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Gradient Descent (GD)

� Task: find parameters which minimize loss over the training dataset:

θ∗ = argmin
θ
L(θ)

where θ is a set of all parameters defining the ANN

� Gradient descent: θk+1 = θk − αk∇L(θk)

where αk > 0 is the learning rate or stepsize at iteration k

http://cmp.felk.cvut.cz
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Stochastic Gradient Descent (SGD): Motivation

� The loss has typically an additive structure, hence:

∇L(θ) =
1

m

m∑
i=1

∇`(yi, hθ(xi))

� Evaluation of ∇L(θ) takes O(m) time

� What if we have duplicate samples in Tm?

� Online learning?

� Use a single sample or a mini-batch instead of the full-batch approach
⇒ Stochastic Gradient Descent (SGD)

� The following is based on Bottou, Curtis and Nocedal: Optimization
Methods for Large-Scale Machine Learning, 2018

http://cmp.felk.cvut.cz
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Simplifying the Notation

� Let’s simplify and generalize the notation

� The gradient of loss (empirical risk) is

∇L(θ) =
1

m

m∑
i=1

∇`(yi, hθ(xi))

� Represent a sample (or a set of samples) by a seed s, meaning the
realization of s is either an input-output pair (x, y) or a set of pairs
{(xi, yi)}i∈S, S ⊆ {1, . . . ,m}

� Define f to be a composite of ` and prediction h

� As an example, for GD above we can define si , (xi, yi) ∈ T m and write

∇L(θ) =
1

m

m∑
i=1

∇f(θ, si)

http://cmp.felk.cvut.cz
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SGD Algorithm

� Stochastic Gradient Descent
1 Choose an initial iterate θ1
2 for k = 1, 2, . . .

3 Generate a realization of the random variable sk
4 Compute a stochastic gradient estimate vector g(θk, sk)

5 Choose a stepsize αk > 0

6 Set the new iterate as θk+1← θk − αk g(θk, sk)

� Possible options of a stochastic vector

g(θk, sk) =


∇f(θk, sk) single sample, online learning
1
mk

∑mk
i=1∇f(θk, sk,i) batch/mini-batch

Hk
1
nk

∑nk
i=1∇f(θk, sk,i) Newton/quasi-Newton direction

� Holds for picking samples of Tm with replacement, for picking without
replacement it holds only until dataset gets exhausted in general

� We consider the elements of the random sequence {sk} independent

http://cmp.felk.cvut.cz
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SGD Convergence Theorem: Overview

� The main theorem shows that the expected optimality gap

E[L(θk)− L∗]
k→∞−−−−→ 0

where L∗ is the optimal (minimal) loss

� Assumptions:
1. Strong convexity of L
2. Lipschitz continuous gradient ∇L
3. Bounds on L and g(θk, sk):

• L is bounded below by a scalar Linf ,

• directions of g(θk, sk) and ∇L(θk) similar,

• their norms are also similar

http://cmp.felk.cvut.cz
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Convexity

� Convex function definition:

L(tθ + (1− t)θ̄) ≤ tL(θ) + (1− t)L(θ̄)

for all (θ, θ̄) ∈ Rd × Rd

� Equivalently (first-order condition):

L(θ̄) ≥ L(θ) +∇L(θ)T (θ̄ − θ)

the function lies above all its tangents

� See A4B33OPT
� But we need a stronger assumption...

http://cmp.felk.cvut.cz
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Assumption 1: Strong Convexity

� The loss function L : Rd→ R is strongly convex if there exists constant
c > 0 such that

L(θ̄) ≥ L(θ) +∇L(θ)T (θ̄ − θ) +
1

2
c
∥∥θ̄ − θ∥∥2

2

for all (θ, θ̄) ∈ Rd × Rd

� Intuition: quadratic lower bound on function growth

http://cmp.felk.cvut.cz
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Strong Convexity Example

� Example (SVM objective): max(0, 1− y(wTx+ b)) + λ
2 ‖w‖

2
2

� Here, simplified to 1D

� Hinge loss is linear and constant in part: it is convex

� w2 is strongly convex, easily show equality for c = 2:

w̄2 ≥ w2 + 2w(w̄ − w) + (w̄ − w)2

w̄2 ≥ w2 + 2w(w̄ − w) + w̄2 − 2w̄ · w + w2

0 ≥ 2w2 + 2w · w̄ − 2w2 − 2w̄ · w = 0

http://cmp.felk.cvut.cz
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Assumption 2: Lipschitz Continuous Gradient

