
Multiagent Systems (BE4M36MAS)

Solving Extensive-Form Games and Other
Representations of Dynamic Games

Branislav Bošanský

Artificial Intelligence Center,
Department of Computer Science,
Faculty of Electrical Engineering,

Czech Technical University in Prague

branislav.bosansky@agents.fel.cvut.cz

November 3, 2020

Previously ... on multi-agent systems.

1 Solving Extensive-Form Games

2 Sequence-Form Representation

Sequence Form Linear Program (SQF)

We are now ready to state the linear program:

max
r1,v

v(root) (1)

s.t. r1(∅) = 1 (2)

0 ≤ r1(σ1) ≤ 1 ∀σ1 ∈ Σ1 (3)∑
a∈A(I1)

r1(σ1a) = r1(σ1) ∀I1 ∈ I1, σ1 = seq1(I1) (4)

∑
I′∈I2:σ2a=seq2(I′)

v(I ′) +
∑
σ1∈Σ1

g(σ1, σ2a)r1(σ1) ≥ v(I) ∀I ∈ I2, σ2 = seq2(I), ∀a ∈ A(I)

(5)

seqi(I) is a sequence of player i to information set,

I ∈ Ii, vI is an expected utility in an information set,

infi(σi) is an information set, where the last action of σi has been
executed,

σia denotes an extension of a sequence σi with action a

Simple Network Security Scenario – Flip-It Game

Flip-it Game in a network

players aim to gain control over the hosts in the
network

the defender initially controls all hosts

both players choose which node to
attack/protect simultaneously (in case of a tie,
the control of the node does not change)

players only observe the result of their last move

there are different rewards/costs for each node

Simple Network Security Scenario – Flip-It Game

SQF for Flip-it Game in a network

Depth Size (# Nodes) Time [s] LP Time [s]

3 15,685 1 1

4 495,205 23 8

5 16,715,941 – –

Advantages/Disadvantages of SQF

(+) the fastest exact algorithm (if the LP fits into memory)

(+) quite easy to implement

(−) scales poorly due to memory limitations

(−) very difficult to make it domain-specific

Incremental Strategy Generation

Large linear programs can be solved by an incremental construction
of the LP. In game theory, the method has been known as
double-oracle algorithm. There are 4 steps that repeat until
convergence [Bosansky et al., 2014]:

1 create a restricted game – a simplified game where the
players are allowed to choose only from a limited set of
sequences of actions,

2 solve the restricted game – formalize the restricted game as
a sequence-form LP and solve it,

3 compute the best response – each player computes a best
response in the original game to the strategy from the
restricted game,

4 expand the restricted game – if the best responses strictly
improve the expected value, they are added as possible actions
into the restricted game.

Double Oracle Algorithm for EFGs

The original game. Sequences that form the restricted game will
be highlighted.

Double Oracle Algorithm for EFGs

Sequences AC and xz are added to the restricted game (as default
sequences of actions).

Double Oracle Algorithm for EFGs

Sequence yu is added to the restricted game as a best response of
the minimizing player.

Double Oracle Algorithm for EFGs

Sequence BE is added to the restricted game as a best response
of the maximizing player.

Double Oracle Algorithm for EFGs

There is no action defined for the node with history ByE. The
algorithm turns that node into a temporary leaf and assigns a
temporary utility value for that leaf.

Double Oracle Algorithm for EFGs

The algorithm turns the temporary leaf into a node when an action
s or t is added into the restricted game.

Characteristics of DOEFG

Generalization of the double oracle principle to structured strategy
spaces (such as sequences/realization plans).

Creating a valid restricted game is more complicated than adding a
single strategy (one may need to create temporary leaves).

DOEFG converges in at most linear number of iterations in the size
of the game tree (compared to the exponential number of
iterations when using strategies).

Simple Network Security Scenario – Flip-It Game

DOEFG for Flip-it Game in a network

Depth # Nodes SQF [s] SQF LP [s] DOEFG [s]

3 15,685 1 1 1

4 495,205 23 8 9

5 16,715,941 – – 508

Advantages/Disadvantages of DOEFG

(+) can solve much larger domains compared to SQF

(+) in a domain-independent way, the algorithm identifies
necessary strategies to consider in a large EFG

(+) best-response algorithms can be significantly improved for
specific domains/problems

(−) not that easy to implement

(−) the sequence-form linear program of the restricted game can
be a bottleneck

Simple Network Security Scenario – Flip-It Game

DOEFG with ordered moves for BR algorithm for Flip-it
Game in a network

Depth # Nodes SQF [s] SQF LP [s] DOEFG [s] DOEFG ordered [s]

3 15,685 1 1 1 1

4 495,205 23 8 9 5

5 16,715,941 – – 508 168

For depth 6 (size ≈ 4× 109 nodes), DOEFG with ordered moves for BR
reached error 0.1 in 2 hours.

