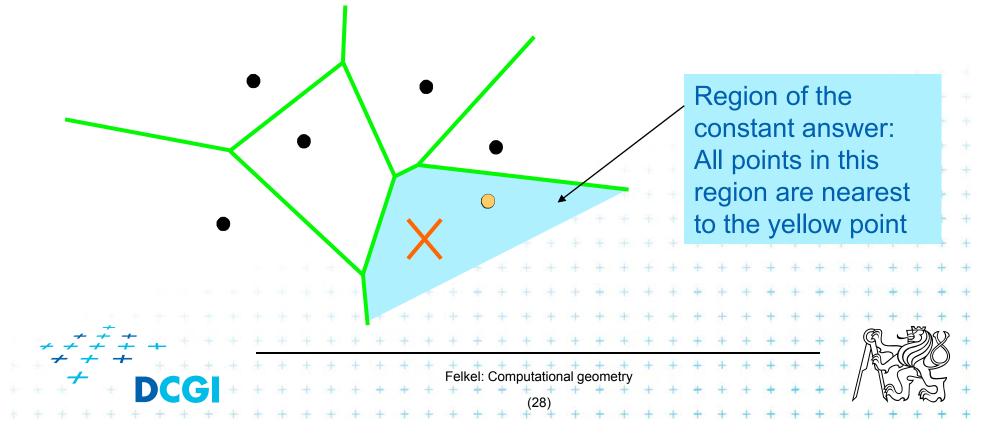
- Subdivide the search space into regions of constant answer
- Use point location to determine the region
 - Nearest neighbor search example



- Subdivide the search space into regions of constant answer
- Use point location to determine the region
 - Nearest neighbor search example

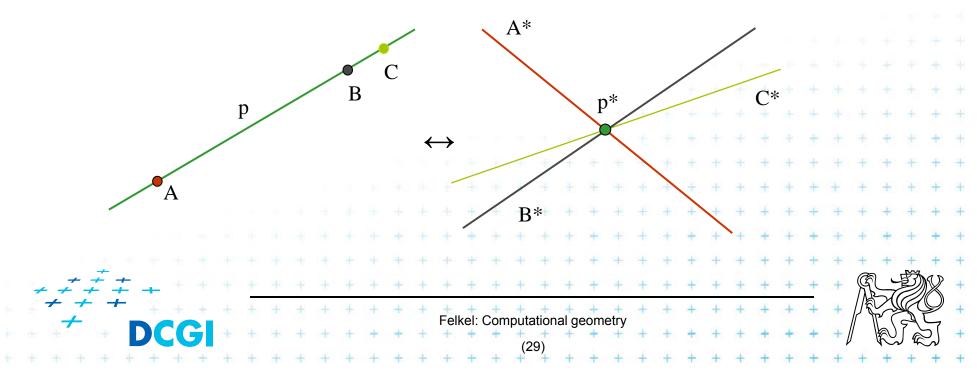


- Subdivide the search space into regions of constant answer
- Use point location to determine the region
 - Nearest neighbor search example



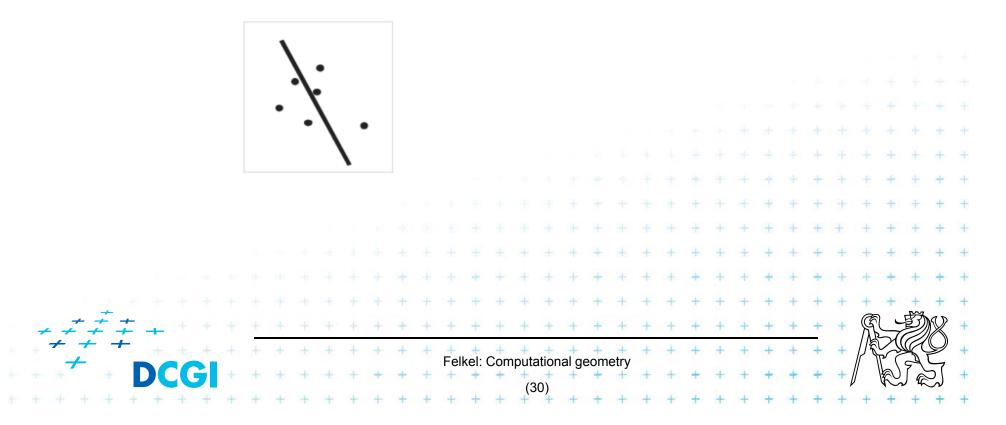
6.6 Dualisation

- Use geometry transform to change the problem into another that can be solved more easily
- Points ↔ hyper planes
 - Preservation of incidence (A \in p \Rightarrow p* \in A*)
- Ex. 2D: determine if 3 points lie on a common line



6.7 Combinatorial analysis

- = The branch of mathematics which studies the number of different ways of arranging things
- Ex. How many subdivisions of a point set can be done by one line?



6.8 New trends in Computational geometry

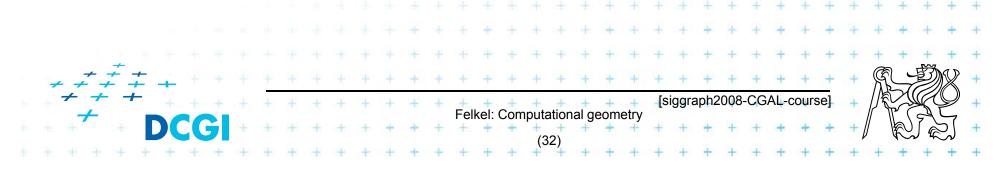
- From 2D to 3D and more from mid 80s, from linear to curved objects
- Focus on line segments, triangles in E³ and hyper planes in E^d
- Strong influence of combinatorial geometry
- Randomized algorithms
- Space effective algorithms (in place, in situ, data stream algs.)
- Robust algorithms and handling of singularities
- Practical implementation in libraries (CGAL, ...)

Felkel: Computational geometry

Approximate algorithms

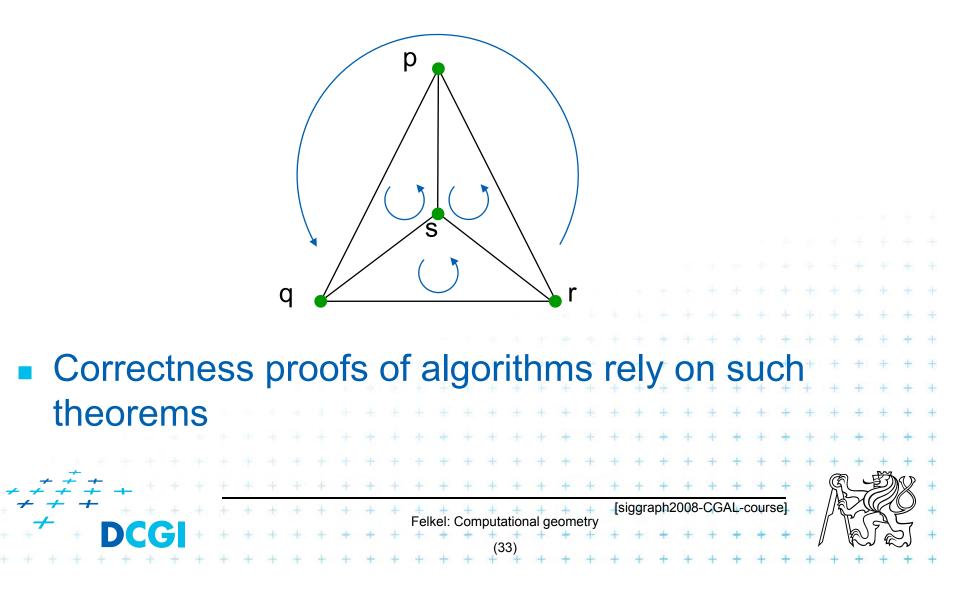
7. Robustness issues

- Geometry in theory is exact
- Geometry with floating-point arithmetic is not exact
 - Limited numerical precision of real arithmetic
 - Numbers are rounded to nearest possible representation
 - Inconsistent *epsilon* tests (a=b, b=c, but $a \neq c$)
- Naïve use of floating point arithmetic causes geometric algorithm to
 - Produce slightly or completely wrong output
 - Crash after invariant violation
 - Infinite loop



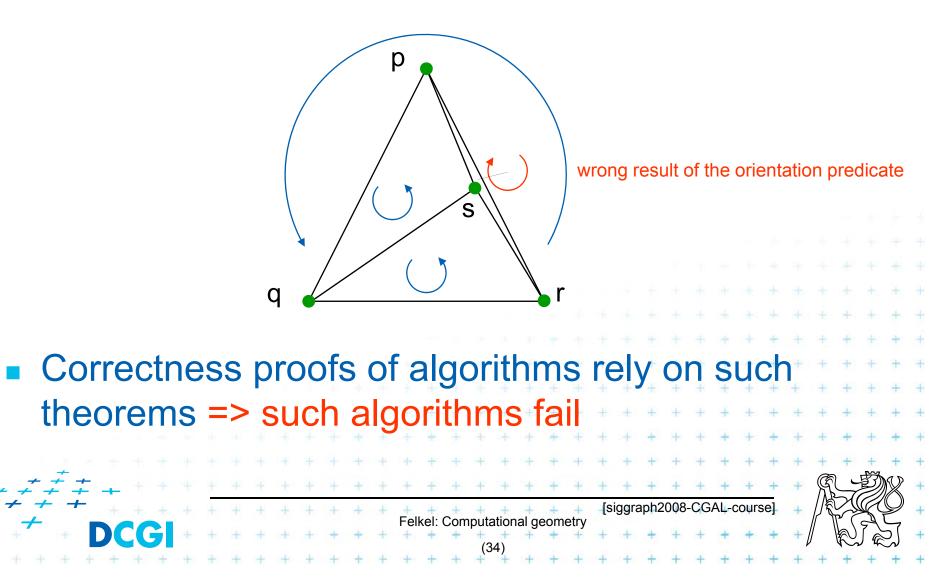
Geometry in theory is exact

ccw(s,q,r) & ccw(p,s,r) & ccw(p,q,s) => ccw(p,q,r)



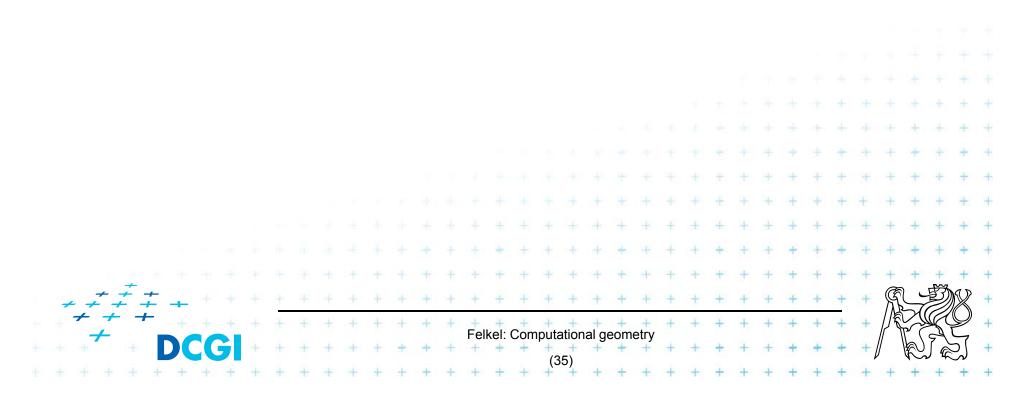
Geometry with float. arithmetic is not exact

• $ccw(s,q,r) \& !ccw(p,s,r) \& ccw(p,q,s) \neq ccw(p,q,r)$



Floating-point arithmetic is not exact

- a) Limited precision of storage
 - quantization of mantissa
- b) Limited precision of computations
 - Loosing lower bits during addition (common exponent)
 - Rounding of results after multiplications

