
Algorithms

Jiří Vyskočil, Marko Genyk-Berezovskyj

2010-2014

Algorithms
2 / 13

Introduction

� Course pages:

https://cw.felk.cvut.cz/doku.php/courses/ae4b33alg/start

� Course goals

The course is concerned with the ability to implement effectively solutions of various
problems arising in elementary computer science. Main topics of the course include
sorting and searching algorithms and related data structures. The course stresses
correct algorithms choice and effective implementation as an unique tool for
successful problems solving.

� Prerequisites (informal)

The student of the course is expected to be capable of programming in at least one
of the languages C/C++/Java. Integral part of the seminaries are practical
programming homeworks on algorithm topics. The student should be familiar with
basic structures like arrays, lists, files and should be able to manipulate data stored in
those structures.

Algorithms
3 / 13

Problems and algorithms

� Computational problem P
� The task is to transform input data IN to the output data OUT which

satisfy some prescribed conditions.

� Algorithm A
� Computational process reflecting the progress of solution of problem P.

� Exact and unambiguous description of the sequence of computational

steps which transforms input data IN step by step to output data OUT

satisfying the conditions prescribed in P.

� Problem instance
� Problem P taken together with one set of particular input data.

� Correctness of algorihtm A for problem P
� Algorithm A is correct, if it can produce an appropriate output in finite

time for each instance of problem P.

Algorithms
4 / 13

How to compare algorithms?

� For each algorithm write a program which implements it
and run it on a computer with some set of data instances.

� Compare the speed and memory demands of each
implementation.

� What happens when we use a different computer or OS?
What happens when we choose other data instances or
other programming language?

� The comparison will yield very probably a different result.

� → There is a pressing need for a comparison method which
is independent on programmer, programming language,
OS, computer, HW in general...

Algorithms
5 / 13

Rate of growth of functions
� Data size: n = Number of data items -- integers, vectors etc.

One operation takes time 1µs (microsecond = 10−6 sec).
T(n): Number of operations required to complete the algorithm.

n/T(n) 20 40 60 80 100

log(n) 4.3 µs 5.3 µs 5.9 µs 6.3 µs 6.6 µs

n 20 µs 40 µs 60 µs 80 µs 0.1 ms

n log(n) 86 µs 0.2 ms 0.35 ms 0.5 ms 0.7 ms

n2 0.4 ms 1.6 ms 3.6 ms 6.4 ms 10 ms

n3 8 ms 64 ms 0.22 sec 0.5 sec 1 sec

n4 0.16 sec 2.56 sec 13 sec 41 sec 100 sec

2n 1 sec 12.7 days 36600 yrs 1011 yrs 1016 yrs

n! 77100 yrs 1034 yrs 1068 yrs 10105 yrs 10144 yrs

Algorithms
6 / 13

Asymptotic estimations

� Upper asymptotic estimate (capital omikron estimate):

� Meaning:

f is asymptotically bounded above by function g
(disregarding an additive or multiplicative constant).

� Definition:

where

�(�) ∈ Ο((�))

(∃� > 0)(∃�0)(∀� > �0) ∶ �(�) ≤ � ∙ 	(�)

 � ∈ ℝ>0 �0, � ∈ ℕ �, 	 ∈ ℕ → ℝ≥0

Algorithms
7 / 13

Asymptotic estimations

� Upper asymptotic estimate for function of more variables:

� Definition:

where

�(�1, ⋯ , ��) ∈ Ο((�1 , ⋯ , ��))

(∃� > 0)(∃�0)(∀�1 > �0) ⋯ (∀�� > �0) ∶
 �(�1, ⋯ , ��) ≤ � ∙ 	(�1 , ⋯ , ��)

 � ∈ ℝ>0 �0 , �1 , ⋯ , �� ∈ ℕ �, 	 ∈ ℕ → ℝ≥0

Algorithms
8 / 13

Asymptotic estimations

� Lower asymptotic estimate (capital omega estimate):

� Meaning:

f is asymptotically bounded below by function g
(disregarding an additive or multiplicative constant).

� Definition:

where

�(�) ∈ Ω((�))

(∃� > 0)(∃�0)(∀� > �0) ∶ � ∙ 	(�) ≤ �(�)

 � ∈ ℝ>0 �0, � ∈ ℕ �, 	 ∈ ℕ → ℝ≥0

Algorithms
9 / 13

Asymptotic estimations

� Optimal asymptotic estimation (capital theta estimate):

f is asymptotically bounded above and below by

function g (disregarding an additive or multiplicative

constant).

� Definition:

� Or alternatively:

where

�(�) ∈ Θ((�))

(∃�1, �2 > 0)(∃�0)(∀� > �0): �1 ∙ 	(�) ≤ �(�) ≤ �2 ∙ 	(�)

�1, �2 ∈ ℝ>0 �0 , � ∈ ℕ �, 	 ∈ ℕ → ℝ≥0

Θ�	(�)� ≝ Ο�	(�)� ∩ Ω((�))

Algorithms
10 / 13

Asymptotic estimations

� Example: Let there be a 2D array of MxN numbers. What
is the asymptotic complexity of finding maximum value in
this array?

� Upper bounds:
� O((M+N)2) �

� O(max(M,N)2) �

� O(N2) �

� O(MN)
�

� Optimal:
� Θ(MN)

� Lower bounds:
� Ω(1) �

� Ω(M) �

� Ω(MN)
�

Algorithms
11 / 13

Asymptotic estimations

� Let f (n) be the complexity of algorithm A. A is said to be

logarithmic, if

linear, if

quadratic, if

cubic, if

polynomial, if ,

exponential, if ,

� Note: Logarithmic complexities do not require to include
the base of the logarithm because for any a,b > 1 holds

�(�) ∈ Θ(log(�))

�(�) ∈ Θ(�)

�(�) ∈ Θ(�2)

�(�) ∈ Θ(�3)

�(�) ∈ Θ(��)

�(�) ∈ Θ(��) � ∈ ℕ

� ∈ ℕ

log% (�) ∈ Θ(log& (�))

Algorithms
12 / 13

Properties of symptotic estimations

� The class of he complexity of a polynomial is given by the
term with highest exponent:

�' ∈ Ο��' ′ �)� ' ≤ '′
�(�) ∈ Ο(�(�))

� ∙ Ο(�(�)) = Ο(� ∙ �(�)) = Ο(�(�))
Ο�Ο(�(�))� = Ο��(�)�

Ο(�(�)) + Ο((�)) = Ο(max{�(�), 	(�)})
Ο(�(�)) ∙ Ο((�)) = Ο��(�) ∙ 	(�)�

Ο(�(�) ∙ 	(�)) = �(�) ∙ Ο((�))

1 %) ∙ ��−)
�

)=0
∈ 1 Ο(��)

�

)=0
= � ∙ Ο(��) = Ο(� ∙ ��) = Ο(��)

Algorithms
13 / 13

Properties of symptotic estimations

� Theorem: If functions f(n), g(n) are always positive then
for the limit in the infinity holds:

� , then , but not

� , where , then

� , then , but not

� Corollary: Let be a fixed integer. Then

� .

� You may use L'Hôpital's rule to prove the corollary.

lim�→∞
�(�)
	(�) = 0 �(�) ∈ Ο((�)) �(�) ∈ Θ((�))

lim�→∞
�(�)
	(�) = %

lim�→∞
�(�)
	(�) = ∞

0 < % < ∞ �(�) ∈ Θ((�))

	(�) ∈ Ο(�(�)) 	(�) ∈ Θ(�(�))

) ∈ ℕ

(log(�))) ∈ Ο(�)