Approximate Algorithms for Extensive-Form Games

Algorithms based on Counterfactual Regret Minimization

Approximate Algorithms for Extensive-Form Games

Instead of computing the optimal strategy directly, one can employ
learning algorithms and learn the strategy via repeated (simulated,
or self-) play.

The algorithm minimizes so called regret and these algorithms are
also known as no-regret learning algorithms.

Main idea:

in each iteration, traverse through the game tree and adapt
the strategy in each information set according to the learning
rule

this learning rule minimizes the (counterfactual) regret

the algorithm minimizes the overall regret in the game

the average strategy converges to the optimal strategy

Regret and Counterfactual Regret

Player i’s regret for not playing an action a′i against opponent’s
action a−i

ui(a
′
i, a−i)− ui(ai, a−i)

In extensive-form games we need to evaluate the value for each
action in an information set (counterfactual value)

vi(s, I) =
∑
z∈ZI

πs−i(z[I])π
s
i (z|z[I])ui(z),

where

ZI are leafs reachable from information set I

z[I] is the history prefix of z in I

πsi (h) is the probability of player i reaching node h following
strategy s

Regret and Counterfactual Regret

Counterfactual value for one deviation in information set I;
strategy s is altered in information set I by playing action
a : vi(sI→a, I)

at a time step t, the algorithm computes counterfactual regret for
current strategy

rti(I, a) = vi(sI→a, I)− vi(sI , I)
the algorithm calculates the cumulative regret

RT
i =

T∑
t=1

rti(I, a), RT,+
i (I, a) = max{RT

i (I, a), 0}

strategy for the next iteration is selected using regret matching

st+1
i (I, a) =


RT,+i (I,a)∑

a′∈A(I) R
T,+
i (I,a′)

if the denominator is positive

1
|A(I)| otherwise

Simple Network Security Scenario – Flip-It Game

CFR for Flip-it Game in a network1

1With the game tree pre-built in memory (took 1088s).

Extensions of Counterfactual Regret Minimization

There are many variants of the vanilla CFR algorithm:

MCCFR – CFR updates are not performed in the complete
game, but using outcome sampling (faster iterations)
[Lanctot, 2013, Brown and Sandholm, 2016]

CFR-BR – the second player performs a best-response (BR)
update instead of a CFR update (ideal for games where a
domain-specific BR algorithm is available)
[Johanson et al., 2011]

CFR-D – decomposition of CFR updates by subgames
(helpful if the game is too large to keep all information sets in
memory) [Burch et al., 2014]

CFR+ – main modification of the baseline CFR algorithm
that significantly improves convergence [Tammelin, O. 2014]

Extensions of Counterfactual Regret Minimization (CFR+)

CFR+ differs from CFR in three aspects:

only positive regrets are kept in cumulative regrets RT
i

players are alternating in the updates

in the computation of the average strategy, first d iterations
are ignored, later iterations are more important compared to
first iterations

Sometimes, even the current strategy reaches low exploitability.

Extensions of Counterfactual Regret Minimization (CFR+)

2

2Figure from [Tammelin, O. 2014].

Advantages/Disadvantages of CFR

(+) practical optimization algorithm

(+) easy to implement [Lanctot, 2013, p.22]

(+) memory requirements can be reduced with domain-specific
implementation (or CFR-D)

(−) CFR converges very slowly if a close approximation is required
(CFR+ is better)

(−) performance in other domains than poker is largely unknown
(in some cases slower than DOEFG)

Continual Resolving and Deepstack

Is there no hope for a provably algorithm that behaves similarly to
perfect information games?

Recently, new methods that allow limited-lookahead algorithm for
imperfect information games for poker
[Moravcik et al., 2017, Brown and Sandholm, 2017].

Key properties:

Use (a more complex) heuristic function to evaluate positions
at the end of the depth-limited game tree
Solve an EFG with a limited lookahead (e.g., using CFR or
other algorithm)
Use a specific gadget construction when advancing to next
turn of the game.

One cannot assign a heuristic value just to a state (as in perfect
information games), but to all states players consider possible.

Continual Resolving and Deepstack

3

3Picture from [Moravcik et al., 2017].