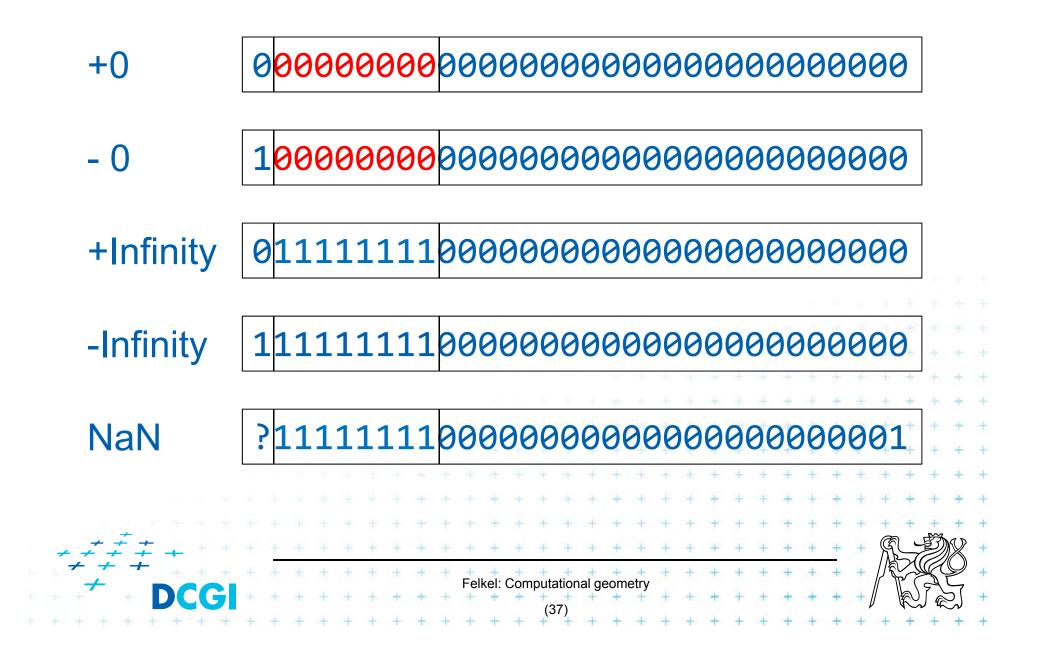


Floating-point arithmetic is not exact

- a) Limited numerical precision of real numbers storage
- Numbers represented as normalized

					31	30	8 bits	23	22	23 bits stored	0	
	± <i>m</i> 2 ^e						exp.		1	mantisa		4 Bytes
	single precision											
	63	62	11 bits	52 51	-	·				52 bits stored	0	
	S		exponent		mantisa						8 Bytes	
	double precision [http://cs.wikipedia.org/wiki/Soubor:Single_double_extended2.gif]											
The mantissa m is a 24-bit (53-bit) value whose most significant bit (MSB) is always 1 and is, therefore, not stored.												
 Stored numbers are rounded to 24/53 bits mantissa – lower bits are lost 												
+ + + 7	<i>‡ ‡</i> 		GI + + + + + +	+ + + + Felke + + + +	el: Computati (36	+ +	eometry	+ +	+ + + + + +	+ + + + + +	A	+

Floating-point special values



Floating-point arithmetic is not exact

b) Smaller numbers are shifted right during additions and subtractions to align the digits of the same order

Floating-point arithmetic is not exact

- b) Smaller numbers are shifted right during additions and subtractions to align the digits of the same order
 Example for float:
- 12 p for $p \sim 0.5$ (such as 0.5+2^(-23))

Mantissa of *p* is shifted 4 bits right to align with 12
 –> four least significant bits (LSB) are lost

Orientation predicate - definition

orientation
$$(p, q, r) = \operatorname{sign} \left(\operatorname{det} \begin{bmatrix} 1 & p_{\chi} & p_{y} \\ 1 & q_{\chi} & q_{y} \\ 1 & r_{\chi} & r_{y} \end{bmatrix} \right) =$$

$$= \operatorname{sign} \left((q_{\chi} - p_{\chi})(r_{y} - p_{y}) - (q_{y} - p_{y})(r_{\chi} - p_{\chi}) \right),$$
where point $p = (p_{\chi}, p_{y}), \dots$

$$= \operatorname{third \ coordinate \ of} = (\vec{u} \times \vec{v}),$$
Three points

$$= \operatorname{lie \ on \ common \ line} = 0$$

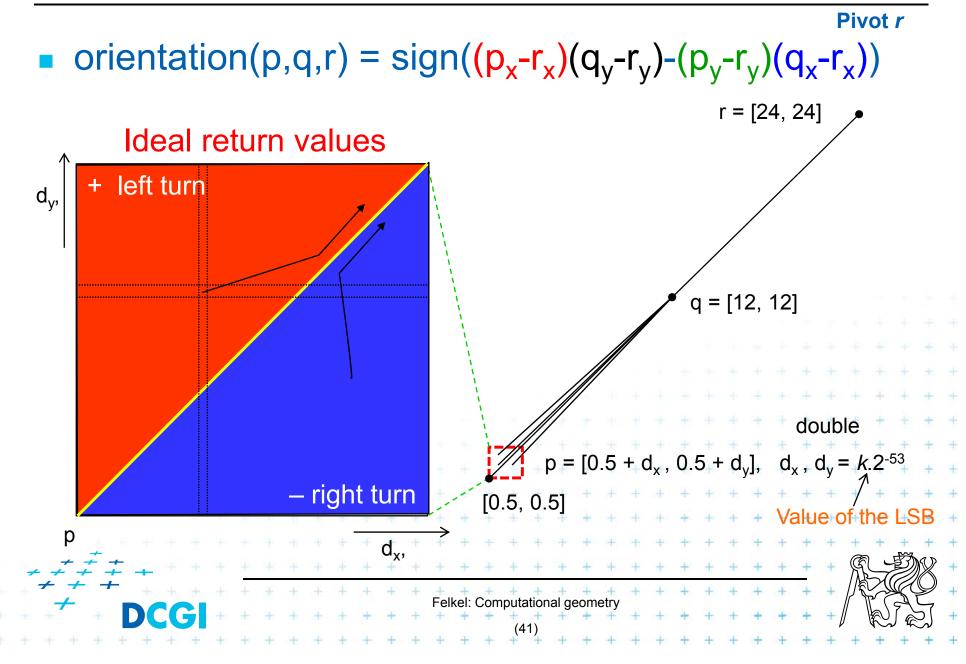
$$= \operatorname{lie \ on \ common \ line} = 0$$

$$= \operatorname{form \ a \ left \ turn} = +1 \ (\operatorname{positive})$$

$$= -1 \ (\operatorname{negative}) \qquad p$$
Felke: Computational geometry

$$= \operatorname{DCGI} \qquad Felke: Computational geometry \qquad (40)}$$

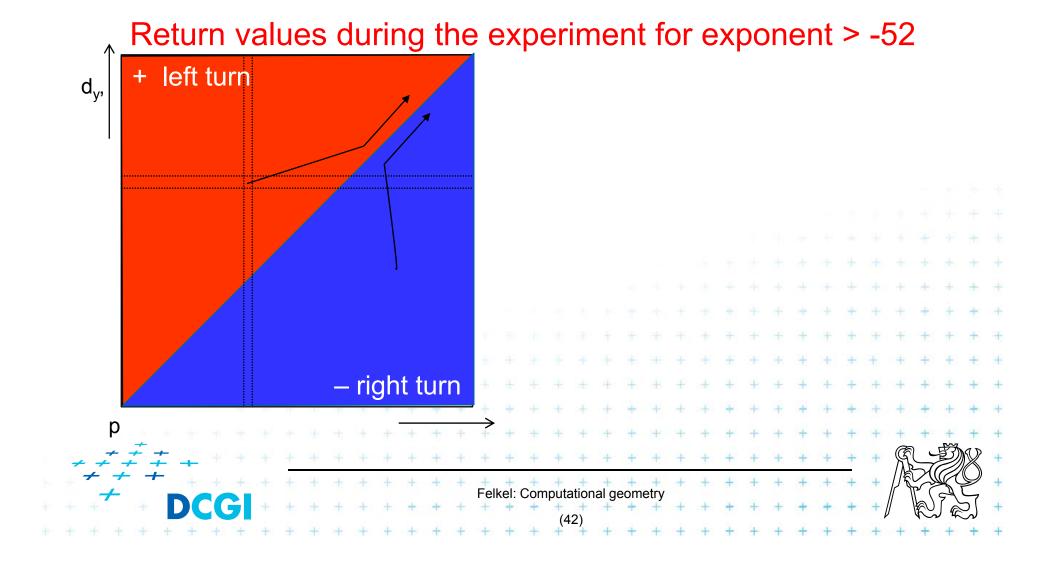
Experiment with orientation predicate



Real results of orientation predicate

Pivot r

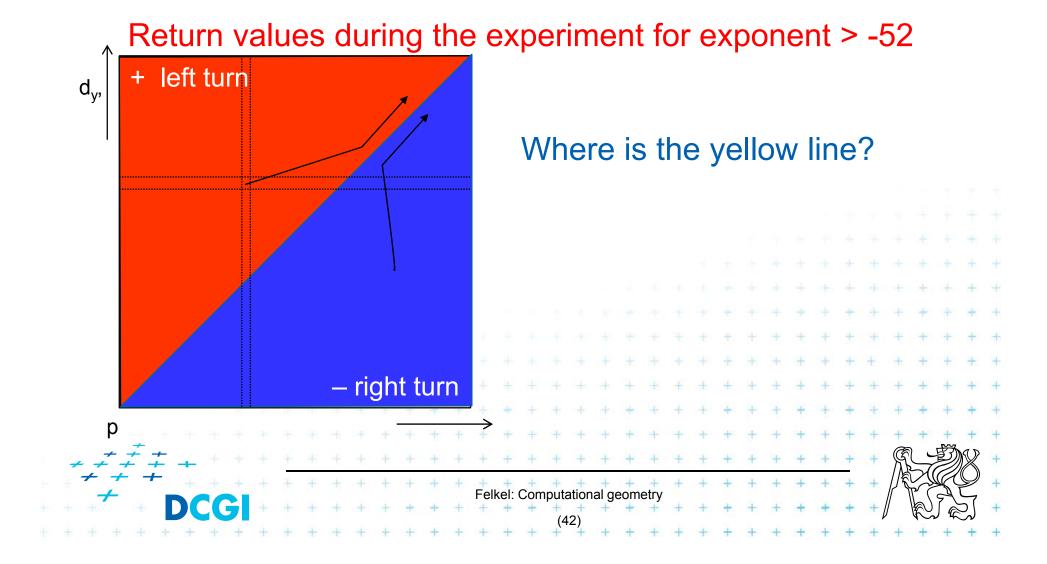
• orientation(p,q,r) = sign($(p_x-r_x)(q_y-r_y)-(p_y-r_y)(q_x-r_x)$)



Real results of orientation predicate

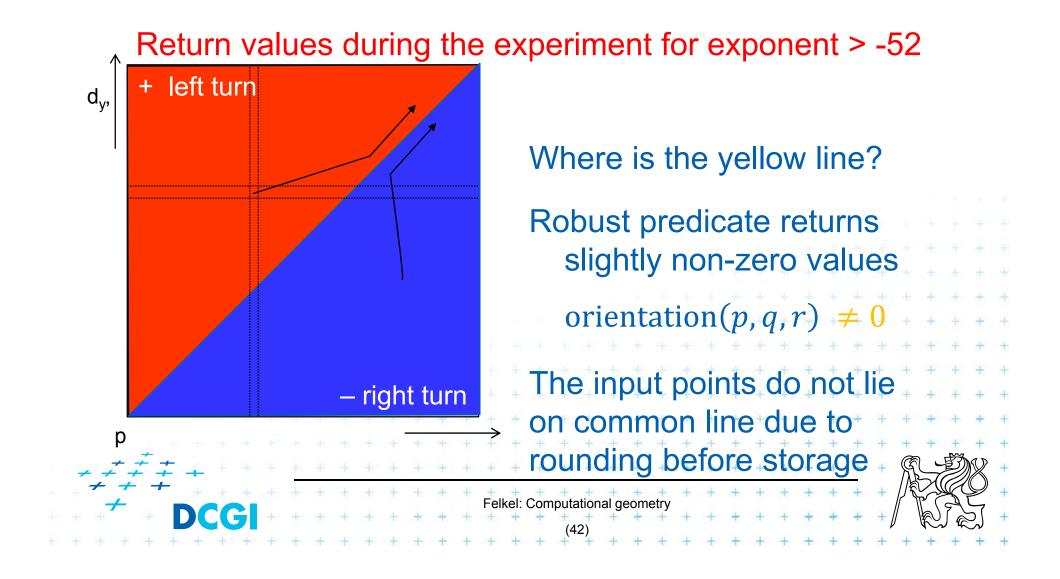
Pivot r

• orientation(p,q,r) = sign($(p_x-r_x)(q_y-r_y)-(p_y-r_y)(q_x-r_x)$)



