
Statistical Machine Learning (BE4M33SSU)
Lecture 7a: Stochastic Gradient Descent

Jan Drchal

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2/20
Gradient Descent (GD)

� Task: find parameters which minimize loss over the training dataset:

θ∗ = argmin
θ
L(θ)

where θ is a set of all parameters defining the ANN

� Gradient descent: θk+1 = θk − αk∇L(θk)

where αk > 0 is the learning rate or stepsize at iteration k

http://cmp.felk.cvut.cz

3/20
Stochastic Gradient Descent (SGD): Motivation

� The loss has typically an additive structure, hence:

∇L(θ) =
1

m

m∑
i=1

∇`(yi, hθ(xi))

� Evaluation of ∇L(θ) takes O(m) time

� What if we have duplicate samples in Tm?

� Online learning?

� Use a single sample or a mini-batch instead of the full-batch approach
⇒ Stochastic Gradient Descent (SGD)

� The following is based on Bottou, Curtis and Nocedal: Optimization
Methods for Large-Scale Machine Learning, 2018

http://cmp.felk.cvut.cz

4/20
Simplifying the Notation

� Let’s simplify and generalize the notation

� The gradient of loss (empirical risk) is

∇L(θ) =
1

m

m∑
i=1

∇`(yi, hθ(xi))

� Represent a sample (or a set of samples) by a seed s, meaning the
realization of s is either an input-output pair (x, y) or a set of pairs
{(xi, yi)}i∈S, S ⊆ {1, . . . ,m}

� Define f to be a composite of ` and prediction h

� As an example, for GD above we can define si , (xi, yi) ∈ T m and write

∇L(θ) =
1

m

m∑
i=1

∇f(θ, si)

http://cmp.felk.cvut.cz

5/20
SGD Algorithm

� Stochastic Gradient Descent
1 Choose an initial iterate θ1
2 for k = 1, 2, . . .

3 Generate a realization of the random variable sk
4 Compute a stochastic gradient estimate vector g(θk, sk)

5 Choose a stepsize αk > 0

6 Set the new iterate as θk+1← θk − αk g(θk, sk)

� Possible options of a stochastic vector

g(θk, sk) =


∇f(θk, sk) single sample, online learning
1
mk

∑mk
i=1∇f(θk, sk,i) batch/mini-batch

Hk
1
nk

∑nk
i=1∇f(θk, sk,i) Newton/quasi-Newton direction

� Holds for picking samples of Tm with replacement, for picking without
replacement it holds only until dataset gets exhausted in general

� We consider the elements of the random sequence {sk} independent

http://cmp.felk.cvut.cz

6/20
SGD Convergence Theorem: Overview

� The main theorem shows that the expected optimality gap

E[L(θk)− L∗]
k→∞−−−−→ 0

where L∗ is the optimal (minimal) loss

� Assumptions:
1. Strong convexity of L
2. Lipschitz continuous gradient ∇L
3. Bounds on L and g(θk, sk):

• L is bounded below by a scalar Linf ,

• directions of g(θk, sk) and ∇L(θk) similar,

• their norms are also similar

http://cmp.felk.cvut.cz

7/20
Convexity

� Convex function definition:

L(tθ + (1− t)θ̄) ≤ tL(θ) + (1− t)L(θ̄)

for all (θ, θ̄) ∈ Rd × Rd

� Equivalently (first-order condition):

L(θ̄) ≥ L(θ) +∇L(θ)T (θ̄ − θ)

the function lies above all its tangents

� See A4B33OPT
� But we need a stronger assumption...

http://cmp.felk.cvut.cz

8/20
Assumption 1: Strong Convexity

� The loss function L : Rd→ R is strongly convex if there exists constant
c > 0 such that

