Statistical Machine Learning (BE4M33SSU) Lecture 7a: Stochastic Gradient Descent

Jan Drchal

Czech Technical University in Prague Faculty of Electrical Engineering Department of Computer Science

Gradient Descent (GD)

• **Task**: find parameters which minimize loss over the training dataset:

$$oldsymbol{ heta}^* = \operatorname*{argmin}_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{ heta})$$

where heta is a set of all parameters defining the ANN

• Gradient descent: $\theta_{k+1} = \theta_k - \alpha_k \nabla \mathcal{L}(\theta_k)$ where $\alpha_k > 0$ is the **learning rate** or **stepsize** at iteration k

Stochastic Gradient Descent (SGD): Motivation

The loss has typically an additive structure, hence:

$$\nabla \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \nabla \ell(y_i, h_{\boldsymbol{\theta}}(\boldsymbol{x}_i))$$

- Evaluation of $\nabla \mathcal{L}(\boldsymbol{\theta})$ takes $\mathcal{O}(m)$ time
- What if we have duplicate samples in \mathcal{T}_m ?
- Online learning?
- Use a single sample or a *mini-batch* instead of the *full-batch* approach
 Stochastic Gradient Descent (SGD)
- The following is based on Bottou, Curtis and Nocedal: Optimization Methods for Large-Scale Machine Learning, 2018

Simplifying the Notation

- Let's simplify and generalize the notation
- The gradient of loss (empirical risk) is

$$\nabla \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \nabla \ell(y_i, h_{\boldsymbol{\theta}}(\boldsymbol{x}_i))$$

- Represent a sample (or a set of samples) by a seed s, meaning the realization of s is either an input-output pair (x, y) or a set of pairs $\{(x_i, y_i)\}_{i \in S}, S \subseteq \{1, \ldots, m\}$
- Define f to be a composite of ℓ and prediction h
- As an example, for GD above we can define $s_i riangleq (x_i, y_i) \in \mathcal{T}^m$ and write

$$\nabla \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \nabla f(\boldsymbol{\theta}, s_i)$$

SGD Algorithm

- Stochastic Gradient Descent
 - 1 Choose an initial iterate $\boldsymbol{\theta}_1$

2 **for**
$$k = 1, 2, \dots$$

- 3 Generate a realization of the random variable s_k
- 4 Compute a stochastic gradient estimate vector $g(\boldsymbol{\theta}_k, s_k)$
- 5 Choose a stepsize $\alpha_k > 0$
- 6 Set the new iterate as $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k \alpha_k \ g(\boldsymbol{\theta}_k, s_k)$

Possible options of a stochastic vector

$$g(\boldsymbol{\theta}_k, s_k) = \begin{cases} \nabla f(\boldsymbol{\theta}_k, s_k) & \text{single sample, online learning} \\ \frac{1}{m_k} \sum_{i=1}^{m_k} \nabla f(\boldsymbol{\theta}_k, s_{k,i}) & \text{batch/mini-batch} \\ H_k \frac{1}{n_k} \sum_{i=1}^{n_k} \nabla f(\boldsymbol{\theta}_k, s_{k,i}) & \text{Newton/quasi-Newton direction} \end{cases}$$

5/20

- Holds for picking samples of \$\mathcal{T}_m\$ with replacement\$, for picking without replacement\$ it holds only until dataset gets exhausted in general
- We consider the elements of the random sequence $\{s_k\}$ independent

SGD Convergence Theorem: Overview

The main theorem shows that the expected optimality gap

$$\mathbb{E}[\mathcal{L}(\boldsymbol{\theta}_k) - \mathcal{L}_*] \xrightarrow{k \to \infty} 0$$

where \mathcal{L}_* is the optimal (minimal) loss

Assumptions:

- 1. Strong convexity of \mathcal{L}
- 2. Lipschitz continuous gradient $\nabla \mathcal{L}$
- 3. Bounds on \mathcal{L} and $g(\boldsymbol{\theta}_k, s_k)$:
 - \mathcal{L} is bounded below by a scalar \mathcal{L}_{inf} ,
 - directions of $g(\theta_k, s_k)$ and $\nabla \mathcal{L}(\theta_k)$ similar,
 - their norms are also *similar*