Pivot r

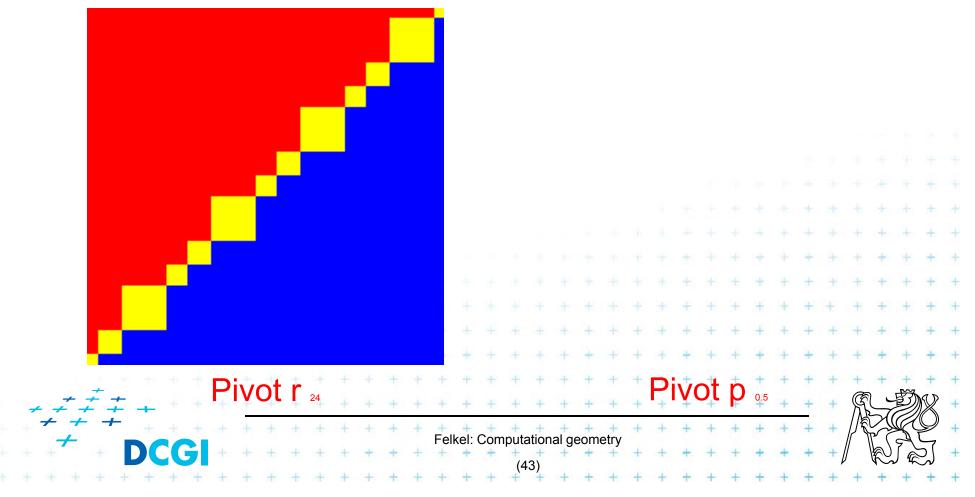
• orientation(p,q,r) = sign($(p_x-r_x)(q_y-r_y)-(p_y-r_y)(q_x-r_x)$)



Pivot r

• orientation(p,q,r) = sign($(p_x-r_x)(q_y-r_y)-(p_y-r_y)(q_x-r_x)$)

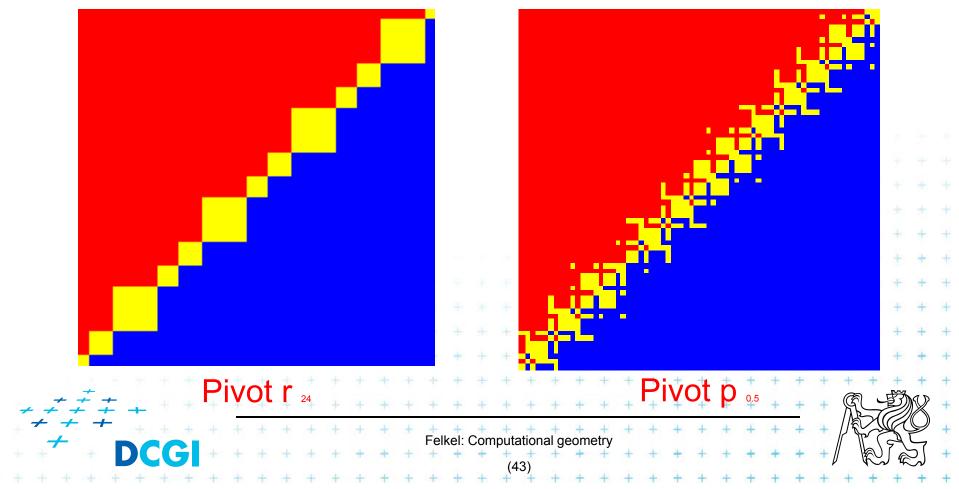
Return values during the experiment for exponent -52



Pivot r

• orientation(p,q,r) = sign($(p_x-r_x)(q_y-r_y)-(p_y-r_y)(q_x-r_x)$)

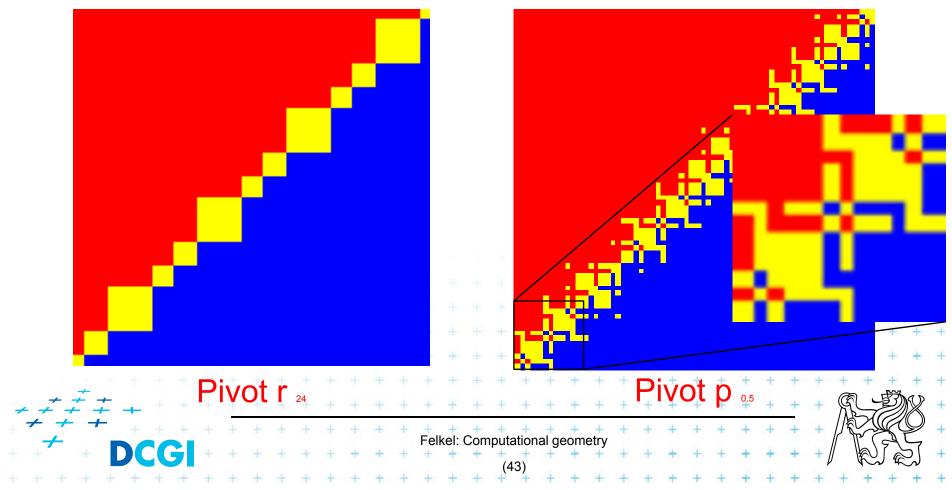
Return values during the experiment for exponent -52



Pivot r

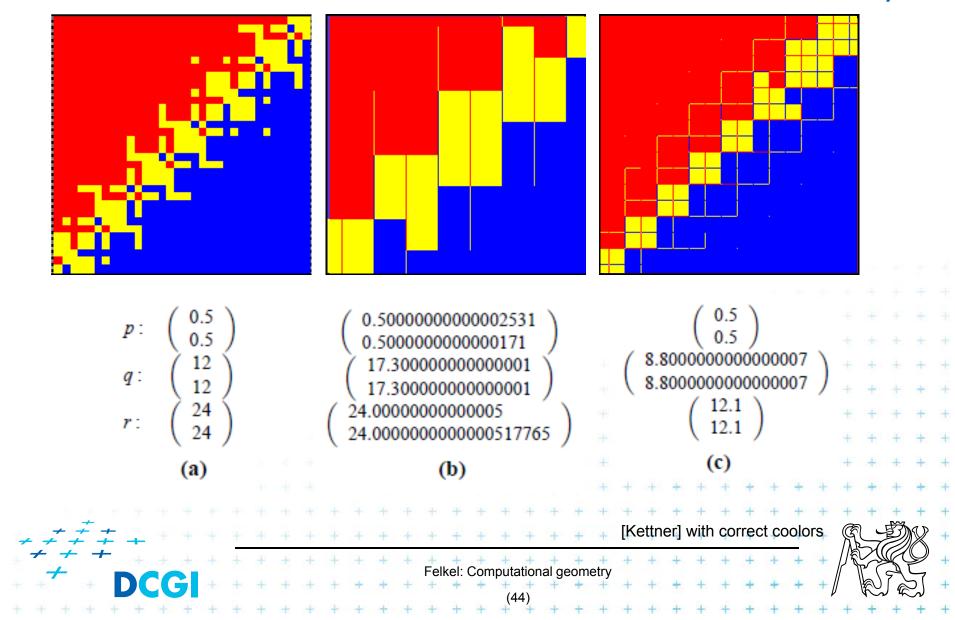
• orientation(p,q,r) = sign($(p_x-r_x)(q_y-r_y)-(p_y-r_y)(q_x-r_x)$)

Return values during the experiment for exponent -52



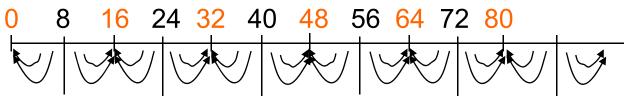
Floating point orientation predicate double exp=-53

Pivot *p*

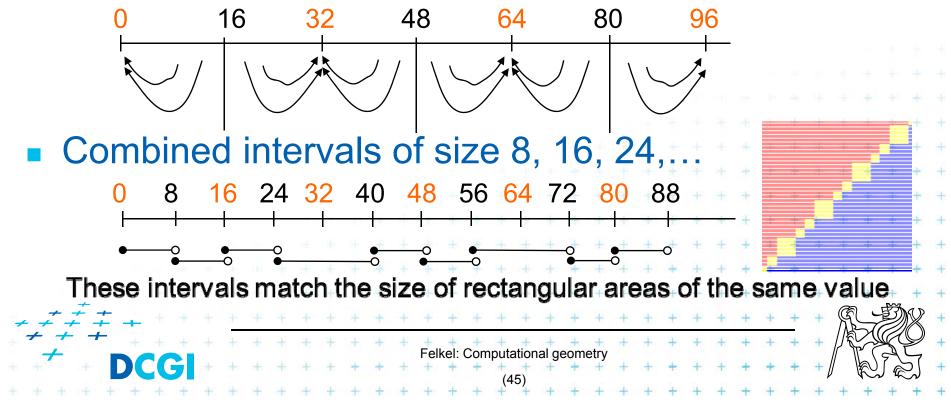


Errors from shift ~0.5 right in subtraction

4 bits shift => 2⁴ values rounded to the same value



5 bits shift => 2⁵ values rounded to the same value



orientation(
$$p, q, r$$
) = sign $\begin{pmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{pmatrix} =$

The formula depends on the selection of the pivot, pivot point = row to be subtracted from other rows p: = sign $((q_x - p_x)(r_y - p_y) - (q_y - p_y)(r_x - p_x))$ q: = sign $((r_x - q_x)(p_y - q_y) - (r_y - q_y)(p_x - q_x))$ r: = sign $((p_x - r_x)(q_y - r_y) - (p_y - r_y)(q_x - r_x))$ $p_{\chi} = 0.5, q_{\chi} = 12, r_{\chi} = 24$ Felkel: Computational geometry

orientation(
$$p, q, r$$
) = sign $\begin{pmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{pmatrix} =$

The formula depends on the selection of the pivot, pivot point = row to be subtracted from other rows p: = sign $((q_x - p_x)(r_y - p_y) - (q_y - p_y)(r_x - p_x))$ q: = sign $((r_x - q_x)(p_y - q_y) - (r_y - q_y)(p_x - q_x))$ $r: = \operatorname{sign} \left((p_x - r_x) (q_y - r_y) - (p_y - r_y) (q_x - r_x) \right)$ Which pivot is the worst? $p_x = 0.5, q_x = 12, r_x = 24$ Felkel: Computational geometry

orientation(
$$p, q, r$$
) = sign $\begin{pmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{pmatrix} =$

The formula depends on the selection of the pivot, pivot point = row to be subtracted from other rows $p: = sign((q_x - p_x)(r_y - p_y) - (q_y - p_y)(r_x - p_y)))$ $q: = \operatorname{sign}\left((r_{x} - q_{x})(p_{y}^{4 \text{ bits lost}} q_{y}) - (r_{y} - q_{y})(p_{x}^{4 \text{ bits lost}} q_{x})\right)$ $r: = \operatorname{sign}\left((p_{x} - r_{x})(q_{y} - r_{y}) - (p_{y} - r_{y})(q_{x} - r_{x})\right)$ Which pivot is the worst? $p_x = 0.5$, $q_x = 12$, $r_x = 24$ Felkel: Computational geometry

orientation(
$$p, q, r$$
) = sign $\begin{pmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{pmatrix} =$

The formula depends on the selection of the pivot, pivot point = row to be subtracted from other rows $p: = \operatorname{sign}\left((q_x - p_x)(r_y - p_y) - (q_y - p_y)(r_x - p_y)\right)$ $q: = \operatorname{sign}\left((r_{x} - q_{x})(p_{y}^{4 \text{ bits lost}} q_{y}) - (r_{y} - q_{y})(p_{x}^{4 \text{ bits lost}} q_{x})\right)$ $r: = \operatorname{sign}\left((p_{x}^{5 \text{ bits lost}} - r_{x})(q_{y} - r_{y}) - (p_{y}^{5 \text{ bits lost}} - r_{y})(q_{x} - r_{x})\right)$ Which pivot is the worst? $p_x = 0.5, q_x = 12, r_x = 24$ Felkel: Computational geometry

orientation(
$$p, q, r$$
) = sign $\begin{pmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{pmatrix} =$

The formula depends on the selection of the pivot, pivot point = row to be subtracted from other rows

$$p: = \left[sign\left((q_x - p_x)(r_y - p_y) - (q_y - p_y)(r_x - p_x) \right) \right]$$