L(θ̄) ≥ L(θ) +∇L(θ)T (θ̄ − θ) +
1

2
c
∥∥θ̄ − θ∥∥2

2

for all (θ, θ̄) ∈ Rd × Rd

� Intuition: quadratic lower bound on function growth

http://cmp.felk.cvut.cz

-4 -2 2 4

2

4

6

8

9/20
Strong Convexity Example

� Example (SVM objective): max(0, 1− y(wTx+ b)) + λ
2 ‖w‖

2
2

� Here, simplified to 1D

� Hinge loss is linear and constant in part: it is convex

� w2 is strongly convex, easily show equality for c = 2:

w̄2 ≥ w2 + 2w(w̄ − w) + (w̄ − w)2

w̄2 ≥ w2 + 2w(w̄ − w) + w̄2 − 2w̄ · w + w2

0 ≥ 2w2 + 2w · w̄ − 2w2 − 2w̄ · w = 0

http://cmp.felk.cvut.cz

10/20
Assumption 2: Lipschitz Continuous Gradient

� The loss function is continuously differentiable and the gradient is
Lipschitz continuous with Lipschitz constant L > 0:∥∥∇L(θ)−∇L(θ̄)

∥∥
2
≤ L

∥∥θ − θ̄∥∥
2
, for all (θ, θ̄) ∈ Rd × Rd

� Intuition: the gradient does not change too quickly w.r.t. θ

� Provides an indicator for how far to move to decrease L

� Lemma (see Bottou et al. for the proof):

L(θ̄) ≤ L(θ) +∇L(θ)T (θ̄ − θ) +
1

2
L
∥∥θ̄ − θ∥∥2

2

http://cmp.felk.cvut.cz

11/20
Assumptions 1 & 2: Summary

� We have the strong convexity:

L(θ̄) ≥ L(θ) +∇L(θ)T (θ̄ − θ) +
1

2
c
∥∥θ̄ − θ∥∥2

2

and the Lipschitz continuous gradient:

L(θ̄) ≤ L(θ) +∇L(θ)T (θ̄ − θ) +
1

2
L
∥∥θ̄ − θ∥∥2

2

hence c ≤ L holds

� Quadratic lower and upper bounds on L(θ̄) growth

http://cmp.felk.cvut.cz

12/20
Assumptions Summary

constant description higher value means
c > 0 strong convexity (lower bound) "more convex"
L > 0 Lipschitz continuous gradient

(upper bound)
higher gradient change
allowed

L ≥ Linf lower bound on loss
µ > 0 g(θk, sk) direction comparable to

∇L(θk)

smaller angular difference
between Esk[g(θk, sk)] and
∇L(θk)

M ≥ 0 limits expected scalar variance of
g(θk, sk)

higher variance of g(θk, sk)

allowed
MG ≥ µ2 limits expected squared norm of

g(θk, sk) w.r.t. the ‖∇L(θk)‖2
higher expected ratio of
Esk[g(θk, sk)] and ∇L(θk)

norms allowed

http://cmp.felk.cvut.cz

13/20
SGD Convergence: Strongly Convex L, Fixed Stepsize

� Theorem: assuming Lipschitz continuity, the Bounds and strong
convexity of L, the SGD is run with a fixed stepsize αk = α for all
k ∈ N, where 0 < α ≤ µ

LMG
. Then the expected optimality gap satisfies

the following for all k:

E[L(θk)− L∗] ≤
αLM

2cµ
+ (1− αcµ)k−1

(
L(θ1)− L∗ −

αLM

2cµ

)
k→∞−−−−→ αLM

2cµ

� Note: (1− αcµ)k−1
k→∞−−−−→ 0 as 0 < αcµ ≤ cµ2

LMG
≤ cµ2

Lµ2
= c

L ≤ 1

� In general, for the fixed stepsize, the optimality gap tends to zero, but
converges to αLM

2cµ ≥ 0

http://cmp.felk.cvut.cz

14/20
Full-Batch Gradient Descent

� How does the theorem apply to the full-batch setting (GD)?