 $\mathcal{L}(\bar{\theta})$

 $\mathcal{L}(t\theta + (1-t)\bar{\theta})$

 $\mathcal{L}(\theta) + \nabla \mathcal{L}(\theta)^T (\bar{\theta} - \theta)$

Convexity

$$\mathcal{L}(t\boldsymbol{\theta} + (1-t)\bar{\boldsymbol{\theta}}) \le t\mathcal{L}(\boldsymbol{\theta}) + (1-t)\mathcal{L}(\bar{\boldsymbol{\theta}})$$

 $t\mathcal{L}(\theta) + (1-t)\mathcal{L}(\overline{\theta})$

 $\mathcal{L}(\theta)$

for all $(\boldsymbol{\theta}, \bar{\boldsymbol{\theta}}) \in \mathbb{R}^d imes \mathbb{R}^d$

• Equivalently (first-order condition):

$$\mathcal{L}(\bar{\boldsymbol{\theta}}) \geq \mathcal{L}(\boldsymbol{\theta}) + \nabla \mathcal{L}(\boldsymbol{\theta})^T (\bar{\boldsymbol{\theta}} - \boldsymbol{\theta})$$

the function lies above all its tangents

But we need a stronger assumption...

Assumption 1: Strong Convexity

• The loss function $\mathcal{L}: \mathbb{R}^d \to \mathbb{R}$ is strongly convex if there exists constant c > 0 such that

$$\mathcal{L}(\bar{\boldsymbol{\theta}}) \geq \mathcal{L}(\boldsymbol{\theta}) + \nabla \mathcal{L}(\boldsymbol{\theta})^T (\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}) + \frac{1}{2} c \left\| \bar{\boldsymbol{\theta}} - \boldsymbol{\theta} \right\|_2^2$$

for all $(\boldsymbol{\theta}, \bar{\boldsymbol{\theta}}) \in \mathbb{R}^d imes \mathbb{R}^d$

Intuition: quadratic lower bound on function growth

m p 9/20

Strong Convexity Example

- Example (SVM objective): $\max(0, 1 y(\boldsymbol{w}^T\boldsymbol{x} + b)) + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2$
- Here, simplified to 1D
- Hinge loss is linear and constant in part: it is convex
- w^2 is strongly convex, easily show equality for c = 2:

$$\bar{w}^{2} \ge w^{2} + 2w(\bar{w} - w) + (\bar{w} - w)^{2}$$
$$\bar{w}^{2} \ge w^{2} + 2w(\bar{w} - w) + \bar{w}^{2} - 2\bar{w} \cdot w + w^{2}$$
$$0 \ge 2w^{2} + 2w \cdot \bar{w} - 2w^{2} - 2\bar{w} \cdot w = 0$$

Assumption 2: Lipschitz Continuous Gradient

• The loss function is continuously differentiable and the gradient is Lipschitz continuous with Lipschitz constant L > 0:

$$\left\| \nabla \mathcal{L}(\boldsymbol{\theta}) - \nabla \mathcal{L}(\bar{\boldsymbol{\theta}}) \right\|_{2} \leq L \left\| \boldsymbol{\theta} - \bar{\boldsymbol{\theta}} \right\|_{2}, \text{ for all } (\boldsymbol{\theta}, \bar{\boldsymbol{\theta}}) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$$

Intuition: the gradient does not change too quickly w.r.t. θ
Provides an indicator for how far to move to decrease L
Lemma (see Bottou et al. for the proof):

$$\mathcal{L}(\bar{\boldsymbol{\theta}}) \leq \mathcal{L}(\boldsymbol{\theta}) + \nabla \mathcal{L}(\boldsymbol{\theta})^T (\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}) + \frac{1}{2} L \left\| \bar{\boldsymbol{\theta}} - \boldsymbol{\theta} \right\|_2^2$$

