Multiagent Systems (BE4M36MAS) # Solving Extensive-Form Games and Other Representations of Dynamic Games #### Branislav Bošanský Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague branislav.bosansky@agents.fel.cvut.cz November 3, 2020 Previously ... on multi-agent systems. - Solving Extensive-Form Games - 2 Sequence-Form Representation #### Sequence Form Linear Program (SQF) We are now ready to state the linear program: $$\max_{r_1,v} v(root) \tag{1}$$ s.t. $$r_1(\emptyset) = 1$$ (2) $$0 \le r_1(\sigma_1) \le 1 \qquad \forall \sigma_1 \in \Sigma_1$$ (3) $$\sum_{a \in \mathcal{A}(I_1)} r_1(\sigma_1 a) = r_1(\sigma_1) \quad \forall I_1 \in \mathcal{I}_1, \sigma_1 = \mathsf{seq}_1(I_1)$$ (4) $$\sum_{I' \in \mathcal{I}_2: \sigma_2 a = \mathsf{seq}_2(I')} v(I') + \sum_{\sigma_1 \in \Sigma_1} g(\sigma_1, \sigma_2 a) r_1(\sigma_1) \ge v(I) \qquad \forall I \in \mathcal{I}_2, \sigma_2 = \mathsf{seq}_2(I), \forall a \in \mathcal{A}(I)$$ (5) (5) - \blacksquare seq_i(I) is a sequence of player i to information set, - $I \in \mathcal{I}_i$, v_I is an expected utility in an information set, - \bullet inf_i (σ_i) is an information set, where the last action of σ_i has been executed. - \bullet $\sigma_i a$ denotes an extension of a sequence σ_i with action a ### Simple Network Security Scenario - Flip-It Game #### Flip-it Game in a network - players aim to gain control over the hosts in the network - the defender initially controls all hosts - both players choose which node to attack/protect simultaneously (in case of a tie, the control of the node does not change) - players only observe the result of their last move - there are different rewards/costs for each node ### Simple Network Security Scenario – Flip-It Game #### SQF for Flip-it Game in a network | Depth | Size (# Nodes) | Time [s] | LP Time [s] | |-------|----------------|----------|-------------| | 3 | 15,685 | 1 | 1 | | 4 | 495,205 | 23 | 8 | | 5 | 16,715,941 | _ | _ | ### Advantages/Disadvantages of SQF - (+) the fastest exact algorithm (if the LP fits into memory) - (+) quite easy to implement - (–) scales poorly due to memory limitations - (-) very difficult to make it domain-specific #### Incremental Strategy Generation Large linear programs can be solved by an incremental construction of the LP. In game theory, the method has been known as double-oracle algorithm. There are 4 steps that repeat until convergence [Bosansky et al., 2014]: - create a restricted game a simplified game where the players are allowed to choose only from a limited set of sequences of actions, - **2 solve the restricted game** formalize the restricted game as a sequence-form LP and solve it, - **3 compute the best response** each player computes a best response in the **original game** to the strategy from the **restricted game**, - 4 expand the restricted game if the best responses strictly improve the expected value, they are added as possible actions into the restricted game. The original game. Sequences that form the restricted game will be highlighted. Sequences AC and xz are added to the restricted game (as default sequences of actions). Sequence yu is added to the restricted game as a best response of the minimizing player. Sequence BE is added to the restricted game as a best response of the maximizing player. There is no action defined for the node with history ByE. The algorithm turns that node into a temporary leaf and assigns a temporary utility value for that leaf. The algorithm turns the temporary leaf into a node when an action \boldsymbol{s} or t is added into the restricted game. #### Characteristics of DOEFG Generalization of the double oracle principle to structured strategy spaces (such as sequences/realization plans). Creating a valid restricted game is more complicated than adding a single strategy (one may need to create temporary leaves). DOEFG converges in at most linear number of iterations in the size of the game tree (compared to the exponential number of iterations when using strategies). ### Simple Network Security Scenario – Flip-It Game #### **DOEFG** for Flip-it Game in a network | Depth | # Nodes | SQF [s] | SQF LP [s] | DOEFG [s] | |-------|------------|---------|------------|-----------| | 3 | 15,685 | 1 | 1 | 1 | | 4 | 495,205 | 23 | 8 | 9 | | 5 | 16,715,941 | _ | _ | 508 | ### Advantages/Disadvantages