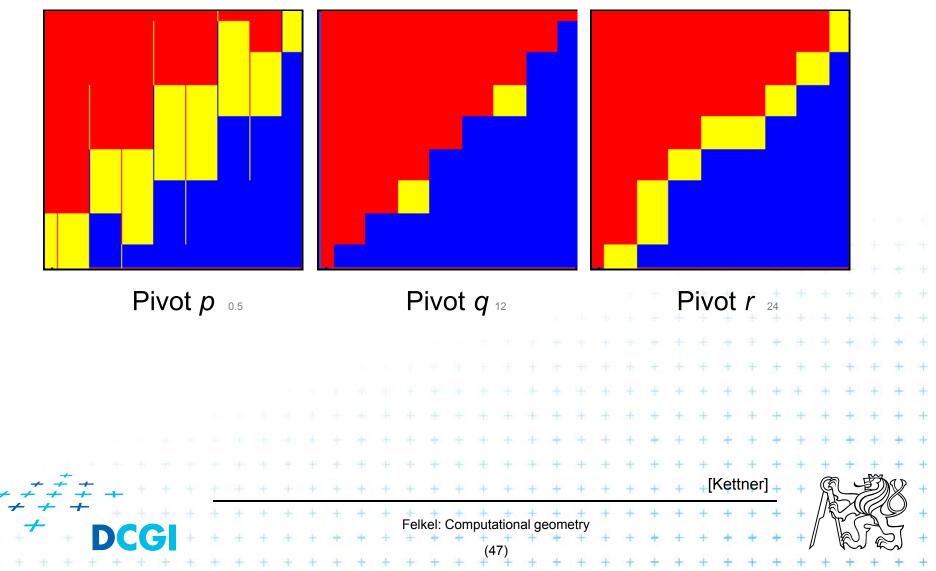
$$q: = sign\left((r_x - q_x)(p_y^{4 \text{ bits lost}} - q_y) - (r_y - q_y)(p_x^{4 \text{ bits lost}} - q_x) \right)$$

$$r: = sign\left((p_x^{5 \text{ bits lost}} - r_x)(q_y - r_y) - (p_y^{5 \text{ bits lost}} - r_y)(q_x - r_x) \right)$$
Which pivot is the worst?
$$p_x = 0.5, \ q_x = 12, \ r_x = 24$$

Little improvement - selection of the pivot

(b) double exp=-53

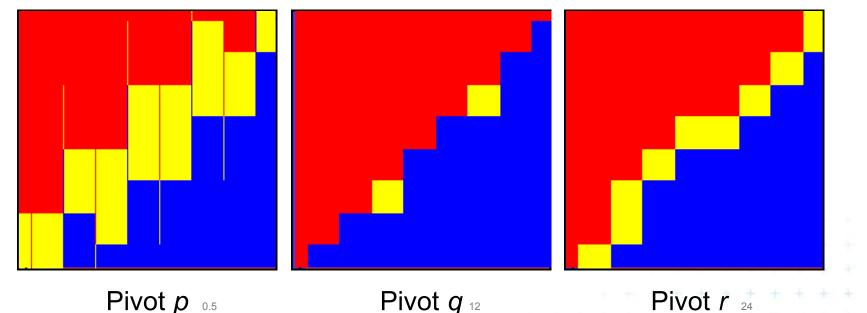
Pivot – subtracted from the rows in the matrix



Little improvement - selection of the pivot

(b) double exp=-53

Pivot – subtracted from the rows in the matrix



=> Pivot q (point with middle x or y coord.) is the best But it is typically not used – pivot search is too complicated in comparison to the predicate itself [Kettner]

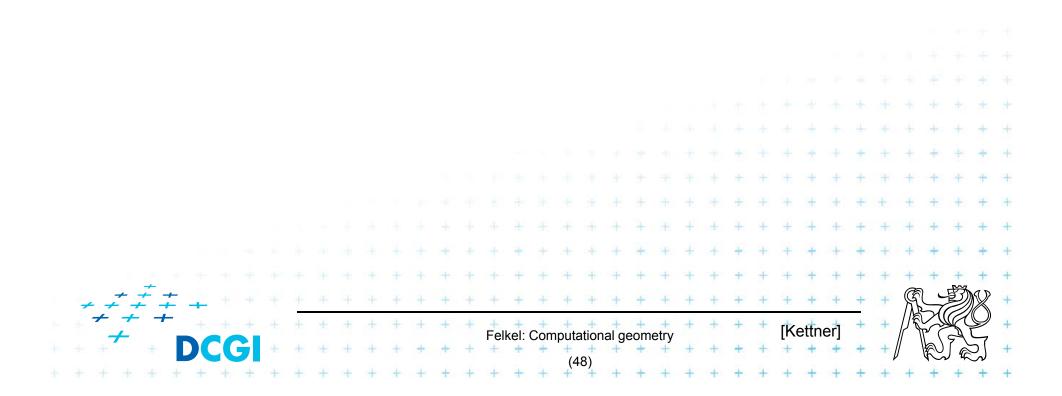
Felkel: Computational geometry

Felkel: Computational geometry + [Kettner] + Felkel: Computation

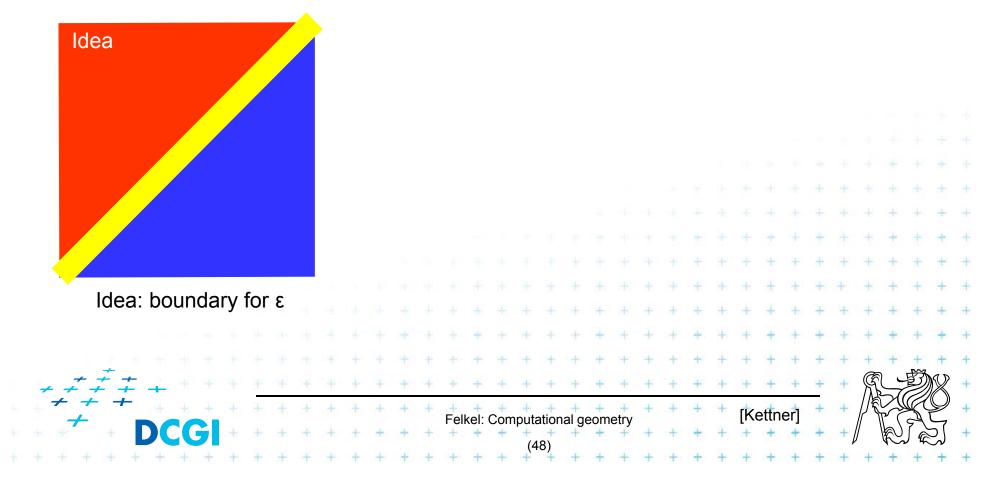
• Use tolerance ε =0.00005 to 0.0001 for float

Felkel: Computational geometry [Kettner] (48)

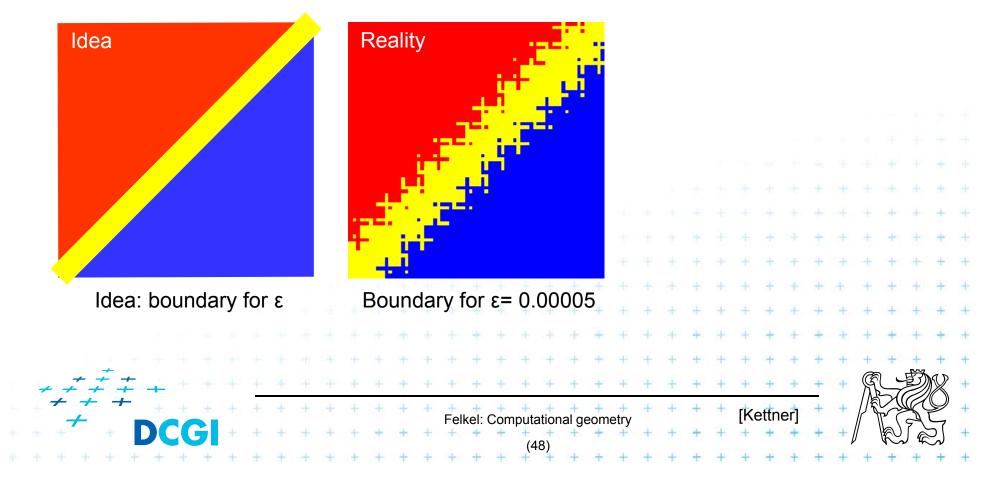
- Use tolerance ε =0.00005 to 0.0001 for float
- Points are declared collinear if float_orient returns a value $\leq \epsilon$ 0.5+2^(-23), the smallest repr. value 0.500 000 06



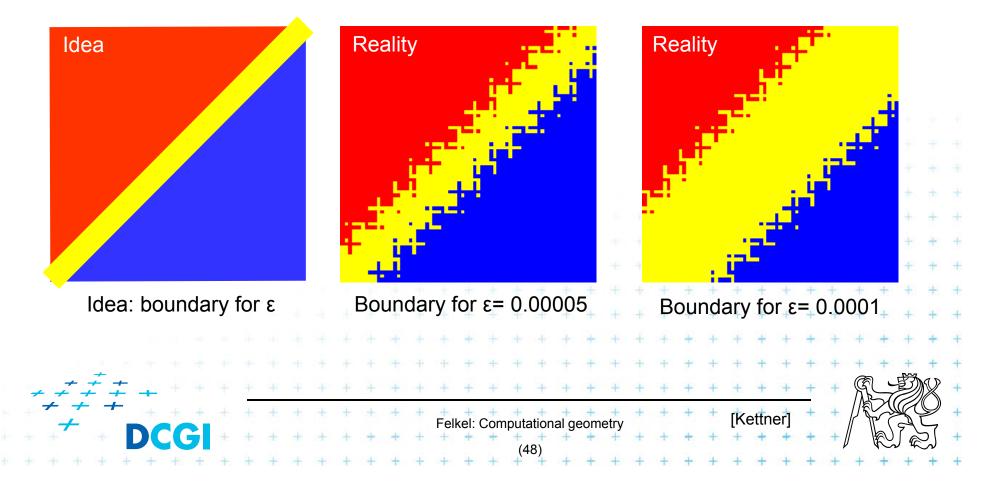
- Use tolerance ε =0.00005 to 0.0001 for float
- Points are declared collinear if float_orient returns a value $\leq \epsilon$ 0.5+2^(-23), the smallest repr. value 0.500 000 06



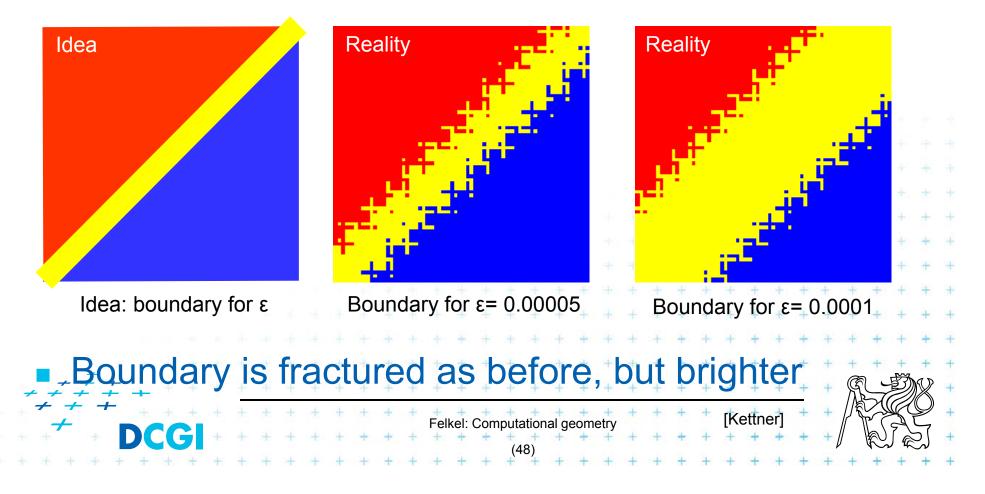
- Use tolerance ε =0.00005 to 0.0001 for float
- Points are declared collinear if float_orient returns a value $\leq \epsilon$ 0.5+2^(-23), the smallest repr. value 0.500 000 06



- Use tolerance ε =0.00005 to 0.0001 for float
- Points are declared collinear if float_orient returns a value $\leq \epsilon$ 0.5+2^(-23), the smallest repr. value 0.500 000 06

