PRG — PROGRAMMING ESSENTIALS

Tomas Jenicek

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics,
Center for Machine Perception

https://cw.fel.cvut.cz/wiki/courses/be5b33prg/start
http://cmp.felk.cvut.cz/~jenicto2/
mailto:tomas.jenicek@fel.cvut.cz

Ao

N

CLASSES, OBJECTS @

A

—

means it provides
features supporting (OOP)

OOP main paradigm used in the creation of new software to
handle rapidly increasing size and complexity and to make
easier to modify and update

In Python, everything is an object — everything is an instance
of some class

In the focus is on writing functions
or procedures which operate on data

In the focus is on the creation
of objects which contain both

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Procedural_programming

—,

o)
@ OOP TERMINOLOGY @

: named data item that makes up an instance

: compound type interpretable as a template for the
objects that are instances of it
. is a prototype for an object that defines a set of
attributes that characterize any object of the class.
 The (class variables and instance variables) and
are both accessed via dot notation
: variable shared by all instances of the class

(class variables are defined within a class but outside any of
the class's methods; they are not used as frequently as
instance variables are)

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

Ao

N

OOP TERMINOLOGY ®

—,

. class variable or instance variable that holds
data associated with a class and its objects

: special method in Python (called
that is invoked automatically to set a newly created object’s
attributes to their initial values

: object whose type is of some class
(instance and object are used interchangeably)

. procedure necessary to create an instance of a
class and by running its initializer

)

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

Ao

N

OOP TERMINOLOGY ®

—

: a function that is defined inside a class definition
and is invoked on instances of that class

: a compound data type that is often used to model a
thing or concept in the real world

: bundles together the data and the operations that are
relevant for that kind of data

: variable defined inside a method that
belongs only to the current instance of a class
: transfer of the characteristics of a class to other
classes that are derived from it

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

Ao

CLASSES, OBJECTS ®

class Point:
'"" Point class represents and manipulates x,y coords. """

def init (self):
'"" Create a new point at the origin """
self.x 0
self.y 0

« EXAMPLE: create our own user-defined class: the

Consider the concept of a mathematical point: in two
dimensions, a point is two numbers (coordinates) that are
treated as a single object

A natural way to represent a point in Python is with two
numeric values — how to group these two values into a
compound object?

Define a new

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

Ao

(®)

CLASSES, OBIJECTS !

class Point:
'"" Point class represents and manipulates x,y coords. """

def init (self):

'"" Create a new point at the origin """
0
0

self.x
self.y

Class definitions are usually near the of the
program after the import statements, no need to put every
class into its own module

Syntax rules for a class definition are the same as for other
compound statements

Header begins with the keyword , followed by the

of the class, and ending with a

Levels of tell us where the class ends

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

ol CREATING CLASSES ®

class Point:
'"" Point class represents and manipulates x,y coords. """

def init (self):
'"" Create a new point at the origin """
self.x 0
self.y 0

e The statement creates a new class

* The class has a documentation string, which can be accessed
via

* The class suite consists of all the component statements
defining class members, data attributes and functions.

* |f the first line after the class header is a string it is the
of the class

ol CREATING CLASSES ®

__init__ is sometimes called the object’s constructor, because it is used similarly to the way

that constructors are used in other languages, but that is not technically correct - it's better to
call it the initialiser. There is a different method called new which is more analogous to a

constructor, but it is hardly ever used.

Every class should have a method with name
This initializer method is automatically called whenever a

* [nitializer is used to required within the
new instance by giving them their initial state/values
* The parameter (

) is automatically set to
that needs to be initialized

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://python-textbok.readthedocs.io/en/1.0/Classes.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://python-textbok.readthedocs.io/en/1.0/Classes.html

—,

WHAT IS SELF? ®

Self is the and we use this variable inside the
method bodies — but we don’t appear to pass it, why?