of DOEFG - (+) can solve much larger domains compared to SQF - (+) in a domain-independent way, the algorithm identifies necessary strategies to consider in a large EFG - (+) best-response algorithms can be significantly improved for specific domains/problems - (-) not that easy to implement - (-) the sequence-form linear program of the restricted game can be a bottleneck ### Simple Network Security Scenario - Flip-It Game ## DOEFG with ordered moves for BR algorithm for Flip-it Game in a network | Depth | # Nodes | SQF [s] | SQF LP [s] | DOEFG [s] | DOEFG ordered [s] | |-------|------------|---------|------------|-----------|-------------------| | 3 | 15,685 | 1 | 1 | 1 | 1 | | 4 | 495,205 | 23 | 8 | 9 | 5 | | 5 | 16,715,941 | _ | _ | 508 | 168 | For depth 6 (size $\approx 4\times 10^9$ nodes), DOEFG with ordered moves for BR reached error 0.1 in 2 hours. ### Approximate Algorithms for Extensive-Form Games Algorithms based on Counterfactual Regret Minimization ### Approximate Algorithms for Extensive-Form Games Instead of computing the optimal strategy directly, one can employ learning algorithms and learn the strategy via repeated (simulated, or self-) play. The algorithm minimizes so called *regret* and these algorithms are also known as *no-regret learning* algorithms. #### Main idea: - in each iteration, traverse through the game tree and adapt the strategy in each information set according to the learning rule - this learning rule minimizes the (counterfactual) regret - the algorithm minimizes the overall regret in the game - the average strategy converges to the optimal strategy #### Regret and Counterfactual Regret Player i's regret for not playing an action a'_i against opponent's action a_{-i} $$u_i(a_i', a_{-i}) - u_i(a_i, a_{-i})$$ In extensive-form games we need to evaluate the value for each action in an information set (counterfactual value) $$v_i(s, I) = \sum_{z \in \mathcal{Z}_I} \pi_{-i}^s(z[I]) \pi_i^s(z[z[I]) u_i(z),$$ #### where - \blacksquare \mathcal{Z}_I are leafs reachable from information set I - lack z[I] is the history prefix of z in I - $\quad \blacksquare \ \pi_i^s(h)$ is the probability of player i reaching node h following strategy s ### Regret and Counterfactual Regret Counterfactual value for one deviation in information set I; strategy s is altered in information set I by playing action $a:v_i(s_{I\to a},I)$ at a time step t, the algorithm computes $\emph{counterfactual regret}$ for current strategy $$r_i^t(I,a) = v_i(s_{I\rightarrow a},I) - v_i(s_I,I)$$ the algorithm calculates the cumulative regret $$R_i^T = \sum_{t=1}^T r_i^t(I, a),$$ $R_i^{T,+}(I, a) = \max\{R_i^T(I, a), 0\}$ strategy for the next iteration is selected using regret matching $$s_i^{t+1}(I,a) = \begin{cases} \frac{R_i^{T,+}(I,a)}{\sum_{a' \in \mathcal{A}(I)} R_i^{T,+}(I,a')} & \text{if the denominator is positive} \\ \frac{1}{|\mathcal{A}(I)|} & \text{otherwise} \end{cases}$$ ### Simple Network Security Scenario - Flip-It Game #### CFR for Flip-it Game in a network¹ ¹With the game tree pre-built in memory (took 1088s). #### Extensions of Counterfactual Regret Minimization There are **many** variants of the vanilla CFR algorithm: - MCCFR CFR updates are not performed in the complete game, but using outcome sampling (faster iterations) [Lanctot, 2013, Brown and Sandholm, 2016] - CFR-BR the second player performs a best-response (BR) update instead of a CFR update (ideal for games where a domain-specific BR algorithm is available) [Johanson et al., 2011] - CFR-D decomposition of CFR updates by subgames (helpful if the game is too large to keep all information sets in memory) [Burch et al., 2014] - **CFR+** main modification of the baseline CFR algorithm that significantly improves convergence [Tammelin, O. 2014] ### Extensions of Counterfactual Regret Minimization (CFR+) #### **CFR+** differs from CFR in three aspects: - lacktriangle only positive regrets are kept in cumulative regrets R_i^T - players are alternating in the updates - lacktriangleright in the computation of the average strategy, first d iterations are ignored, later iterations are more important compared to first iterations Sometimes, even the current strategy reaches low exploitability. ### Extensions of Counterfactual Regret Minimization (CFR+) Figure 2: No Limit Texas Hold'em flop subgame ²Figure