Assumptions 1 & 2: Summary

• We have the strong convexity:

$$\mathcal{L}(\bar{\boldsymbol{\theta}}) \geq \mathcal{L}(\boldsymbol{\theta}) + \nabla \mathcal{L}(\boldsymbol{\theta})^T (\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}) + \frac{1}{2} c \left\| \bar{\boldsymbol{\theta}} - \boldsymbol{\theta} \right\|_2^2$$

and the Lipschitz continuous gradient:

$$\mathcal{L}(\bar{\boldsymbol{\theta}}) \leq \mathcal{L}(\boldsymbol{\theta}) + \nabla \mathcal{L}(\boldsymbol{\theta})^T (\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}) + \frac{1}{2} L \left\| \bar{\boldsymbol{\theta}} - \boldsymbol{\theta} \right\|_2^2$$

hence $c \leq L$ holds

Quadratic lower and upper bounds on $\mathcal{L}(ar{m{ heta}})$ growth

Assumptions Summary

constant	description	higher value means	
c > 0	strong convexity (lower bound)	"more convex"	
L > 0	Lipschitz continuous gradient	higher gradient change	
	(upper bound)	allowed	
$\mathcal{L} \geq \mathcal{L}_{inf}$	lower bound on loss		
$\mu > 0$	$g(oldsymbol{ heta}_k,s_k)$ direction comparable to	smaller angular difference	
	$ abla \mathcal{L}(oldsymbol{ heta}_k)$	between $\mathbb{E}_{s_k}[g(oldsymbol{ heta}_k,s_k)]$ and	
		$ abla \mathcal{L}(oldsymbol{ heta}_k)$	
$M \ge 0$	limits expected scalar variance of	higher variance of $g(oldsymbol{ heta}_k,s_k)$	
	$g(oldsymbol{ heta}_k,s_k)$	allowed	
$M_G \ge \mu^2$	limits expected squared norm of	higher expected ratio of	
	$g(oldsymbol{ heta}_k,s_k)$ w.r.t. the $\left\ abla\mathcal{L}(oldsymbol{ heta}_k) ight\ _2$	$\mid \mathbb{E}_{s_k}[g(oldsymbol{ heta}_k,s_k)]$ and $ abla \mathcal{L}(oldsymbol{ heta}_k)$	
		norms allowed	

SGD Convergence: Strongly Convex \mathcal{L} , Fixed Stepsize

• **Theorem:** assuming Lipschitz continuity, the Bounds and strong convexity of \mathcal{L} , the SGD is run with a fixed stepsize $\alpha_k = \alpha$ for all $k \in \mathbb{N}$, where $0 < \alpha \leq \frac{\mu}{LM_G}$. Then the *expected optimality gap* satisfies the following for all k:

$$\mathbb{E}[\mathcal{L}(\boldsymbol{\theta}_{k}) - \mathcal{L}_{*}] \leq \frac{\alpha LM}{2c\mu} + (1 - \alpha c\mu)^{k-1} \left(\mathcal{L}(\boldsymbol{\theta}_{1}) - \mathcal{L}_{*} - \frac{\alpha LM}{2c\mu} \right)$$
$$\xrightarrow{k \to \infty} \frac{\alpha LM}{2c\mu}$$

• Note:
$$(1 - \alpha c\mu)^{k-1} \xrightarrow{k \to \infty} 0$$
 as $0 < \alpha c\mu \le \frac{c\mu^2}{LM_G} \le \frac{c\mu^2}{L\mu^2} = \frac{c}{L} \le 1$

In general, for the fixed stepsize, the *optimality gap* tends to zero, but converges to $\frac{\alpha LM}{2c\mu} \ge 0$

Full-Batch Gradient Descent

- How does the theorem apply to the full-batch setting (GD)?
- The $g(\theta_k, s_k)$ is an unbiased estimate of $\nabla \mathcal{L}(\theta_k)$:

$$\mathbb{E}_{s_k}[g(\boldsymbol{\theta}_k, s_k)] = \nabla \mathcal{L}(\boldsymbol{\theta}_k)$$

- Zero variance implies M = 0
- The optimality gap simplifies to:

$$\epsilon_k = \mathbb{E}[\mathcal{L}(\boldsymbol{\theta}_k) - \mathcal{L}_*] \le (1 - \alpha c \mu)^{k-1} \left(\mathcal{L}(\boldsymbol{\theta}_1) - \mathcal{L}_* \right) \xrightarrow{k \to \infty} 0$$

- Asymptotically we have $\epsilon_k \leq \mathcal{O}(\rho^k)$, $\rho \in [0,1)$
- For a given gap ϵ , the number of iterations k is proportional to $\log(1/\epsilon)$ in the worst case.