Generalization of Continual Resolving

Adaptation of continual resolving technique to other (security)
domains is not straightforward:

the actions are generally not observable (the defender does
not know which host the attacker infected)

the size of information sets (in number of possible states)
increases exponentially with number of turns in the game

the size of the information sets is changing for the
heuristic/neural network
the size of the information sets becomes impractical for large
horizon

the number of turns can be very large (e.g., Advanced
Persistent Threats (APTs))

Other Representations

Other representations for dynamic / sequential games.

Extensive-Form Games

Let’s assume that we want to play some normal-form game twice.
For example, rock-paper-scissors:

R P S

R (0, 0) (−1, 1) (1,−1)
P (1,−1) (0, 0) (−1, 1)
S (−1, 1) (1,−1) (0, 0)

Question

How can we model such games?

We can model the game as an extensive-form game.

Pros: we already know how to solve such a game.
Cons: it is unnecessarily large.

RPS Played Twice as an Extensive-Form Games

We can use a model specific for repeated games.

Finitely Repeated Games

Definition

In repeated games we assume that a normal-form game, termed
the stage game, is played repeatedly. If the number of repetitions
(or rounds) is finite, we talk about finitely repeated games.

Question

How can we solve finitely repeated games?

We can use backward induction.

Why does this work if we have an extensive-form game with
imperfect information?

Infinitely Repeated Games

Definition

Assume that a stage game is played repeatedly. If the number of
repetitions (or rounds) is infinite, we talk about infinitely repeated
games.

We cannot use extensive-form games as a underlying model. There
are no leafs to assign utility values to. We need to define other
utility measures:

Definition

Given an infinite sequence of payoffs r
(1)
i , r

(2)
i , . . . for player i, the

average reward of i is

lim
k→∞

∑k
j=1 r

(j)
i

k

Infinitely Repeated Games

Definition

Given an infinite sequence of payoffs r
(1)
i , r

(2)
i , . . . for player i, and

a discount factor β with 0 ≤ β ≤ 1, the future discounted reward is

∞∑
j=1

βjr
(j)
i

Why do we use discount factor?

a player cares more about immediate rewards

a repeated game can terminate after each round with
probability 1− β

Strategies in Repeated Games

How can we represent the strategies in infinitely repeated games?
(the game tree is infinite)

a stationary strategy – a randomized strategy that is played in
each stage game

Is this enough? Consider a repeated prisoners dilemma – what is
the most famous strategy in repeated prisoners dilemma?

Tit-for-tat: the player starts by cooperating and thereafter chooses
in round j + 1 the action chosen by the other player in round j.

We can have more complex strategies consisting of
states/machines.

Strategies in Repeated Games

Definition

Given a game G = (N,A, u) that will be played repeatedly, an
automaton Mi for player i is a four-tuple (Qi, q

0
i , δi, fi), where:

Qi is a set of states;

q0i is the start state;

δi defines a transition function mapping the current state and an
action profile to a new state, δi : Qi ×A→ Qi

fi is a strategy function associating with every state an action
for player i, fi : Qi → Ai.

A strategy for Tit-for-Tat

Strategies in Repeated Games

Definition

A payoff profile r = (r1, r2, . . . , rn) is enforceable if ∀i ∈ N ,
ri ≥ vi.

where vi is a minmax value for player i

vi = min
s−i∈S−i

max
si∈Si

ui(s−i, si)

Definition

A payoff profile r = (r1, r2, . . . , rn) is feasible if there exist
rational, nonnegative values αa such that for all i, we can express
ri as

∑
a∈A αaui(a), with

∑
a∈A αa = 1.

Nash Strategies in Repeated Games

Theorem (Folk Theorem)

Consider any n-player normal-form game G and any payoff profile
r = (r1, r2, . . . , rn).

1 If r is the payoff profile for any Nash equilibrium s of the
infinitely repeated G with average rewards, then for each
player i, ri is enforceable.

2 If r is both feasible and enforceable, then r is the payoff
profile for some Nash equilibrium of the infinitely repeated G
with average rewards.

Stochastic Games

Let’s generalize the repeated games. We do not have to play the
same normal-form game repeatedly. We can play different
normal-form games (possibly for infinitely long time).

Definition (Stochastic game)

A stochastic game is a tuple (Q,N ,A,P,R), where:

Q is a finite set of games

N is a finite set of players

A is a finite set of actions, Ai are actions available to player i

P is a transition function P : Q×A×Q :→ [0, 1], where
P(q, a, q′) is a probability of reaching game q′ after a joint
action a is played in game q

R is a set of reward functions ri : Q×A → R

Stochastic Games

Similarly to repeated games we can have several different rewards
(or objectives):

discounted

average

reachability/safety

In reachability objectives a player wants to visit certain games
infinitely often.