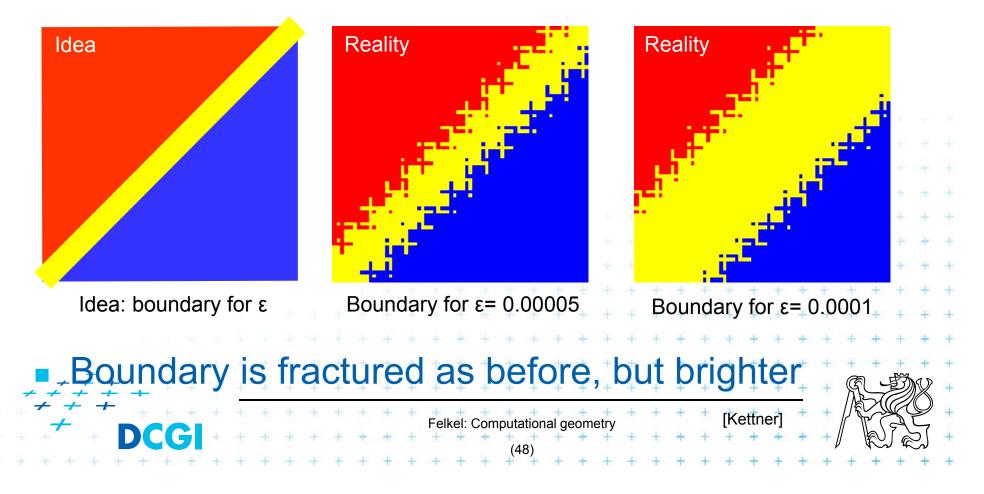


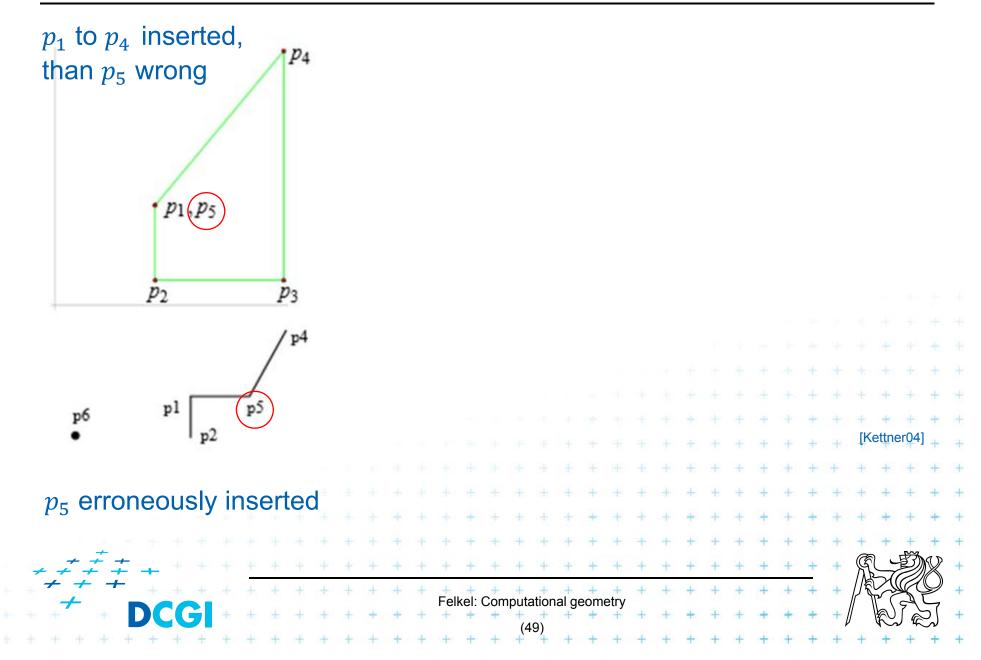
- Use tolerance ε =0.00005 to 0.0001 for float
- Points are declared collinear if float_orient returns a value $\leq \epsilon$ 0.5+2^(-23), the smallest repr. value 0.500 000 06

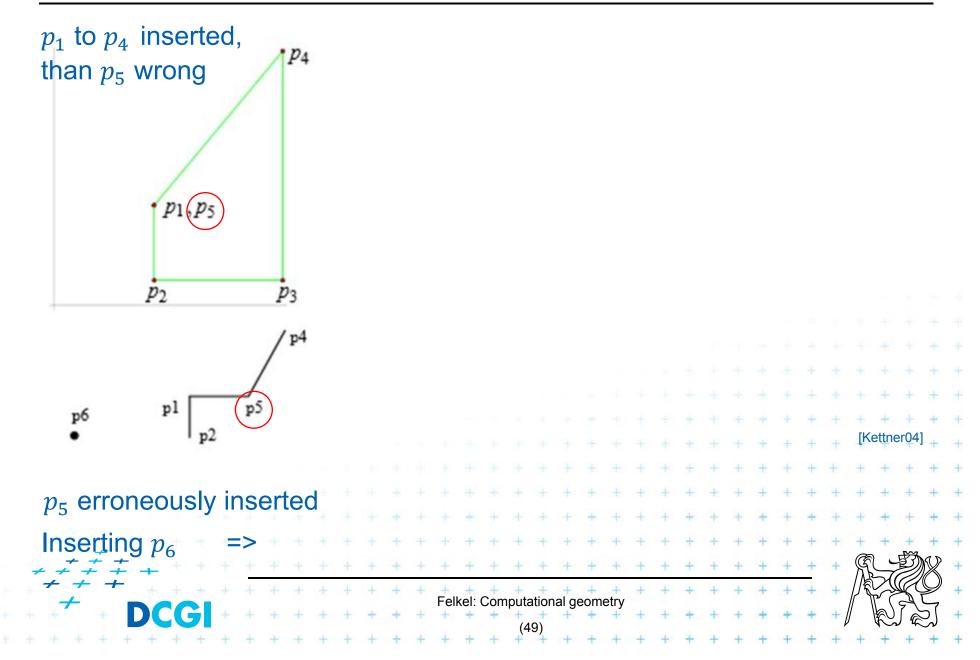


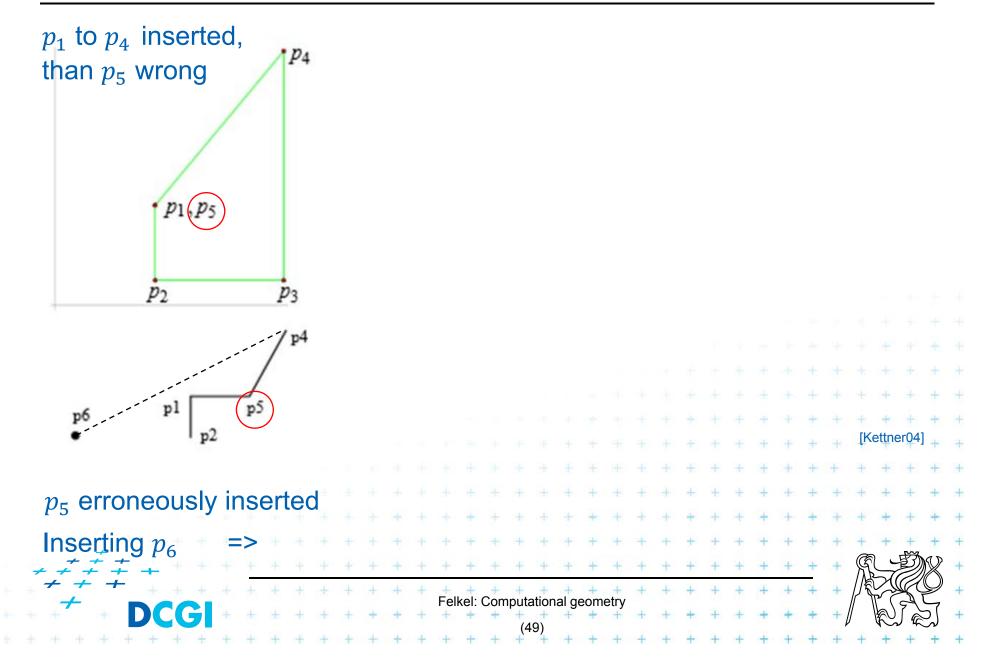
Epsilon tweaking – is the wrong approach

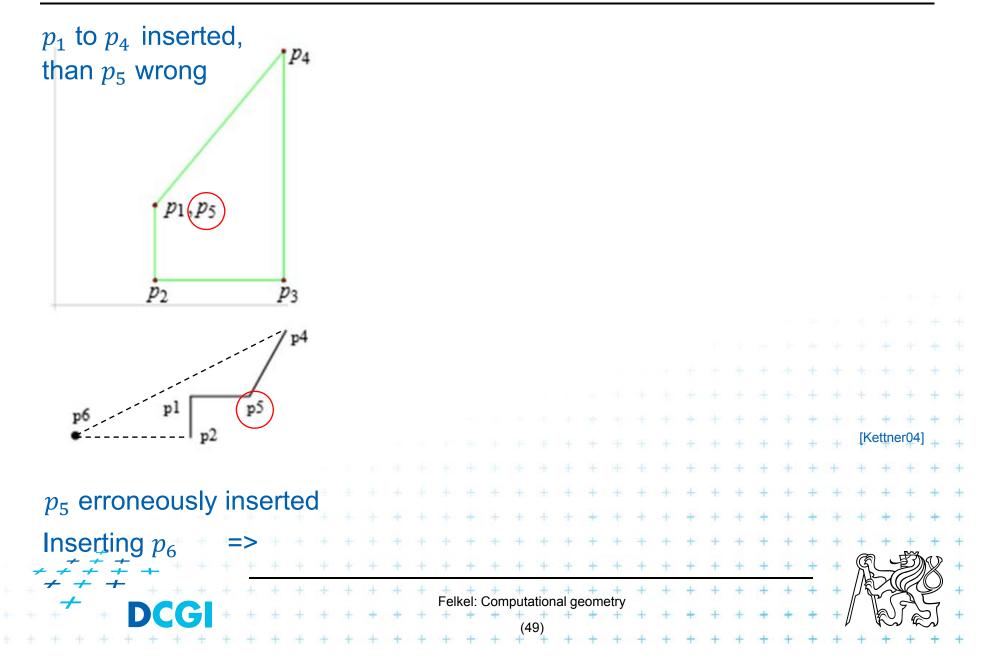
- Use tolerance ε =0.00005 to 0.0001 for float
- Points are declared collinear if float_orient returns a value $\leq \epsilon$ 0.5+2^(-23), the smallest repr. value 0.500 000 06