from [Tammelin, O. 2014]. ### Advantages/Disadvantages of CFR - (+) practical optimization algorithm - (+) easy to implement [Lanctot, 2013, p.22] - (+) memory requirements can be reduced with domain-specific implementation (or CFR-D) - (-) CFR converges very slowly if a close approximation is required (CFR+ is better) - (-) performance in other domains than poker is largely unknown (in some cases slower than DOEFG) ### Continual Resolving and Deepstack Is there no hope for a provably algorithm that behaves similarly to perfect information games? Recently, new methods that allow limited-lookahead algorithm for imperfect information games for poker [Moravcik et al., 2017, Brown and Sandholm, 2017]. #### Key properties: - Use (a more complex) heuristic function to evaluate positions at the end of the depth-limited game tree - Solve an EFG with a limited lookahead (e.g., using CFR or other algorithm) - Use a specific gadget construction when advancing to next turn of the game. One cannot assign a heuristic value just to a state (as in perfect information games), but to all states players consider possible. ### Continual Resolving and Deepstack ³Picture from [Moravcik et al., 2017]. #### Generalization of Continual Resolving Adaptation of continual resolving technique to other (security) domains is not straightforward: - the actions are generally not observable (the defender does not know which host the attacker infected) - the size of information sets (in number of possible states) increases exponentially with number of turns in the game - the size of the information sets is changing for the heuristic/neural network - the size of the information sets becomes impractical for large horizon - the number of turns can be very large (e.g., Advanced Persistent Threats (APTs)) #### Other Representations Other representations for dynamic / sequential games. #### **Extensive-Form Games** Let's assume that we want to play some normal-form game twice. For example, rock-paper-scissors: | | R | P | S | |--------------|---------|---------|--------| | \mathbf{R} | (0,0) | (-1,1) | (1,-1) | | P | (1, -1) | (0,0) | (-1,1) | | \mathbf{S} | (-1,1) | (1, -1) | (0,0) | #### Question How can we model such games? We can model the game as an extensive-form game. Pros: we already know how to solve such a game. Cons: it is unnecessarily large. ### RPS Played Twice as an Extensive-Form Games We can use a model specific for repeated games. #### Finitely Repeated Games #### Definition In repeated games we assume that a normal-form game, termed the *stage game*, is played repeatedly. If the number of repetitions (or rounds) is finite, we talk about *finitely repeated games*. #### Question How can we solve finitely repeated games? We can use backward induction. Why does this work if we have an extensive-form game with imperfect information? ### Infinitely Repeated Games #### Definition Assume that a *stage game* is played repeatedly. If the number of repetitions (or rounds) is infinite, we talk about *infinitely repeated games*. We cannot use extensive-form games as a underlying model. There are no leafs to assign utility values to. We need to define other utility measures: #### Definition Given an infinite sequence of payoffs $r_i^{(1)}, r_i^{(2)}, \ldots$ for player i, the average reward of i is $$\lim_{k \to \infty} \frac{\sum_{j=1}^{k} r_i^{(j)}}{k}$$ ### Infinitely Repeated Games #### Definition Given an infinite sequence of payoffs $r_i^{(1)}, r_i^{(2)}, \ldots$ for player i, and a discount factor β with $0 \le \beta \le 1$, the future discounted reward is $$\sum_{j=1}^{\infty} \beta^j r_i^{(j)}$$ Why do we use discount factor? - a player cares more about immediate rewards - \blacksquare a repeated game can terminate after each round with probability $1-\beta$ ### Strategies in Repeated Games How can we represent the strategies in infinitely repeated games? (the game tree is infinite) a stationary strategy – a randomized strategy that is played in each stage game Is this enough? Consider a repeated prisoners dilemma – what is the most famous strategy in repeated prisoners dilemma? Tit-for-tat: the player starts by cooperating and thereafter chooses in round j+1 the action chosen by the other player in round j. We can have more complex strategies consisting of states/machines. ## Strategies in