Related to reaching some target state (for example attacking a
target) in a game without a pre-determined horizon.

Stochastic Games - Examples

Repeated prisoners dilemma:

Dante’s purgatory:

Equilibria in Stochastic Games

Definition (History)

Let ht = (q0, a0, q1, a1, . . . , at1, qt) denote a history of t stages of a
stochastic game, and let Ht be the set of all possible histories of
this length.

Definition (Behavioral strategy)

A behavioral strategy si(ht, aij) returns the probability of playing
action aij for history ht.

Definition (Markov strategy)

A Markov strategy si is a behavioral strategy in which
si(ht, aij) = si(h

′
t, aij) if qt = q′t, where qt and q′t are the final

games of ht and h′t, respectively.

Equilibria in Stochastic Games

Definition

A strategy profile is called a Markov perfect equilibrium if it
consists of only Markov strategies, and is a Nash equilibrium.

Theorem

Every n-player, general-sum, discounted-reward stochastic game
has a Markov perfect equilibrium.

Equilibria in Stochastic Games

For other rewards, Markov perfect equilibrium does not have to
exist.

Approximating Optimal Strategies in Stochastic Games

Standard algorithms from Markov Decision Processes, value and
strategy iteration, translate to stochastic games.

Approximating Optimal Strategies in Stochastic Games

Invitation - Algorithmic Game Theory (XEP36AGT)

References I

[Bosansky et al., 2014] Bosansky, B., Kiekintveld, C., Lisy, V., and Pechoucek,
M. (2014).

An Exact Double-Oracle Algorithm for Zero-Sum Extensive-Form Games
with Imperfect Information.

Journal of Artificial Intelligence Research, 2014.

[Bowling et al., 2015] M. Bowling, N. Burch, M. Johanson, O. Tammelin.

Heads-up limit holdem poker is solved.

Science 347 (6218) (2015) 145–149.

[Brown and Sandholm, 2016] Brown, N. and Sandholm, T. (2016).

Strategy-Based Warm Starting for Regret Minimization in Games.

In Proceedings of AAAI Conference on Artificial Intelligence.

[Brown and Sandholm, 2017] Brown, N. and Sandholm, T. (2017).

Safe and Nested Subgame Solving for Imperfect-Information Games

In Proceedings of 31st Conference on Neural Information Processing
Systems (NIPS 2017).

References II

[Burch et al., 2014] Burch, N., Johanson, M., and Bowling, M. (2014).

Solving Imperfect Information Games Using Decomposition.

In Proceedings of AAAI Conference on Artificial Intelligence.

[Hoda et al., 2010] S. Hoda, A. Gilpin, J. Peña, T. Sandholm, (2010)

Smoothing Techniques for Computing Nash Equilibria of Sequential
Games.

Mathematics of Operations Research 35 (2) (2010) 494–512.

[Johanson et al., 2011] Johanson, M., Bowling, M., Waugh, K., and Zinkevich,
M. (2011).

Accelerating best response calculation in large extensive games.

In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI), pages 258–265.

[Koller and Megiddo, 1992] D. Koller, N. Megiddo. (1992)

The Complexity of Two-person Zero-sum Games in Extensive Form,

Games and Economic Behavior 4:528–552.

References III

[Kroer et al., 2018] Kroer, C., Waugh, K., Klnc-Karzan, F., Sandholm, T.
(2018).

Faster algorithms for extensive-form game solving via improved smoothing
functions.

Mathematical Programming, 1–33.

[Lanctot, 2013] Lanctot, M. (2013).

Monte Carlo Sampling and Regret Minimization for Equilibrium
Computation and Decision Making in Large Extensive-Form Games.

PhD thesis, University of Alberta.

[Moravcik et al., 2017] M. Moravč́ık, M. Schmid, N. Burch, V. Lisý, D. Morrill,
N. Bard, T. Davis, K. Waugh, M. Johanson, M. Bowling, Deepstack:
Expert-level Artificial Intelligence in Heads-up No-limit Poker, Science.

[Shoham and Leyton-Brown, 2009] Shoham, Y. and Leyton-Brown, K. (2009).

Multiagent Systems: Algorithmic, Game-Theoretic, and Logical
Foundations.

Cambridge University Press.

References IV

[Tammelin, O. 2014] O. Tammelin, (2014)

CFR+,

CoRR, abs/1407.5042.

[Zinkevich et al., 2008] M. Zinkevich, M. Johanson, M. H. Bowling,
C. Piccione. (2007)

Regret minimization in games with incomplete information.

In Advances in Neural Information Processing Systems, pp. 1729–1736.

