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1 Minimax Task

In one of the previous exercises, we have devised a bayesian desision strategy
which minimizes the risk of classification error. Both the conditional probabili-
ties p(x|y) and prior probabilities p(y) were known. In this exercise, we focus on
the case when prior probabilities are unknown and bayesian decision strategy
is not applicable.

We will show that wrong assumption of prior probabilities can lead to much
larger error than accepting the prior probabilites as unknowns and solving the
problem as minimax task.

1.1 Risk of strategy d(x)

Let’s assume only two classes y ∈ Y = {1, 2} and 0/1-loss function W . The
bayesian risk has form

R(d(x)) =
∫

X

∑
y∈Y

p(x)p(y|x)W (d(x), y)dx (1)

=
∫

X

∑
y: y 6=d(x)

p(y)p(x|y)dx . (2)

Let X1 ⊂ X denotes the subset of all x ∈ X classified by d(x) as class 1 and
X2 ⊂ X the subset of all x classified as class 2, where X = X1∪X2, X1∩X2 = ∅.
The equation (2) can be written as sum of two integrals

R(d(x)) =
∫

X1

∑
y: y 6=d(x)

p(y)p(x|y)dx +
∫

X2

∑
y: y 6=d(x)

p(y)p(x|y)dx =

= p(y = 2)
∫

X1

p(x|y = 2)dx + p(y = 1)
∫

X2

p(x|y = 1)dx .

.
By substituting p(y = 2) = 1− p(y = 1) we gain a risk function

R(d(x)) = p(y = 1)
[∫

X2

p(x|y = 1)dx−
∫

X1

p(x|y = 2)dx

]
+

∫
X1

p(x|y = 2)dx

(3)
which is linear for fixed strategy d(x) with respect to prior probability p(y = 1)
and thus to p(y = 2) as well. Remember that the conditional probabilities
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p(x|y = i) are given and for fixed d(x) (and thus fixed sets X1, X2) the integrals
are constant.

Moreover, from the risk function (3) also follows that if we find for given
p(x|y = 1) a p(x|y = 2) such strategy d(x) that∫

X2

p(x|y = 1)dx−
∫

X1

p(x|y = 2)dx = 0 , (4)

then the risk is independent of prior probabilities p(y = i) and equal to

R(d(x)) =
∫

X1

p(x|y = 2)dx =
∫

X2

p(x|y = 1)dx .

1.2 Minimax decision

The task is to find a decision strategy d(x) given the conditional probabilities
p(x|y = 1) and p(x|y = 2) but with prior probabilities p(y = 1) and p(y = 2)
unknown. We will seek such decision strategy d(x) whose worst case error for
any p(y = 1) is minimal, i.e. minimizing the maximal error

dm(x) = argmin
d(x)

max
p(y=1)

R (d(x), p(y = 1)) . (5)

1.2.1 Properties of minimax decision

• Minimization of worst case error

argmin
d(x)

max
p(y=1)

R (d(x), p(y = 1)) (6)

is equivalent to minimization

argmin
d(x)

max
{∫

X2

p(x|y = 1)dx,

∫
X1

p(x|y = 2)dx

}
. (7)

• The risk of minimax decision dm(x) cannot be lower than the risk of worst
bayesian decision strategy, i.e. bayesian strategy for the least favourable
prior probability p(y = 1).

• If for given p(x|y = 1), p(x|y = 2) exists bayesian decision strategy db(x)
such that ∫

X2
p(x|y = 1)dx =

∫
X1

p(x|y = 2)dx , (8)

then db(x) is also a minimax solution and it is a bayesian strategy with
the maximal risk w.r.t. p(y = 1), i.e. bayesian strategy for the least
favourable prior probabilities p(y = 1), p(y = 2).

Proofs omitted.
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