Repeated Games #### Definition Given a game G=(N,A,u) that will be played repeatedly, an automaton M_i for player i is a four-tuple (Q_i,q_i^0,δ_i,f_i) , where: - Q_i is a set of states; - q_i^0 is the start state; - δ_i defines a transition function mapping the current state and an action profile to a new state, $\delta_i:Q_i\times A\to Q_i$ - f_i is a strategy function associating with every state an action for player $i, f_i: Q_i \to A_i$. A strategy for Tit-for-Tat # Strategies in Repeated Games #### Definition A payoff profile $r=(r_1,r_2,\ldots,r_n)$ is *enforceable* if $\forall i\in\mathcal{N}$, $r_i\geq v_i$. where v_i is a minmax value for player i $$v_i = \min_{s_{-i} \in \mathcal{S}_{-i}} \max_{s_i \in \mathcal{S}_i} u_i(s_{-i}, s_i)$$ ### Definition A payoff profile $r=(r_1,r_2,\ldots,r_n)$ is *feasible* if there exist rational, nonnegative values α_a such that for all i, we can express r_i as $\sum_{a\in\mathcal{A}}\alpha_au_i(a)$, with $\sum_{a\in\mathcal{A}}\alpha_a=1$. # Nash Strategies in Repeated Games ### Theorem (Folk Theorem) Consider any n-player normal-form game G and any payoff profile $r=(r_1,r_2,\ldots,r_n).$ - **1** If r is the payoff profile for any Nash equilibrium s of the infinitely repeated G with average rewards, then for each player i, r_i is enforceable. - 2 If r is both feasible and enforceable, then r is the payoff profile for some Nash equilibrium of the infinitely repeated G with average rewards. ## Stochastic Games Let's generalize the repeated games. We do not have to play the same normal-form game repeatedly. We can play different normal-form games (possibly for infinitely long time). ### Definition (Stochastic game) A stochastic game is a tuple $(Q, \mathcal{N}, \mathcal{A}, \mathcal{P}, \mathcal{R})$, where: - \boldsymbol{Q} is a finite set of games - ${\cal N}$ is a finite set of players - ${\cal A}$ is a finite set of actions, ${\cal A}_i$ are actions available to player i - \mathcal{P} is a transition function $\mathcal{P}:Q\times\mathcal{A}\times Q:\rightarrow [0,1]$, where $\mathcal{P}(q,a,q')$ is a probability of reaching game q' after a joint action a is played in game q - \mathcal{R} is a set of reward functions $r_i:Q imes\mathcal{A} o\mathbb{R}$ ### Stochastic Games Similarly to repeated games we can have several different rewards (or objectives): - discounted - average - reachability/safety In reachability objectives a player wants to visit certain games infinitely often. Related to reaching some target state (for example attacking a target) in a game without a pre-determined horizon. # Stochastic Games - Examples Repeated prisoners dilemma: ## Equilibria in Stochastic Games ### Definition (History) Let $h_t = (q_0, a_0, q_1, a_1, \dots, a_{t1}, q_t)$ denote a history of t stages of a stochastic game, and let H_t be the set of all possible histories of this length. ### Definition (Behavioral strategy) A behavioral strategy $s_i(h_t,a_{i_j})$ returns the probability of playing action a_{i_j} for history h_t . ## Definition (Markov strategy) A Markov strategy s_i is a behavioral strategy in which $s_i(h_t,a_{i_j})=s_i(h_t',a_{i_j})$ if $q_t=q_t'$, where q_t and q_t' are the final games of h_t and h_t' , respectively. ## Equilibria in Stochastic Games ### Definition A strategy profile is called a *Markov perfect equilibrium* if it consists of only Markov strategies, and is a Nash equilibrium. #### **Theorem** Every n-player, general-sum, discounted-reward stochastic game has a Markov perfect equilibrium. ## Equilibria in Stochastic Games For other rewards, Markov perfect equilibrium does not have to exist. # Approximating Optimal Strategies in Stochastic Games Standard algorithms from Markov Decision Processes, value and strategy iteration, translate to stochastic games. ### Algorithm 1. Value Iteration ``` \begin{array}{lll} \text{1: } t := 0 \\ \text{2: } \tilde{v}^0 := (0, \dots, 0, 1) \, /\!\!