Whenever method is called on an object,
as the first parameter giving access
the object’s properties from inside the object’s methods

In some languages this parameter is implicit (i.e. it is not
visible in the function signature) and can be accessed with a
special keyword

In Python it is (very strongly followed
convention to name it self)

10

http://python-textbok.readthedocs.io/en/1.0/Classes.html
http://python-textbok.readthedocs.io/en/1.0/Classes.html

@% CLASSES, OBJECTS ®

class Point:
" Point class represents and manipulates x,y coords.

def init (self):
"" Create a new point at the origin ""'

self.x = 0

self.y = 0
p = Point() # Instantiate an object of type Point
q = Point() # Make a second point

print(p.x, p.Y, 9.X, q.yY) # Each point object has its own x and y

0000

« EXAMPLE: The variables p and ¢ are assigned references to
two new objects

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

)

(8

CREATING CLASSES AND INSTANCES

12

Think of a class as a

The class itself is not an instance of a point, but it contains the

Every time the , the factory is tasked to
make new object
As the object is produced, its is

executed to get the object properly set up with its factory

The process of making new object and setting it to default
settings is called

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

ATTRIBUTES ®

13

Like real world objects, object instances have both

and

Attributes can be modified in an instance using
Both and create their own
Syntax for accessing attributes (names) is the same

EXAMPLE: in this case the attribute selected is a data item
from an instance (state diagram showing the result of these
assignments is below)

(98]
o
|
e
{
W

>>> pP-X
>>> p.yY

n
NS

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

@ INITIALIZER

class Point:

14

" Point class represents and manipulates x,y coords. ""'

def init_(self, x=0, y=0):
""" Create a new point at x, y """
self.x X
self.y y

Other statements outside the class continue below here.

>>> p = Point(4, 2)
>>> q = Point(6, 3)

>>> r = Point() # r represents the origin (0, 0)
>>> print(p.Xx, .y, r.x)
4 30

* EXAMPLE: to create a point at position

(7, 6) we currently need three lines of code p.

oW

oint()

nnmw

* Make class constructor more general by adding parameters

into the method

* The x and y parameters here are (default values of 0)

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

Ao

OBJECT METHODS ®

15

class Point:
""" Create a new Point, at coordinates x, y """

def init (self, x=0, y=0):
""" Create a new point at x, y "'
self.x = x
self.y = y

def distance from origin(self):
""" Compute my distance from the origin """
return ((self.x ** 2) + (self.y ** 2)) ** 0.5

Advantage of using a class (e.g. Point) rather than a tuple is

that for points, but

may not be appropriate for other data types, e.g. tuples

(e.g. calculate the distance from the origin)

Class allows to as well as
to apply the methods on

Each instance of the class has its

Method but it is invoked on a specific

instance

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

OBJECT METHODS ®

>>> p
>>> p.

>>> p

>>> p
5.0

>>> g
>>> g

>>> q
12
>>> q.
13.0
>>> r
55> r.

>>> r.

>>> r.
0.0

Point (3, 4)

-y

.distance from origin()

Point (5, 12)

« X

-y

distance from origin()

= Point()
X

y

distance from origin()

16

class Point:
" Create a new Point, at coordinates x, y """

def init (self, x=0, y=0):
""" Create a new point at x, y """
self.x X
self.y v

def distance from origin(self):
""" Compute my distance from the origin """
return ((self.x ** 2) + (self.y ** 2)) ** 0.5

First parameter of a method refers to the
(the parameter)

The caller of

does not explicitly supply

an argument to match the self parameter

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

ik OBJECT METHODS G

17

>>> print(p.y)
4

>>> X = p.X
>>> print(x)

3

print("(x={0}, y={1})".format(p.x, p.y))
distance squared from origin = p.x * p.xXx + p.y * p.y

* The variable p refers to a object
(containing two attributes referring to the actual numbers)

* No conflict in the assignment between the variable x (in the
global namespace here) and the attribute x (in the namespace
belonging to the instance)

e Purpose of is to fully qualify which variable we
are referring to unambiguously

* EXAMPLE: the first line outputs (x=3, y=4),
the second line calculates the value 25

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

Ao

o)

INSTANCES AS ARGUMENTS / PARAMS | (&

def print point(pt):
print(" ({0}, {1})".format(pt.x, pt.y))

e Pass an

in the usual way

* The variable only holds a reference to an object, therefore

(both the caller and the called function now have a reference)

* Function

formats the output

takes a point as an argument and

18

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

Ao

INSTANCE TO STRING

class Point:
#.l‘

def to string(self):

return " ({0}, {1})".format(self.x, self.y)

>>> p = Point(3, 4)
>>> print(p.to string())
(3, 4)

>>> str(p)
'< main_.Point object at 0x01F9AA10>'

>>> print(p)
'< main_.Point object at 0x01F9AA10>'

e Best approach is to have a
produce a string representation of itself

* TOOLS: as type converter turns object into a string,
function automatically uses this conversion

