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How to divide the estate among claimants?

• After the death of a man, 3 creditors raise claims

• Depending on the estate, 3 variants of division are proposed

Allocations according to the Talmud rule

Estate/Demand 100 200 300

100 100/3 100/3 100/3

200 50 75 75

300 50 100 150

Table 1: Aumann and Maschler (1985)
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From bankruptcy problems to bankruptcy games

Let N = {1, . . . , n} be the set of claimants.

Definition

A bankruptcy problem is a pair (e,d ), where e ≥ 0 is the estate

and d = (d1, . . . , dn) ∈ Rn
+ are the demands such that

e ≤ d1 + · · ·+ dn.

Definition

A bankruptcy game associated with a bankruptcy problem (e,d )

is a coalitional game given by

v(A) = max {e − d (N \ A), 0} , A ⊆ N.
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Solving bankruptcy games

Every bankruptcy game is supermodular, which implies that

• The core C(v) is nonempty and

• The Shapley value belongs to C(v)

Example based on Table 1

e = 200, d = (100, 200, 300), and v(A) =


200 A = N,

100 A = 23,

0 otherwise.

C(v) = conv{(100, 100, 0), (100, 0, 100), (0, 200, 0), (0, 0, 200)}
ϕS(v) = 1

3 · (100, 250, 250)
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We will study a division rule different from the Shapley value

• It applies to all coalitional games

• It coincides with the Talmud rule for bankruptcy problems

• The idea is that the maximal dissatisfaction of coalitions with

an allocation should be minimized
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The nucleolus



Measuring excess of coalitions in game v

The excess of coalition A ⊆ N at allocation x ∈ Rn is

e(A, x) := v(A)− x(A)

Definition

Enumerate coalitions A1, . . . ,A2n from the highest excess:

e(A1, x) ≥ · · · ≥ e(A2n , x).

The excess vector is

e(x) :=
(
e(A1, x), . . . , e(A2n , x)

)
∈ R2n .
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Lexicographic order

The excess vectors whose maximal excess is minimal are preferred.

Definition

For every α,β ∈ Rm, define:

• α ≺ β if there is k = 1, . . . ,m such that for each j < k,

αj = βj and αk < βk

• α � β if α ≺ β or α = β

The binary relation � is a total order on Rm.
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Example

Glove game

N = {1, 2, 3} v(A) =

1 A = 12, 13,N,

0 otherwise.

Allocations: x =
(

1
3 ,

1
3 ,

1
3

)
, y = (1, 0, 0), z =

(
4
6 ,

1
6 ,

1
6

)
A ∅ 1 2 3 12 13 23 N

e(A, x) 0 −1
3 −1

3 −1
3

1
3

1
3 −2

3 0

e(A, y) 0 −1 0 0 0 0 0 0

e(A, z) 0 −2
3 −1

6 −1
6

1
6

1
6 −1

3 0

e(y) ≺ e(z) ≺ e(x)
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Imputations

We seek a lexicographic minimizer of excess vectors e(x) over a set

of allocations x in game v . But which set to choose?

• The core? If x ∈ C(v) and y /∈ C(v), then e(x) ≺ e(y)

• But it can happen that C(v) = ∅. . .

• We define the set of imputations as

I(v) := {x ∈ Rn | x(N) = v(N)︸ ︷︷ ︸
Efficiency

, xi ≥ v(i), i ∈ N︸ ︷︷ ︸
Individual rationality

}

Claim

If v is a superadditive game, then I(v) 6= ∅
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Example: Imputations in a three-player game

v(123) > 0, v(1) = v(2) = v(3) = 0

x2

x1

x3

I(v) =
{
x ∈ R3 | x1 + x2 + x3 = v(123), x1, x2, x3 ≥ 0

}
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The nucleolus

Definition

Let v be a game with I(v) 6= ∅. The nucleolus of v is the set

N (v) :=
{
x ∈ I(v) | e(x) � e(y) for all y ∈ I(v)

}

1. Is N (v) nonempty?

2. Is N (v) single-valued?

3. How to compute N (v)?
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Existence of the nucleolus

Theorem (Schmeidler, 1969)

Let v be a game with I(v) 6= ∅. Then |N (v)| = 1.

Properties of the nucleolus

• If C(v) 6= ∅, then it contains N (v)

• Efficiency

• Symmetry

• Null player property
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Example: Solution of the original bankruptcy problem

Example based on Table 1

e = 200, d = (100, 200, 300), and v(A) =


200 A = N,

100 A = 23,

0 otherwise.

Consider x = (50, 75, 75) and any y ∈ C(v) to show e(x) � e(y):

A 1 2 3 12 13 23

e(A, x) −50 −75 −75 −125 −125 −50

e(A, y) −y1 −y2 −y3 −y1 − y2 −y1 − y3 y1 − 100
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The nucleolus of a two-player game

Example

Consider a superadditive game v with two players:

v(12) ≥ v(1) + v(2)

• The set of imputations is the line segment

I(v) = {x ∈ R2 | x1 + x2 = v(12), x1 ≥ v(1), x2 ≥ v(2)}

• The nucleolus is allocation(
v(1) +

v(12)− v(1)− v(2)

2
, v(2) +

v(12)− v(1)− v(2)

2

)
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How to compute the nucleolus?

Computing the nucleolus in many classes of games is NP-hard.

Algorithm

Input: Game v such that I(v) 6= ∅

1. Find X1 ⊆ I(v) minimizing the maximal excess

2. Find X2 ⊆ X1 minimizing the second highest excess

3. Continue this procedure. . .

4. . . . until it yields a single imputation, the nucleolus
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Minimizing the maximal excess

LP with variables x = (x1, . . . , xn), t

Minimize t

subject to e(A, x) ≤ t, ∅ 6= A ⊂ N,

x ∈ I(v)

t1 := the value of the LP

X1 × {t1} := the set of optimal solutions

• If X1 is a singleton, then X1 = N (v)

• Else put

F1 := {A ⊂ N | e(A, x) = t1, x ∈ X1}
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Minimizing the second highest excess

LP with variables x = (x1, . . . , xn), t

Minimize t

subject to e(A, x) ≤ t, A /∈ F1, ∅ 6= A ⊂ N

x ∈ X1

t2 := the value of the LP

X2 × {t2} := the set of optimal solutions

• If X2 is a singleton, then X2 = N (v)

• Else put

F2 := {A ⊂ N | e(A, x) = t2, x ∈ X2}
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Minimizing the k-th highest excess

The algorithm stops when Xk is a singleton at step k ≤ 2n.

• Each ti is the i-th highest excess

• Each Fi is the collection of coalitions with excess ti

• At each step, Fi contains at least one new coalition
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Summary: Properties of solution concepts

Property/Solution core Shapley value Banzhaf value nucleolus

Nonemptiness − X X �

Efficiency X X − X

Individual rationality X � � X

Symmetry − X X X

Null player property X X X X

Additivity − X X −

� This property is true for every superadditive game
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