/ \, \text{the vector } \tilde{v}^0 \, \text{is indexed } 0, 1, \dots, N, N+1 \\ \text{3: } & \textbf{while true do} \\ \text{4: } & | & t := t+1 \\ \text{5: } & | & \tilde{v}^t_0 := 0 \\ \text{6: } & | & \tilde{v}^t_{N+1} := 1 \\ \text{7: } & | & \textbf{for } i \in \{1, 2, \dots, N\} \, \textbf{do} \\ \text{8: } & | & | & | & \tilde{v}^t_i := \text{val}(A_i(\tilde{v}^{t-1})) \end{array} ``` # Approximating Optimal Strategies in Stochastic Games ### Algorithm 2. Strategy Iteration ``` 1: t := 1 2: x^1 := the strategy for Player I playing uniformly at each position 3: while true do y^t := an optimal best reply by Player II to x^t for i \in \{0, 1, 2, \dots, N, N+1\} do v_i^t := \mu_i(x^t, y^t) 6: 7: t := t + 1 for i \in \{1, 2, ..., N\} do 8: if \operatorname{val}(A_i(v^{t-1})) > v_i^{t-1} then 9: x_i^t := \operatorname{maximin}(A_i(v^{t-1})) 10: 11: else x_i^t := x_i^{t-1} 12: ``` ## Invitation - Algorithmic Game Theory (XEP36AGT) #### XEP36AGT - Algoritmická teorie her This is a CW page for the course Algorithmic Game Theory (XEP36AGT). #### Lectures | Date | Topic | Lecturer | |-----------|---|----------| | 18.2.2019 | Introduction, Overview | Bosansky | | 25.2.2019 | - Cancelled (Invited lecture by Yufei Han - Life of PI: Towards Trustworthy Machine) - | | | 4.3.2019 | Nash, Fixed Point, Main Complexity Classes | Bosansky | | 11.3.2019 | Computing and Approximating a Nash Equilibrium (Lemke Howson, MILP) | Bosansky | | 18.3.2019 | Computing a Stackelberg Equilibrium | Bosansky | | 25.3.2019 | Computing and Approximation of a Correlated
Equilibrium | Bosansky | | 1.4.2019 | Repeated and Stochastic Games | Bosansky | | 8.4.2019 | Online Learning and Multiarmed Bandit Problems | Lisy | | 15.4.2019 | Learning in Normal-Form Games, Fictitious Play | Lisy | | 22.4.2019 | - Cancelled (Easter) - | | | 29.4.2019 | Regret Matching, Counterfactual Regret
Minimization | Lisy | | 6.5.2019 | Continual Resolving in Extensive-Form Games (DeepStack) | Lisy | | 13.5.2019 | Continuous Games and Their Equilibria. Separable Games. | Kroupa | | 20.5.2019 | Polynomial Games. Reduction to an SDP Problem. | Kroupa | ### References I [Bosansky et al., 2014] Bosansky, B., Kiekintveld, C., Lisy, V., and Pechoucek, M. (2014). An Exact Double-Oracle Algorithm for Zero-Sum Extensive-Form Games with Imperfect Information. Journal of Artificial Intelligence Research, 2014. [Bowling et al., 2015] M. Bowling, N. Burch, M. Johanson, O. Tammelin. Heads-up limit holdem poker is solved. Science 347 (6218) (2015) 145–149. [Brown and Sandholm, 2016] Brown, N. and Sandholm, T. (2016). Strategy-Based Warm Starting for Regret Minimization in Games. In *Proceedings of AAAI Conference on Artificial Intelligence*. [Brown and Sandholm, 2017] Brown, N. and Sandholm, T. (2017). Safe and Nested Subgame Solving for Imperfect-Information Games In Proceedings of 31st Conference on Neural Information Processing Systems (NIPS 2017). ### References II - [Burch et al., 2014] Burch, N., Johanson, M., and Bowling, M. (2014). Solving Imperfect Information Games Using Decomposition. - In Proceedings of AAAI Conference on Artificial Intelligence. - [Hoda et al., 2010] S. Hoda, A. Gilpin, J. Peña, T. Sandholm, (2010) Smoothing Techniques for Computing Nash Equilibria of Sequential Games. - Mathematics of Operations Research 35 (2) (2010) 494-512. - [Johanson et al., 2011] Johanson, M., Bowling, M., Waugh, K., and Zinkevich, M. (2011). - Accelerating best response calculation in large extensive games. - In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), pages 258–265. - [Koller and Megiddo, 1992] D. Koller, N. Megiddo. (1992) The Complexity of Two-person Zero-sum Games in Extensive Form, Games and Economic Behavior 4:528–552. ## References III [Kroer et al., 2018] Kroer, C., Waugh, K., Klnc-Karzan, F., Sandholm, T. (2018). Faster algorithms for extensive-form game solving via improved smoothing functions. Mathematical Programming, 1–33. [Lanctot, 2013] Lanctot, M. (2013). Monte Carlo Sampling and Regret Minimization for Equilibrium Computation and Decision Making in Large Extensive-Form Games. PhD thesis, University of Alberta. [Moravcik et al., 2017] M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh, M. Johanson, M. Bowling, Deepstack: Expert-level Artificial Intelligence in Heads-up No-limit Poker, Science. [Shoham and Leyton-Brown, 2009] Shoham, Y. and Leyton-Brown, K. (2009). Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press. ## References IV ``` [Tammelin, O. 2014] O. Tammelin, (2014) CFR+, CoRR, abs/1407.5042. [Zinkevich et al., 2008] M. Zinkevich, M. Johanson, M. H. Bowling, C. Piccione. (2007) Regret minimization in games with incomplete information. In Advances in Neural Information Processing Systems, pp. 1729–1736. ```