19

so that every instance can

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

/%%§§%§§ |F45;T¥\Pu(:fg'r() S;T1R|ru(5 <§§i |

class Point:

...
def str_ (self): # All we have done is renamed the method
return " ({0}, {1})".format(self.x, self.y)
>>> str(p) # Python now uses the ___str method that we wrote.
(3, 4)
>>> print(p)
(3, 4)

e RECOMMENDATION: Define the standard method

* |f method is used instead of , Python
interpreter will use the defined code whenever it needs to
convert a Point to a string automatically

20

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

@ INSTANCES AS RETURN VALUES @

21

def midpoint(pl, p2):
'"" Return the midpoint of points pl and p2 """
mx = (pl.x + p2.x)/2
my = (pl.y + p2.y)/2
return Point(mx, my)

>>> p = Point(3, 4)
>>> q = Point(5, 12)
>>> r = midpoint(p, q)
>>> r

(4.0, 8.0)

 Functions and methods

« EXAMPLE: assume a point object in 2D and aim to find the
midpoint halfway between it and some other target point
(function midpoint)

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

@ INSTANCES AS RETURN VALUES ®

class Point:
e

def halfway(self, target):
""" Return the halfway point between myself and the target """
mx = (self.x + target.x)/2
my = (self.y + target.y)/2
return Point(mx, my)

>>>
>>>
>>>
>>>
(4.0, 8.0)

oint(3, 4)
oint(5, 12)
p-halfway(q)

P
P

H QT

 EXAMPLE: Implement the midpoint function as method
halfway instead (method is identical to the function on the
previous slide)

* As function calls are , method calls and object
instantiation are also , leading to this alternative
that uses

>>> print(Point (3, 4).halfway(Point(5, 12)))
(4.0, 8.0)

22

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

ik OOP PERSPECTIVE ®

23

OOP is about changing the perspective

e Syntax for a function call:
function is the one who executes on the variable

* Syntax in OOP:
object is the one who executes its method on given data /
attribute

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

EXAMPLE — CLASS VARIABLE @

>>> class Test(object):

i=3
>>> Test.i
3
>>> t = Test()
>>> t.1 # static variable accessed via instance
3

>>> t.1 = 5 # but if we assign to the instance ...
>>> Test.1 # we have not changed the static variable

>>> t.1 # we have overwritten Test.i on t by creating a new attribute t.1i

>>> Test.1 = 6 # to change the static variable we do it by assigning to the class
>>> t.1

5

>>> Test.1

6

>>> u = Test()
>>> U.1

6 # changes to t do not affect new instances of Test

https://stackoverflow.com/questions/68645/static-class-variables-in-python

https://stackoverflow.com/questions/68645/static-class-variables-in-python
https://stackoverflow.com/questions/68645/static-class-variables-in-python

EXAMPLE — CLASS VARIABLE

Test:
result =
print(id(result))

Test:
result = []
print(id(result))

add(self):
self.result += add(self):
self.result.append('hit")

test_al():
test = Test() test_al():
print(Test.result) test = Test()

ti§§%?qg£iest result)) R
Erint{iest reéult? print(id(test.result))
’ print(test.result)

test_b():

test = Test() test_b():
print(Test.result) test = Test()
test.add() test.add()
print(id(test.result)) print(id(test.result))
print(test.result) print(test.result)

test_al()
test b() test_al()

print(id(Test.result)) teﬁt-bf)
print(id(Test.result))

4523688008
4523688008
['hit']
4523688008
['hit', 'hit']
4523688008

https://stackoverflow.com/questions/68645/static-class-variables-in-python
https://stackoverflow.com/questions/68645/static-class-variables-in-python

DECORATORS

my_decorator(some_function):
wrapper():
("Something is happening before some_function() is called.")
some_function()
("Something is happening after some_function() is called.")

wrapper

just_some_function():
("Wheee!")

just_some_function = my_decorator(just_some_function)
just_some_function()

Something is happening before some_function() is called.
Wheee!
Something is happening after some_function() is called.

my_decorator(some_function):
wrapper():
("Something is happening before some_function() is called.")
some_function()
("Something is happening after some_function() is called.")

wrapper

@my_decorator
just_some_function():
("Wheee!")

just_some_function()

Something is happening before some_function() is called.
Wheee!
Something is happening after some_function() is called.