SGD Convergence: Strongly Convex \mathcal{L} , Diminishing Stepsize

Theorem: assuming the strong convexity of L the Lipschitz continuity of \nabla L and the Bounds, the SGD is run with a stepsize such that, for all k

р

15/20

$$\alpha_k = \frac{\beta}{\gamma+k}$$
 for some $\beta > \frac{1}{c\mu} > 0$ and $\gamma > 0$ such that $\alpha_1 \le \frac{\mu}{LM_G}$

Then the *expected optimality gap* satisfies the following for all k:

$$\mathbb{E}[\mathcal{L}(\boldsymbol{\theta}_k) - \mathcal{L}_*] \le \frac{v}{\gamma + k}$$

where v is a constant

- Now we have $\mathbb{E}[\mathcal{L}(\boldsymbol{\theta}_k) \mathcal{L}_*] \xrightarrow{k \to \infty} 0$
- Asymptotically the gap is $\epsilon_k \leq \mathcal{O}(1/k)$ which means that the number of iterations k is proportional to $1/\epsilon$ in the worst case

GD vs SGD

	GD	SGD
time per iteration	m	1
iterations for accuracy ϵ	$\log(1/\epsilon)$	$1/\epsilon$
time for accuracy ϵ	$m\log(1/\epsilon)$	$1/\epsilon$

- SGD time does not depend on dataset size (if not exhausted)
- For large-scale problems (large m) SGD is faster
- It is harder to tune stepsize schedule for SGD, but you can experiment on a small representative subset of the dataset
- In practise *mini-batches* are used to leverage optmization/parallelization on CPU/GPU

SGD for Nonconvex Objectives

- Corresponding theorems can be proven for nonconvex objectives
- For assumptions similar to the theorem for the diminishing stepsizes (and excluding the strong convexity) we get:

$$\lim_{k \to \infty} \mathbb{E}\left[\left\| \nabla \mathcal{L}(\boldsymbol{\theta}_k) \right\|_2^2 \right] = 0$$

Momentum

Simulate inertia to overcome plateaus in the error landscape:

$$\boldsymbol{v}_{k+1} \leftarrow \mu \boldsymbol{v}_k - \alpha_k \ g(\boldsymbol{\theta}_k, s_k)$$

 $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \boldsymbol{v}_{k+1}$

where $\mu \in [0,1]$ is the momentum parameter

- Momentum damps oscillations in directions of high curvature
- It builds velocity in directions with consistent (possibly small) gradient

Adagrad

- *Motivation:* a magnitude of gradient differs a lot for different parameters
- *Idea:* reduce learning rates for parameters having high values of gradient

$$G_{k+1,i} \leftarrow G_{k,i} + [g(\boldsymbol{\theta}_k, s_k)]_i^2$$

$$\theta_{k+1,i} \leftarrow \theta_{k,i} - \frac{\alpha}{\sqrt{G_{k+1,i}} + \epsilon} \cdot [g(\boldsymbol{\theta}_k, s_k)]_i$$

- $G_{k,i}$ accumulates squared partial derivative approximations w.r.t. to the parameter $\theta_{k,i}$
- \bullet ϵ is a small positive number to prevent division by zero
- Weakness: ever increasing G_i leads to slow convergence eventually

RMSProp

• Similar to Adagrad but employs a moving average:

$$G_{k+1,i} = \gamma G_{k,i} + (1-\gamma) \left[g(\boldsymbol{\theta}_k, s_k) \right]_i^2$$

• γ is a *decay* parameter (typical value $\gamma = 0.9$)

Unlike for Adagrad updates do not get infinitesimally small

θ $\mathcal{L}(\theta) + \nabla \mathcal{L}(\theta)^T (\bar{\theta} - \theta)$