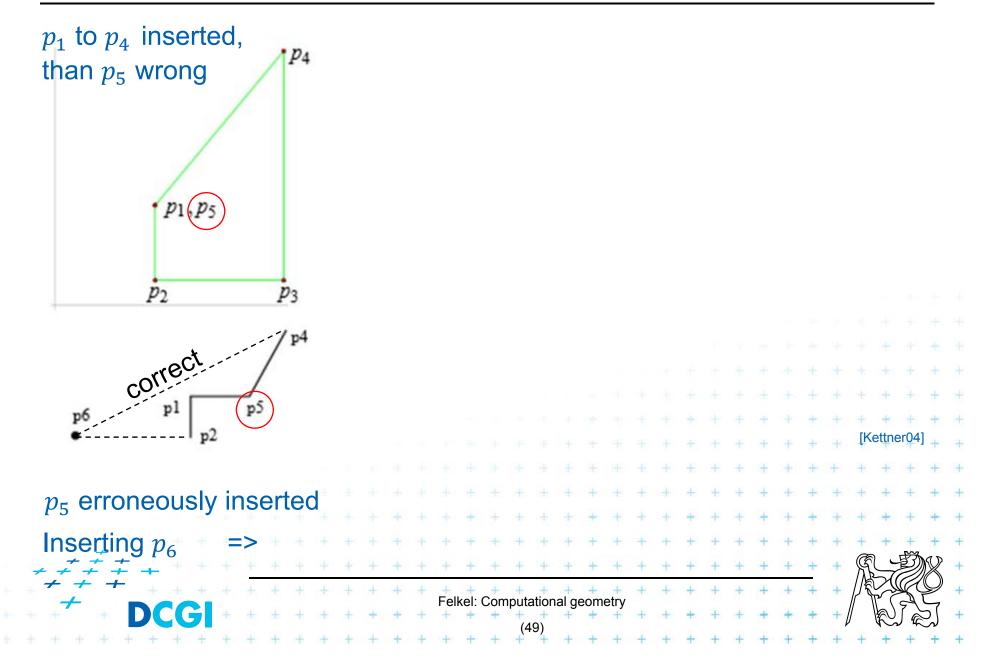


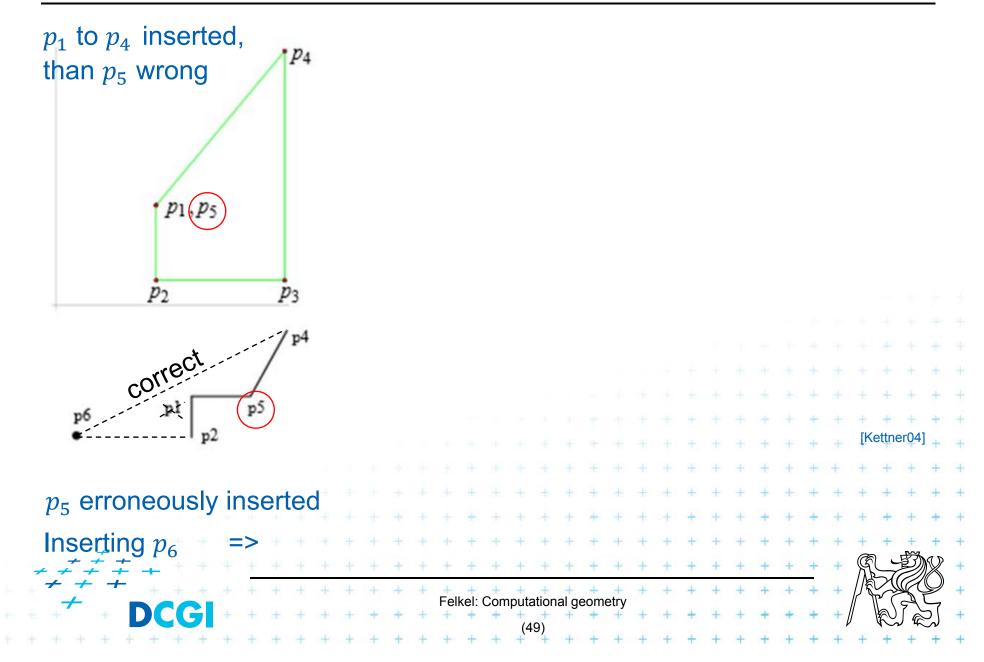


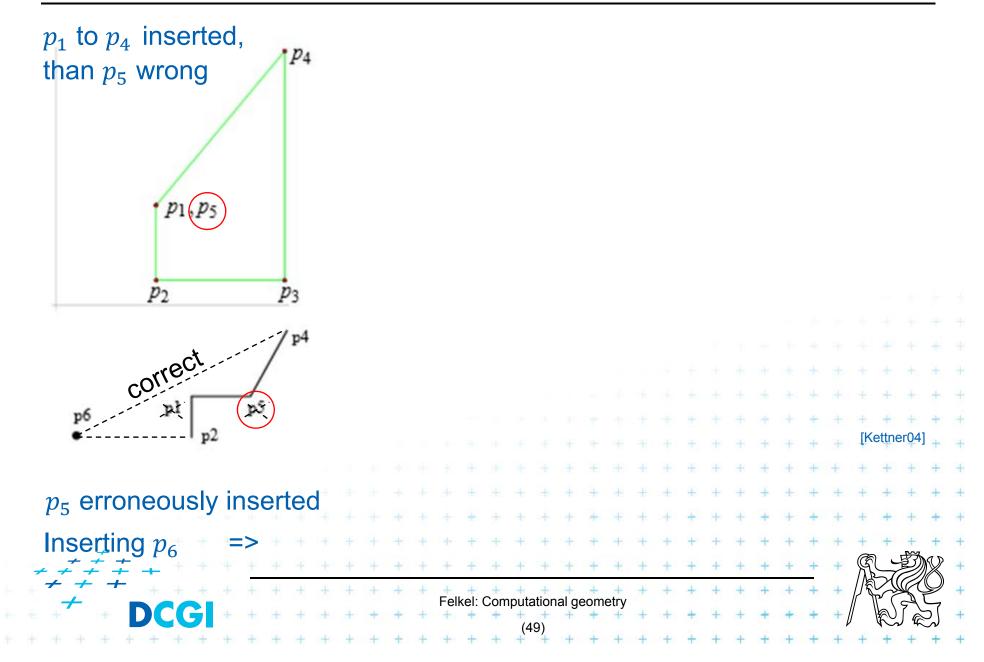


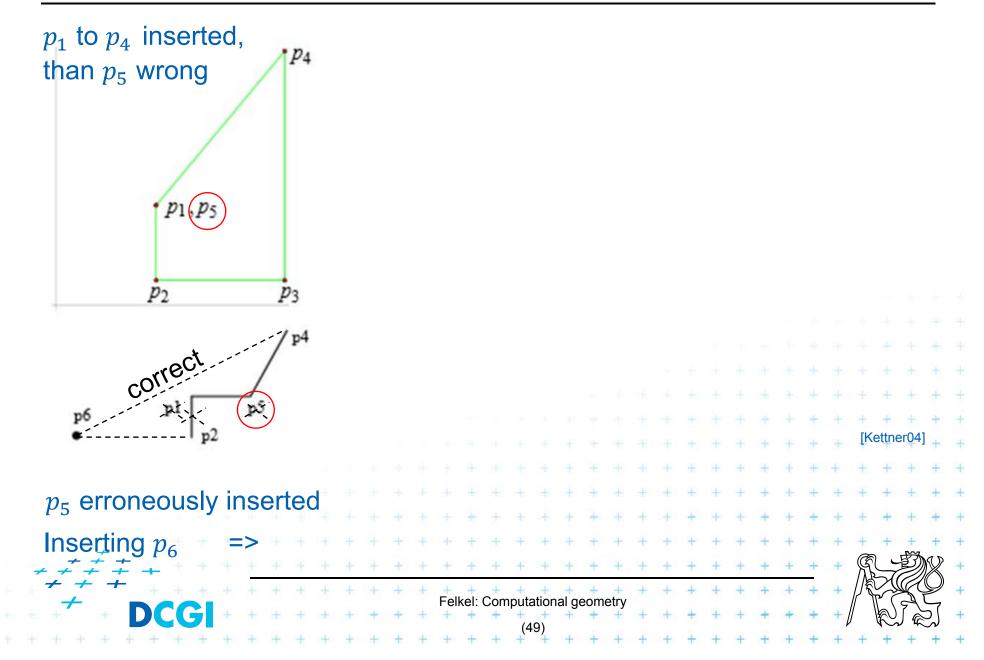


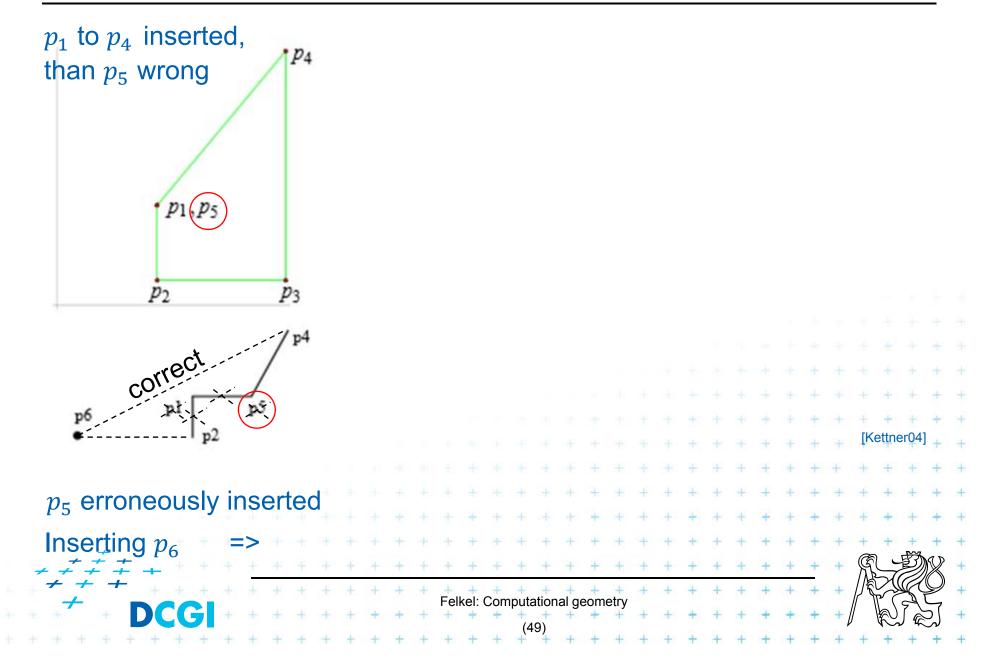


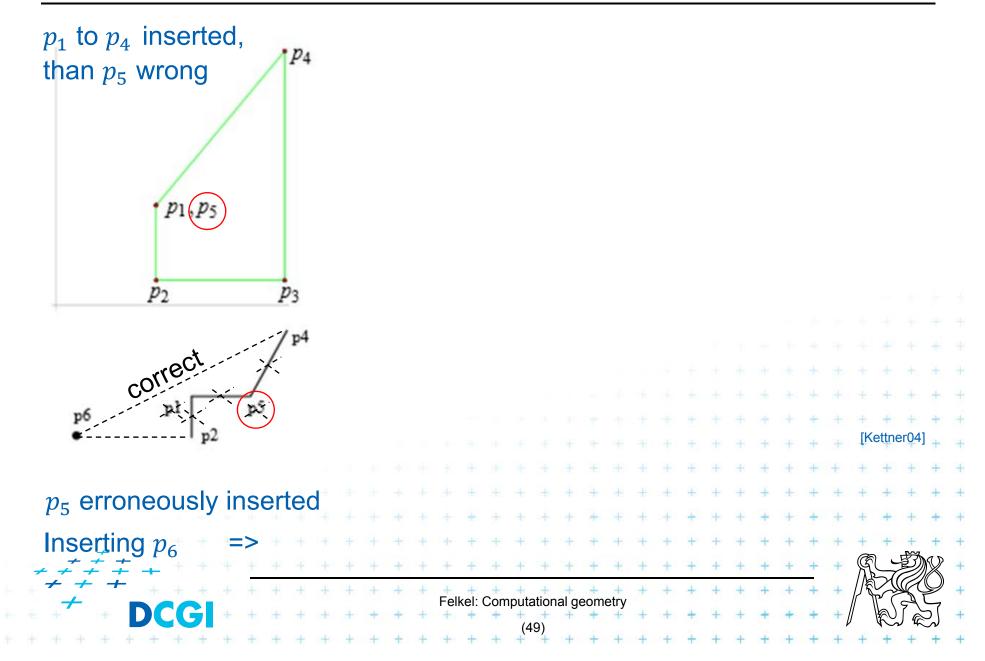


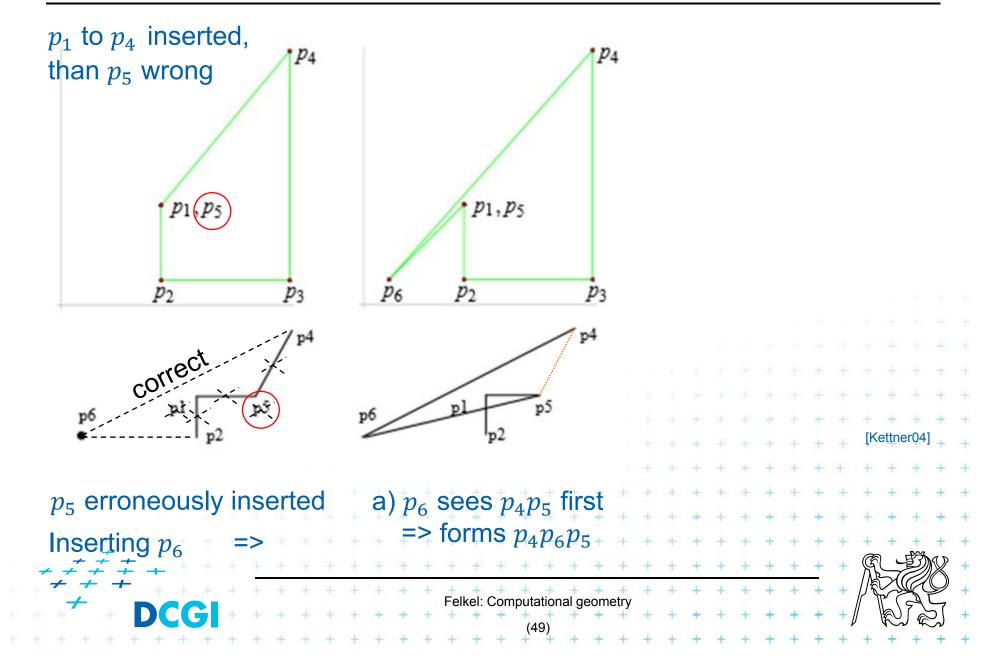


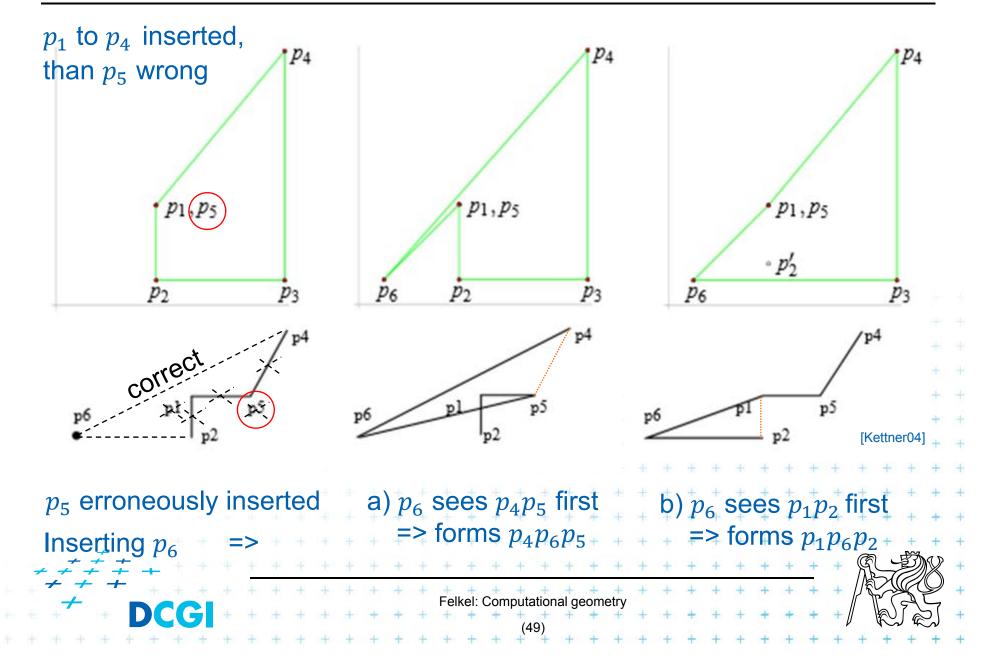






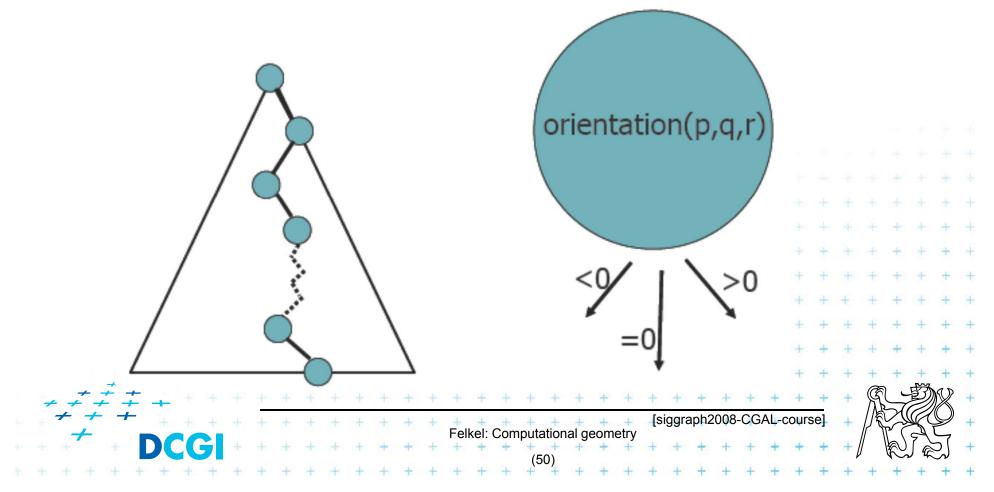






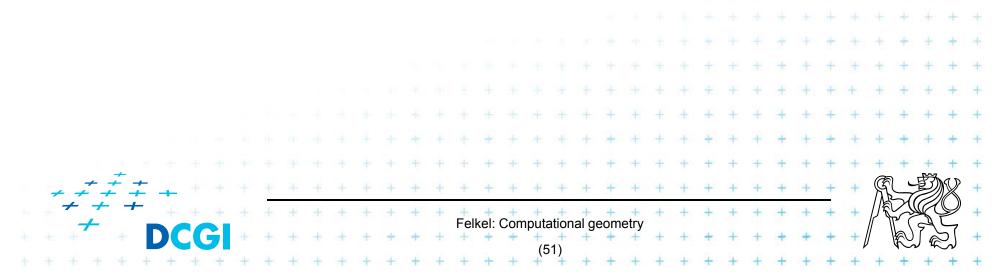
Exact Geometric Computing [Yap]

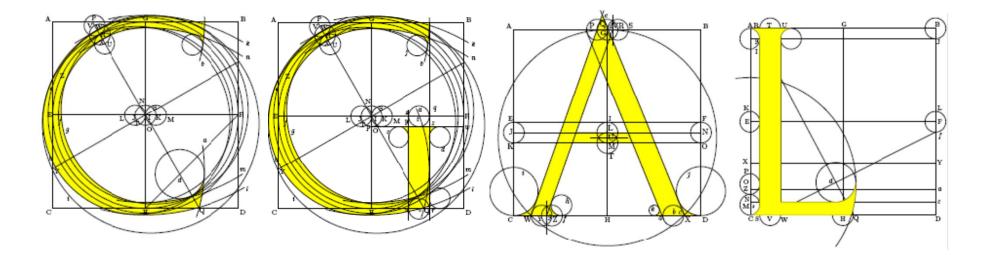
Make sure that the control flow in the implementation corresponds to the control flow with exact real arithmetic



Solution

- Use predicates, that always return the correct result -> Shewchuk, YAP, LEDA or CGAL
- 2. Change the algorithm to cope with floating point predicates but still return something *meaningful* (hard to define)
- 3. Perturb the input so that the floating point implementation gives the correct result on it





Computational Geometry Algorithms Library

Slides from [siggraph2008-CGAL-course]

Felkel: Computational geometry

CGAL

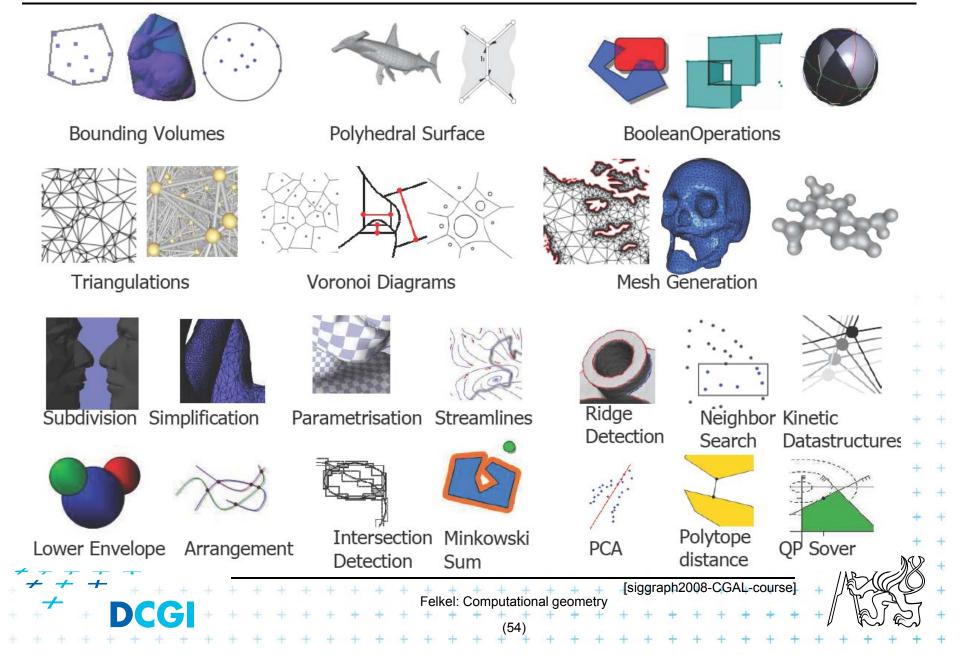
Large library of geometric algorithms

- Robust code, huge amount of algorithms
- Users can concentrate on their own domain
- Open source project
 - Institutional members
 (Inria, MPI, Tel-Aviv U, Utrecht U, Groningen U, ETHZ, Geometry Factory, FU Berlin, Forth, U Athens)

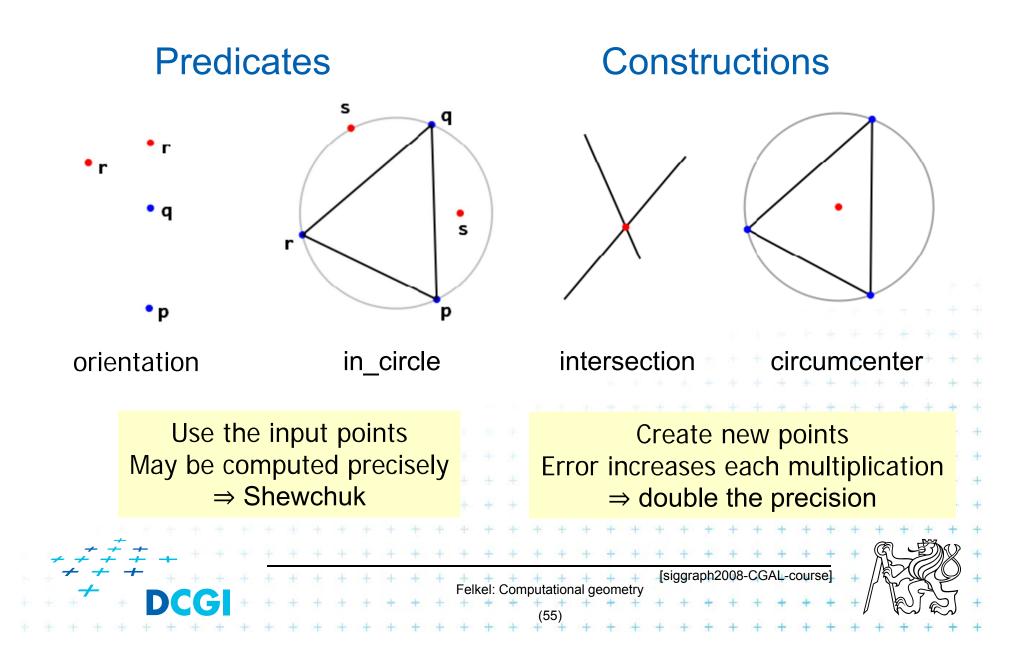