26

%
()

CLASS METHODS

27

* |In the same way class attributes are defined,
, class methods are defined
using @classmethod for ordinary method

e Class method still has its)
but by convention it is c's instead of
* |f class method is called from an instance,
, butif it is called from the class

* Naming the parameter cls serves as

SOURCE UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

ik CLASS METHODS C

28

* For tasks associated with a class utilizing constants and other
class attributes

« EXAMPLE: when we write classes to group related constants
together with functions which act on them — no need to
instantiate these classes at all

SOURCE UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

%%% EXAMPLE — INSTANCE METHODS ®

29

class Inst:

def __init_ (self, name):
self.name = name

def introduce(self):
print("Hello, I am %s, and my name is " %(self, self.name))

myinst = Inst("Test Instance")

otherinst = Inst("An other instance")

myinst.introduce()

outputs: Hello, I am <Inst object at x>, and my name is Test Instance

otherinst.introduce()
outputs: Hello, I am <Inst object at y>, and my name is An other instance

SOURCE https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods

https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods
https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods

ok EXAMPLE — CLASS METHODS G

30

class Cls:

@classmethod
def introduce(cls):
print("Hello, I am %s!"™ %cls)

Cls.introduce() # same as Cls.introduce(Cls)
outputs: Hello, I am <class 'Cls'>

Notice that again Cls is passed hiddenly, so we could also say Cls.introduce(Inst) and get
output "Hello, I am <class 'Inst'>. This is particularly useful when we're inheriting a class
from Cls :

class SubCls(Cls):
pass

SubCls.introduce()
outputs: Hello, I am <class 'SubCls'>

SOURCE https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods

https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods
https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods
https://stackoverflow.com/questions/17134653/difference-between-class-and-instance-methods

ik STATICS METHODS G

31

e Static method into it
as the first parameter

e Static method

e Static method is
(like class methods)

SOURCE UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLE - STATIC METHODS

Person:
TITLES = ('Dr', 'Mr', 'Mrs', 'Ms')

(name, surname):
.nName = name
.surname = surname

fullname() E

o

"%s %s" % (.surname)

classmethod
allowed_titles_starting_with(startswith):

[t t .TITLES t.startswith(startswith)]

staticmethod
allowed_titles_ending_with(endswith):

[t Person.TITLES t.endswith(endswith)]

jane = Person("Jane", "Smith")
(jane.fullname())
Jane Smith
(jane.allowed_titles_starting_with("M"))
['Mr', 'Mrs', 'Ms'l]
(Person.allowed_titles_starting_with("M"))
['Mr', 'Mrs', 'Ms'l]
(jane.allowed_titles_ending_with("s"))
['Mrs', 'Ms']
(Person.allowed_titles_ending_with("s"))
['Mrs', 'Ms']

SOURCE Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

%
()

PROPERTY

* Method to generate a property of an object
(e.g. calculating it from the object’s other properties)

e Use a method to

e Use a different method to
instead of accessing it directly

* These methods are called and , because they
“cet” and “set” the values of attributes, respectively

SOURCE UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLE — PROPERTY

Person:
(name, surname):
.name = name
.surname = surname

property
fullname():
"9%55 %s" % .surname)

@fullname.setter
fullname(value):

name, surname = value.split(" "
.name = name
.Surname = surname

@fullname.deleter
fullname() :
. hame
. Surname

SOURCE UNDER

Revision 8e685e710775

34

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

IMIPORTANT OBJECT PROPERTIES @

__init__ :the initialisation method of an object, which is called when the object is created.

__str__ : the string representation method of an object, which is called when you use the str

function to convert that object to a string.
e _ class__ :an attribute which stores the the class (or type) of an object - this is what is

returned when you use the type function on the object.
e eq__ :amethod which determines whether this object is equal to another. There are also

other methods for determining if it's not equal, less than, etc.. These methods are used in object
comparisons, for example when we use the equality operator == to check if two objects are
equal.

e add__ is a method which allows this object to be added to another object. There are

equivalent methods for all the other arithmetic operators. Not all objects support all arithemtic
operations - numbers have all of these methods defined, but other objects may only have a
subset.

e _ iter__ :amethod which returns an iterator over the object - we will find it on strings, lists
and other iterables. It is executed when we use the iter function on the object.
__1en__ : a method which calculates the length of an object - we will find it on sequences. It is
executed when we use the 1en function of an object.