� The g(θk, sk) is an unbiased estimate of ∇L(θk):

Esk[g(θk, sk)] = ∇L(θk)

� Zero variance implies M = 0

� The optimality gap simplifies to:

εk = E[L(θk)− L∗] ≤ (1− αcµ)k−1 (L(θ1)− L∗)
k→∞−−−−→ 0

� Asymptotically we have εk ≤ O(ρk), ρ ∈ [0, 1)

� For a given gap ε, the number of iterations k is proportional to log(1/ε)

in the worst case.

http://cmp.felk.cvut.cz

15/20
SGD Convergence: Strongly Convex L, Diminishing Stepsize

� Theorem: assuming the strong convexity of L the Lipschitz continuity
of ∇L and the Bounds, the SGD is run with a stepsize such that, for all
k

αk =
β

γ + k
for some β > 1

cµ
> 0 and γ > 0 such that α1 ≤

µ

LMG

Then the expected optimality gap satisfies the following for all k:

E[L(θk)− L∗] ≤
v

γ + k

where v is a constant

� Now we have E[L(θk)− L∗]
k→∞−−−−→ 0

� Asymptotically the gap is εk ≤ O(1/k) which means that the number of
iterations k is proportional to 1/ε in the worst case

http://cmp.felk.cvut.cz

16/20
GD vs SGD

GD SGD
time per iteration m 1

iterations for accuracy ε log(1/ε) 1/ε

time for accuracy ε m log(1/ε) 1/ε

� SGD time does not depend on dataset size (if not exhausted)

� For large-scale problems (large m) SGD is faster

� It is harder to tune stepsize schedule for SGD, but you can experiment
on a small representative subset of the dataset

� In practise mini-batches are used to leverage optmization/parallelization
on CPU/GPU

http://cmp.felk.cvut.cz

17/20
SGD for Nonconvex Objectives

� Corresponding theorems can be proven for nonconvex objectives

� For assumptions similar to the theorem for the diminishing stepsizes
(and excluding the strong convexity) we get:

lim
k→∞

E
[
‖∇L(θk)‖22

]
= 0

http://cmp.felk.cvut.cz

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

18/20
Momentum

� Simulate inertia to overcome plateaus in the error landscape:

vk+1← µvk − αk g(θk, sk)

θk+1← θk + vk+1

where µ ∈ [0, 1] is the momentum parameter

� Momentum damps oscillations in directions of high curvature

� It builds velocity in directions with consistent (possibly small) gradient

http://cmp.felk.cvut.cz

19/20
Adagrad

� Adaptive Gradient method (Duchi, Hazan and Singer, 2011)

� Motivation: a magnitude of gradient differs a lot for different parameters

� Idea: reduce learning rates for parameters having high values of gradient

Gk+1,i← Gk,i + [g(θk, sk)]
2
i

θk+1,i← θk,i −
α√

Gk+1,i + ε
· [g(θk, sk)]i

� Gk,i accumulates squared partial derivative approximations w.r.t. to the
parameter θk,i

� ε is a small positive number to prevent division by zero

� Weakness: ever increasing Gi leads to slow convergence eventually

http://cmp.felk.cvut.cz

20/20
RMSProp

� Similar to Adagrad but employs a moving average:

Gk+1,i = γGk,i + (1− γ) [g(θk, sk)]
2
i

� γ is a decay parameter (typical value γ = 0.9)

� Unlike for Adagrad updates do not get infinitesimally small

http://cmp.felk.cvut.cz

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

-4 -2 2 4

2

4

6

8

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

	First page
	ccmp Gradient Descent (GD)
	ccmp Stochastic Gradient Descent (SGD): Motivation
	ccmp Simplifying the Notation
	ccmp SGD Algorithm
	ccmp SGD Convergence Theorem: Overview
	ccmp Convexity
	ccmp Assumption 1: Strong Convexity
	ccmp Strong Convexity Example
	ccmp Assumption 2: Lipschitz Continuous Gradient
	ccmp Assumptions 1 & 2: Summary
	ccmp Assumptions Summary
	ccmp SGD Convergence: Strongly Convex $SL $, Fixed Stepsize
	ccmp Full-Batch Gradient Descent
	ccmp SGD Convergence: Strongly Convex $SL $, Diminishing Stepsize
	ccmp GD vs SGD
	ccmp SGD for Nonconvex Objectives
	ccmp Momentum
	ccmp Adagrad
	ccmp RMSProp
	Last page