Felkel: Computational geometry

- 500,000 lines of C++ code
- 10,000 downloads/year (+ Linux distributions)
- 20 active developers
- 12 months release cycle

CGAL algorithms and data structures



Exact geometric computing



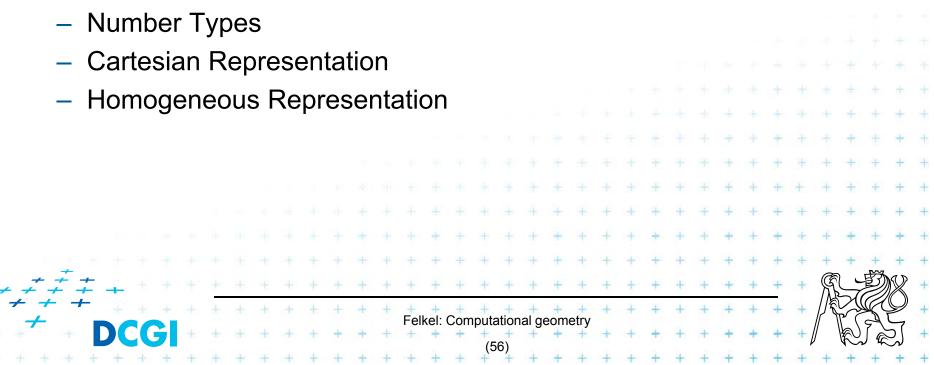
CGAL Geometric Kernel (see [Hert] for details)

Encapsulates

- the representation of geometric objects
- and the geometric operations and predicates on these objects

CGAL provides kernels for

- Points, Predicates, and Exactness



Points, predicates, and Exactness

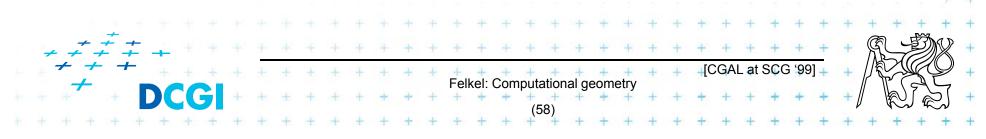
```
#include "tutorial.h"
#include <CGAL/Point_2.h>
#include <CGAL/predicates_on_points_2.h>
#include <iostream>
int main() {
    Point p( 1.0, 0.0);
    Point q( 1.3, 1.7);
    Point r( 2.2, 6.8);
    switch ( CGAL::orientation( p, q, r)) {
                                  std::cout << "Left turn.\n";</pre>
         case CGAL::LEFTTURN:
                                                                   break;
                                  std::cout << "Right turn.\n"; break;</pre>
         case CGAL::RIGHTTURN:
                                  std::cout << "Collinear.\n";</pre>
         case CGAL::COLLINEAR:
                                                                   break:
    return 0;
                                                          at SCG '991 +
                                 Felkel: Computational geometry
```