__dict__ :adictionary which contains all the instance attributes of an object, with their names

as keys. It can be useful if we want to iterate over all the attributes of an object. _ dict does

not include any methods, class attributes or special default attributes like c1ass_ .

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

35

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLE — OBJECT PROPERTIES

Person:

(name, surname):
.name = name

« SUrname = surname

(other):

.name == other.name

.surname == other.surname
(other):
.surname == other.surname:

.name > other.name
. Surname > other.surnamd

other):

== other

other):
> other

other):
> other

(

== other)
other):

< other

SOURCE

Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES

datetime

Person:

(name, surname, birthdate, address, telephone, email):
.Name = name
.Surname = surname
.birthdate = birthdate

.address = address
. telephone = telephone
.email = email

age():
today = datetime.date.today()
age = today.year - .birthdate.year

today < datetime.date(today.year .birthdate.month
.birthdate.day):

age -=

age

person = Person(
IIJaneII
"Doe"
datetime.date()
"No. 12 Short Street, Greenville"
"555 456 0987"
"jane.doe@example.com"

EXAMPLES FROM Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

ik EXAMPLES ®

38

Person:
__init__(self, name, surname):
self.name = name
self.surname = surname

fullname(self):
"%s %s" % (self.name, self.surname)

jane = Person("Jane", "Smith")

(dir(jane))
__ 'y '_init__"', '_module__"', 'fullname', 'name', 'surname']

e Use function dir for inspecting objects: output list of the
attributes and methods

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

ik EXAMPLES ®

(person.name)

Jane
(person.email)
jane.doe@example.com
(person.age())
25

Exercise 1

1. Explain what the following variables refer to, and their scope:

Person

person

surname

self

age (the function name)

age (the variable used inside the function)

self.email

© N ok Wb

person.email

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES ®

Answer to exercise 1

1 1
2.
3.

Person is a class defined in the global scope. It is a global variable.

person is an instance of the rerson class. It is also a global variable.

surname iS a parameter passed intothe _init _ method - it is a local variable in the scope
ifthe init method.

. self is a parameter passed into each instance method of the class - it will be replaced by

the instance object when the method is called on the object with the . operator. It is a new

local variable inside the scope of each of the methods - it just always has the same value,
and by convention it is always given the same name to reflect this.

. age isamethod of the rerson class. It is a local variable in the scope of the class.

. age (the variable used inside the function) is a local variable inside the scope of the age
method.

. self.email isn't really a separate variable. It's an example of how we can refer to attributes

and methods of an object using a variable which refers to the object, the . operator and
the name of the attribute or method. We use the seif variable to refer to an object inside
one of the object’s own methods - wherever the variable se1f is defined, we can use

self.email , self.age() ,efc..

. person.email is another example of the same thing. In the global scope, our person instance

is referred to by the variable name person . Wherever person is defined, we can use

person.email , person.age() , etc..

EXAMPLES FROM UNDER Revision 8e685e710775

40

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES ®

41

datetime

Person:

(name, surname, birthdate, address, telephone, email):
. Name = name
.surname = surname
.birthdate = birthdate

.address = address
.telephone = telephone
.email = email

age(e
today = datetime.date.today()
age = today.year - .birthdate.year

today < datetime.date(today.year .birthdate.month
.birthdate.day):
age —=

age

Exercise 2 &

1. Rewrite the Prerson class so that a person’s age is calculated for the first time when a new

person instance is created, and recalculated (when it is requested) if the day has changed since
the last time that it was calculated.

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES

Answer to exercise 2
1. Here is an example program:

import datetime

class Person:

def __init__(, hame, surname, birthdate, address, telephone, email):

.name = name
.surname = surname
.birthdate = birthdate

.address = address

.telephone = telephone
.email = email

._age = None
._age_last_recalculated
._recalculate_age()

def _recalculate_age():

today = datetime.date.today()
.birthdate.year

age = today.year -

if today < datetime.date(today.year,

age -=1

._age = age
._age_last_recalculated

def age()
if (datetime.date.today() >
._recalculate_age()

return ._age

EXAMPLES FROM

None

.birthdate.month,

today

._age_last_recalculated):

UNDER

.birthdate.day):

Revision 8e685e710775

42

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES ®

Exercise 3

1. Explain the differences between the attributes name , surname and profession , and what

values they can have in different instances of this class:

class Smith:

surname = "Smith"
profession = "smith"
def __init__ (, hame, profession=None):

