
Algorithms
complexity of recursive algorithms

Jiří Vyskočil, Marko Genyk-Berezovskyj

2010-2014



Algorithms
2 / 14

Recurrences

 A recurrence is an equation or inequality that describes a function in 
terms of its value on smaller inputs. For example

Where T	ሺnሻ is the overall complexity of the algorithm. 

The complexities for different values of n are listed on the right 
hand side.

 Marginal cases (n	< constant) can be neglected, because the 
complexity of an algorithm in such cases is also constant. Often it 
happens that rounding the values does not change the results too.
The given recurrence can be simplified to:
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Simplifying recurrences 
 We want to obtain a formula with no recurrence. 

 Example: T(n) = (log(n))

 Methods:
 Substitution method

 First, guess the solution and then prove its correctness by induction.
 Recursion-tree method

 Evaluate characteristics of the recursion tree.
 Use the „cookbook“ - Master theorem

 Some common forms of recurrences are solved in general by the 
Master theorem, we only have to evaluate the conditions of the 
theorem.
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Substitution method
 Two-steps solution:

1. Guess the exact form of the solution.
 Typically, one would precompute a set of numerical 

results for different input n's  and derive a formula. 
2. Prove the correctness of the guess.

 Mathematical induction is the tool of choice in most 
cases.

 The method is very effective provided we can complete the 
step 1 correctly.  On the other hand, there are no general 
rules how to deal with it.
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 Example:

T (n)	=	2T (n/2)	+	n

 Suppose, we come (somehow) to a guess:

T (n)	=	O(n	log(n))

 Using the definition of upper bound "O" we want to prove:

T (n)	≤	cn log	(n)

for some suitable c >	0.

 State an induction hypothesis  (i.e. let the guess be true 
for  n/2 ): T (n/2)	≤	c (n/2) log	(n/2)

Substitution method - Example
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Substitution method - Example
 Substitute the hypothesis into the original recurrence                     

T (n)	=	2T (n/2)	+	n and complete the proof in standard manner as 
you would do in any other induction proof.

T(n) ≤	 2(c (n/2)	log(n/2))	+	n

≤	 cn log(n/2)	+	n //	due	to	the	hypothesis

= cn log	(n)	‐ cn log	(2)	+	n

= cn log	(n)	‐ cn +	n

≤	 cn log	(n)

The last inequality holds for c ≥	1.

 The induction base case holds trivially: All what is needed is to show 
that for some values of n0 and c >	0 the base case holds.        
Choose for example n0=3 and c ≥	2.

 The proof is complete, the substitution method has yielded a result.
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Recursion-tree method - Example
 Recurrence:

T (n)	=	3T (n/4)	+	cn2

 Iteratively build more and more complete recursion trees:

 Recursion tree visualizes the recursive process, a node 
represents a subprocess and it is labeled by its complexity. The 
sum of all labels must be the equal to the complexity T (n)
specified in the given recurrence.
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Recursion-tree method - Example
 The resulting tree looks like:

 Sums of the labels in particular tree depths are listed to the right. 
By adding sums in all levels we obtain the resulting complexity: O	(n2)



Algorithms
9 / 14

Recursion-tree method - Example
 Adding the sums in particular depths might be done as follows:

use formula

for |x|	<	1
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Using the "cookbook"
 Master theorem is applicable to the recurrences of the form:

T (n)	=	a	T (n/b)	+	f	(n)

Where a ≥	1 and b >	1	are constants

and f	(n) is asymptotically positive function.

 Rounding the term T (n/b) to either T or	(ۂn/bہ) T ۀn/bڿ) does not 
affect the resulting complexity in this case.
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Using the "cookbook"
 Master theorem

 Let a ≥	1, b >	1 be constants, let f	(n) be a function and let T (n)		be
defined for non-negative integers by the recurrence

T (n)	=	a	T (n/b)	+	f	(n)
where n/b means ۀn/bڿ or .ۂn/bہ Then the following holds.

1. If f	(n)	∈ O(nlogb(a)‐ε)	for some constant ε >	 0, then
T (n)	∈ Θ(nlogb(a)).

2. If f	(n)	∈ Θ(nlogb(a)), then
T (n)	∈ Θ(nlogb(a) log(n)).

3. If f	(n)	∈ Ω(nlogb(a)+ε )	for some constant ε > 0 and if
a∙f(n/b) ≤ c∙f(n) for some constant c < 1 and all sufficiently big n,

then
T (n) ∈ Θ(f(n)).
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Using the "cookbook"   Example 1

 Example 1:

T (n)	=	9T(n/3)	+	n

 The parameters are:  a =	9, b =	3, f (n)	=	n ∈ O(nlog3(9)‐1). 

It is the case 1 of Master theorem.

 The resulting complexity is thus:

T (n)	∈ Θ(nlog3(9))	= Θ(n2).
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Using the "cookbook"    Example 2

 Example 2:

T (n)	=	T(2n/3)	+	1

 The parameters are:  a =	1, b =	3/2, 

 f (n)	=	1	=	nlog3/2(1) ∈ Θ(nlog3/2(1))	.

It is the case 2 of Master theorem.

 The resulting complexity is thus:

T (n)	∈ Θ(nlog3/2(1) log(n))	= Θ(log(n))	
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Using the "cookbook"    Example 3
 Example 3: T (n)	=	3T(n/4)	+	n log(n)

 The parameters are:  a =	3, b =	4, 

f (n)	=	n log(n) and we know that nlog4(3)= O(n0.793) .

Therefore, we can state:    f (n) ∈ Ω(nlog4(3)+0.2).

To satisfy conditions of case 3 it must hold for all c <	1	and
all sufficiently big n that a	f (n/b)	≤	c f (n).			It really does:
a	f (n/b)	=	3(n/4)log(n/4)	≤	(3/4)n log(n) =	c f (n),	 for c =	¾.

 The resulting complexity is thus:

T (n)	∈ Θ(n log(n))	