Number Types

- Builtin: double, float, int, long, ...
- CGAL: Filtered_exact, Interval_nt, ...
- LEDA: leda_integer, leda_rational, leda_real, ...
- Gmpz: CGAL::Gmpz
- others are easy to integrate

Coordinate Representations

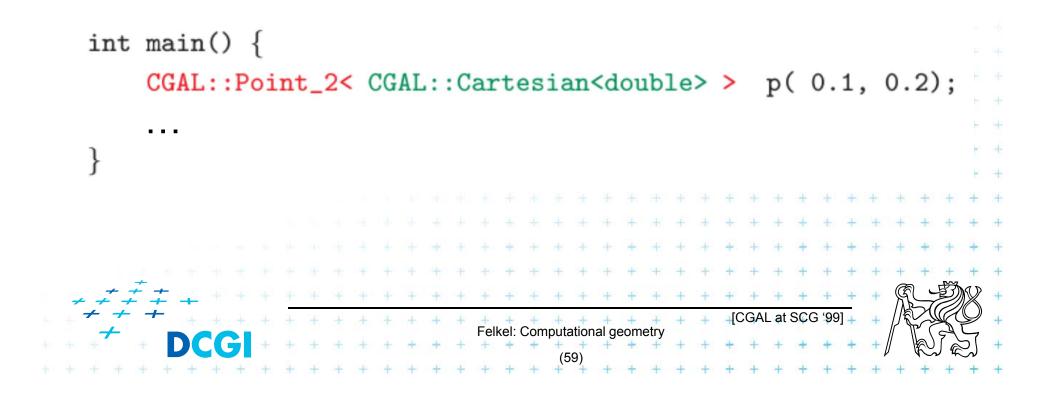
- Cartesian p = (x, y) : CGAL::Cartesian<Field_type>
- Homogeneous $p = (\frac{x}{w}, \frac{y}{w})$: CGAL::Homogeneous<Ring_type>



Precission x slow-down

Cartesian with double

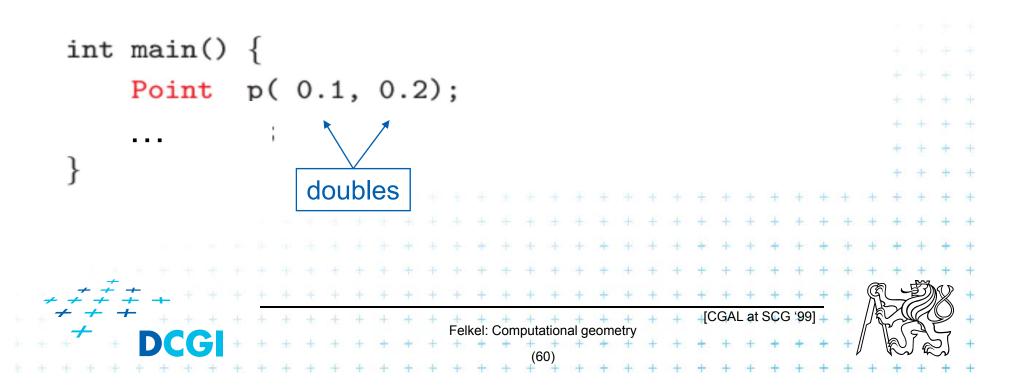
#include <CGAL/Cartesian.h>
#include <CGAL/Point_2.h>



Cartesian with double

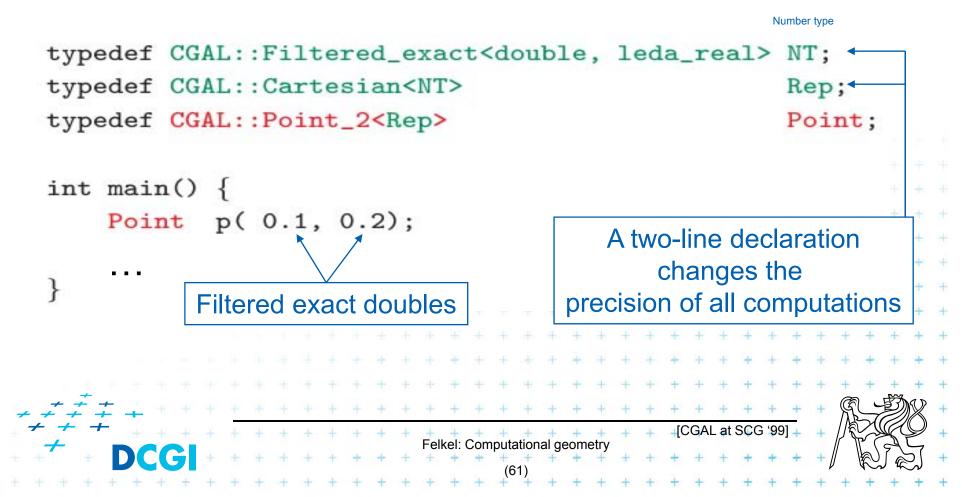
#include <CGAL/Cartesian.h>
#include <CGAL/Point_2.h>

typedef CGAL::Cartesian<double> Rep;
typedef CGAL::Point_2<Rep> Point;

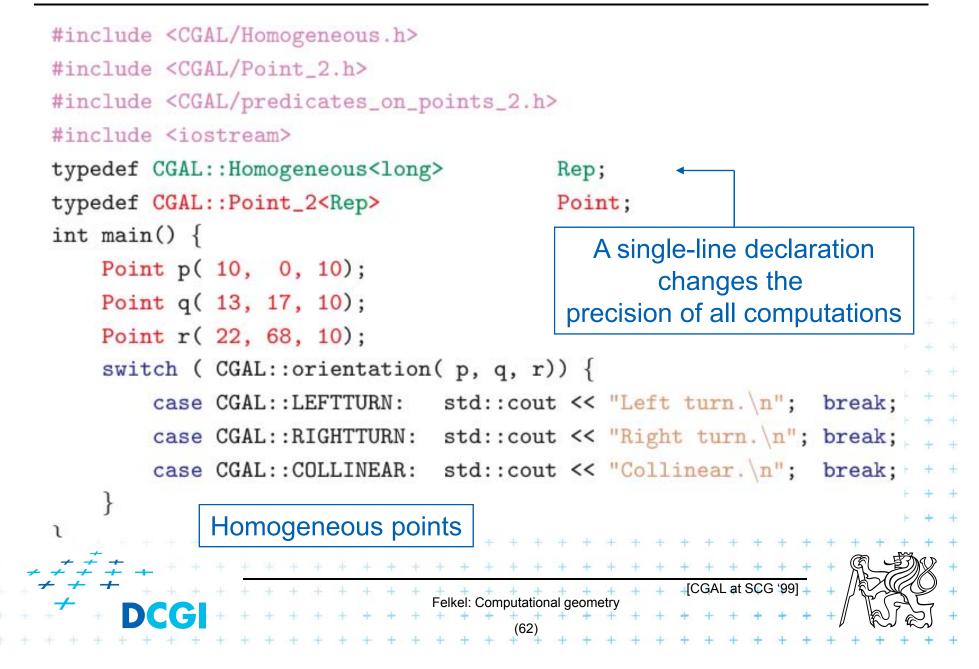


Cartesian with Filtered_exact and leda_real

```
#include <CGAL/Cartesian.h>
#include <CGAL/Arithmetic_filter.h>
#include <CGAL/leda_real.h>
#include <CGAL/Point_2.h>
```



Exact orientation test – homogeneous rep.



9 References – for the lectures

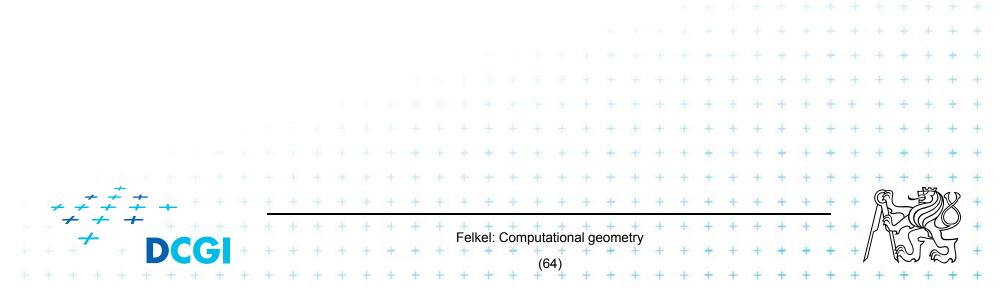
- Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5 http://www.cs.uu.nl/geobook/
- David Mount: Computational Geometry Lecture Notes for Fall 2016, University of Maryland http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
- Franko P. Preparata, Michael Ian Shamos: Computational Geometry. An Introduction. Berlin, Springer-Verlag, 1985
- Joseph O'Rourke: .: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 http://maven.smith.edu/~orourke/books/compgeom.html
- Ivana Kolingerová: Aplikovaná výpočetní geometrie, Přednášky, MFF UK 2008

Felkel: Computational geometry

9.1 References – CGAL

CGAL

- www.cgal.org
- Kettner, L.: Tutorial I: Programming with CGAL
- Alliez, Fabri, Fogel: Computational Geometry Algorithms Library, SIGGRAPH 2008
- Susan Hert, Michael Hoffmann, Lutz Kettner, Sylvain Pion, and Michael Seel. An adaptable and extensible geometry kernel. Computational Geometry: Theory and Applications, 38:16-36, 2007.
 [doi:10.1016/j.comgeo.2006.11.004]



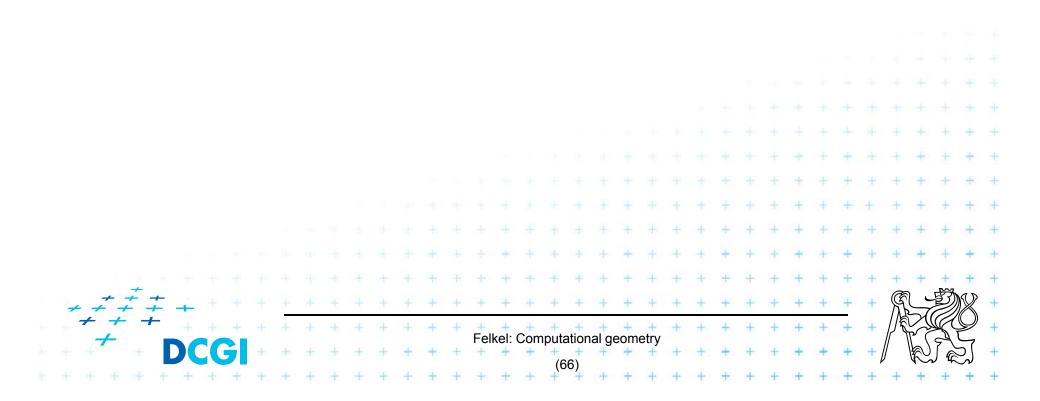
9.2 Useful geometric tools

- OpenSCAD The Programmers Solid 3D CAD Modeler, <u>http://www.openscad.org/</u>
- J.R. Shewchuk Adaptive Precision Floating-Point Arithmetic and Fast Robust Predicates, Effective implementation of Orientation and InCircle predicates <u>http://www.cs.cmu.edu/~quake/robust.html</u>
- OpenMESH A generic and efficient polygon mesh data structure, <u>https://www.openmesh.org/</u>
- VCG Library The Visualization and Computer Graphics Library, http://vcg.isti.cnr.it/vcglib/

 MeshLab - A processing system for 3D triangular meshes -https://sourceforge.net/projects/meshlab/?source=navbar

9.3 Collections of geometry resources

- N. Amenta, Directory of Computational Geometry Software, http://www.geom.umn.edu/software/cglist/.
- D. Eppstein, Geometry in Action, http://www.ics.uci.edu/~eppstein/geom.html.
- Jeff Erickson, Computational Geometry Pages, http://compgeom.cs.uiuc.edu/~jeffe/compgeom/



10. Computational geom. course summary

- Gives an overview of geometric algorithms
- Explains their complexity and limitations
- Different algorithms for different data
- We focus on
 - discrete algorithms and precise numbers and predicates
 - principles more than on precise mathematical proofs
 - practical experiences with geometric sw