.name = npame
if profession is not None:
.profession = profession

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES ®

44

class Smith:
surname = "Smith"
profession = "smith"

def __init__ (self, name, profession=None):
self.name = name
if profession is not None:
self.profession = profession

Answer to exercise 3

1. name is always an instance attribute which is set in the constructor, and each class instance can
have a different name value. surname is always a class attribute, and cannot be overridden in
the constructor - every instance will have a surname value of smith . profession is a class

attribute, but it can optionally be overridden by an instance attribute in the constructor. Each
instance will have a profession value of smith unless the optional surname parameter is passed
into the constructor with a different value.

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

ik EXAMPLES ®

45

Exercise 4

1. Create a class called numbers , which has a single class attribute called muLTIPLIER ,and a

constructor which takes the parameters x and y (these should all be numbers).

1. Write a method called add which returns the sum of the attributes x and vy .

2. Write a class method called muitiply , which takes a single number parameter a2 and
returns the product of a and MULTIPLIER .

3. Wrrite a static method called subtract , which takes two number parameters, » and ¢,
and returns b - c.

4. Write a method called vaiue which returns a tuple containing the values of x and vy .
Make this method into a property, and write a setter and a deleter for manipulating the

valuesof x and vy .

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES

Answer to exercise 4
1. Here is an example program:

class Numbers:
MULTIPLIER = 3.5

def __init__(self, x, y):

self.x
self.y

s
X
y

def add(self):

return self.x + self.y

@classmethod
def multiply(cls, a):

return cls.MULTIPLIER * a

@staticmethod
def subtract(b, c¢):
return b - ¢

@property
def value(self):

return (self.x, self.y)

@value.setter

def value(self, xy_tuple):
self.x, self.y = xy_tuple

@value.deleter

def value(self):
del self.x
del self.y

46

Create a class called numbers , which has a single class attribute called nuLTIPLIER ,and a

constructor which takes the parameters x and y (these should all be numbers).

1. Write a method called add which returns the sum of the attributes x and vy .

2. Write a class method called mutitiply , which takes a single number parameter a and
returns the product of a2 and MULTIPLIER .

3. Write a static method called subtract , which takes two number parameters, b and c,
andreturns b - c.

4. Write a method called vaiue which returns a tuple containing the values of x and vy .
Make this method into a property, and write a setter and a deleter for manipulating the
values of x and vy .

EXAMPLES FROM http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

ik EXAMPLES ®

47

Exercise 5

1. Create an instance of the rerson class from example 2. Use the dir function on the instance.

Then use the dir function on the class.

1. What happens if you call the _ str method on the instance? Verify that you get the
same result if you call the str function with the instance as a parameter.

2. What is the type of the instance?

3. What is the type of the class?
4. Write a function which prints out the names and values of all the custom attributes of

any object that is passed in as a parameter.

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES ®

48
Answer to exercise 5
1. 1. You should see something like '< main__ .Person object at 0x7fcb233301d0>" .
2. <class '__main__.Person'> - _ main__ is Python’s name for the program you are executing.

3. <class 'type'> - any class has the type type .
4. Here is an example program:
def print_object_attrs(any_object):

for k, v in any_object. dict__ .items():
print("%s: %s" % (k, v))

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

ik EXAMPLES ®

49

Exercise 6

1. Write a class for creating completely generic objects: its init function should accept any

number of keyword parameters, and set them on the object as attributes with the keys as
names. Writea _ str_ method for the class - the string it returns should include the name of

the class and the values of all the object’s custom instance attributes.

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

EXAMPLES ®

50

Answer to exercise 6

1. Here is an example program:

class AnyClass:

def __init__(, **Kkwargs):
for k, v in kwargs.items():
setattr(, kK, V)

def __ str__ ()
attrs = ["%s=%s" % (k, v) for (k, v) in .__dict___.items()]
classname = .__Cclass__._ _name__
return "%s: %s" % (classname, " ".,join(attrs))

EXAMPLES FROM UNDER Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

N

REFERENCES @

A

—,

51

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under)

Version date: October 2012

by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers
(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)
Source repository is at

For offline use, download a zip file of the html or a pdf version
from

This lecture re-uses selected parts of the PYTHON TEXTBOOK

(released under Revision 8e685e710775)

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