� The loss function is continuously differentiable and the gradient is
Lipschitz continuous with Lipschitz constant L > 0:∥∥∇L(θ)−∇L(θ̄)

∥∥
2
≤ L

∥∥θ − θ̄∥∥
2
, for all (θ, θ̄) ∈ Rd × Rd

� Intuition: the gradient does not change too quickly w.r.t. θ

� Provides an indicator for how far to move to decrease L

� Lemma (see Bottou et al. for the proof):

L(θ̄) ≤ L(θ) +∇L(θ)T (θ̄ − θ) +
1

2
L
∥∥θ̄ − θ∥∥2

2

http://cmp.felk.cvut.cz
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Assumptions 1 & 2: Summary

� We have the strong convexity:

L(θ̄) ≥ L(θ) +∇L(θ)T (θ̄ − θ) +
1

2
c
∥∥θ̄ − θ∥∥2

2

and the Lipschitz continuous gradient:

L(θ̄) ≤ L(θ) +∇L(θ)T (θ̄ − θ) +
1

2
L
∥∥θ̄ − θ∥∥2

2

hence c ≤ L holds

� Quadratic lower and upper bounds on L(θ̄) growth

http://cmp.felk.cvut.cz
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Assumptions Summary

constant description higher value means
c > 0 strong convexity (lower bound) "more convex"
L > 0 Lipschitz continuous gradient

(upper bound)
higher gradient change
allowed

L ≥ Linf lower bound on loss
µ > 0 g(θk, sk) direction comparable to

∇L(θk)

smaller angular difference
between Esk[g(θk, sk)] and
∇L(θk)

M ≥ 0 limits expected scalar variance of
g(θk, sk)

higher variance of g(θk, sk)

allowed
MG ≥ µ2 limits expected squared norm of

g(θk, sk) w.r.t. the ‖∇L(θk)‖2
higher expected ratio of
Esk[g(θk, sk)] and ∇L(θk)

norms allowed

http://cmp.felk.cvut.cz
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SGD Convergence: Strongly Convex L, Fixed Stepsize

� Theorem: assuming Lipschitz continuity, the Bounds and strong
convexity of L, the SGD is run with a fixed stepsize αk = α for all
k ∈ N, where 0 < α ≤ µ

LMG
. Then the expected optimality gap satisfies

the following for all k:

E[L(θk)− L∗] ≤
αLM

2cµ
+ (1− αcµ)k−1

(
L(θ1)− L∗ −

αLM

2cµ

)
k→∞−−−−→ αLM

2cµ

� Note: (1− αcµ)k−1
k→∞−−−−→ 0 as 0 < αcµ ≤ cµ2

LMG
≤ cµ2

Lµ2
= c

L ≤ 1

� In general, for the fixed stepsize, the optimality gap tends to zero, but
converges to αLM

2cµ ≥ 0

http://cmp.felk.cvut.cz
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Full-Batch Gradient Descent

� How does the theorem apply to the full-batch setting (GD)?

� The g(θk, sk) is an unbiased estimate of ∇L(θk):

Esk[g(θk, sk)] = ∇L(θk)

� Zero variance implies M = 0

� The optimality gap simplifies to:

εk = E[L(θk)− L∗] ≤ (1− αcµ)k−1 (L(θ1)− L∗)
k→∞−−−−→ 0

� Asymptotically we have εk ≤ O(ρk), ρ ∈ [0, 1)

� For a given gap ε, the number of iterations k is proportional to log(1/ε)

in the worst case.

http://cmp.felk.cvut.cz
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SGD Convergence: Strongly Convex L, Diminishing Stepsize

� Theorem: assuming the strong convexity of L the Lipschitz continuity
of ∇L and the Bounds, the SGD is run with a stepsize such that, for all
k

αk =
β

γ + k
for some β > 1

cµ
> 0 and γ > 0 such that α1 ≤

µ

LMG

Then the expected optimality gap satisfies the following for all k:

E[L(θk)− L∗] ≤
v

γ + k

where v is a constant

� Now we have E[L(θk)− L∗]
k→∞−−−−→ 0

� Asymptotically the gap is εk ≤ O(1/k) which means that the number of
iterations k is proportional to 1/ε in the worst case

http://cmp.felk.cvut.cz
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GD vs SGD

GD SGD
time per iteration m 1

iterations for accuracy ε log(1/ε) 1/ε

time for accuracy ε m log(1/ε) 1/ε

� SGD time does not depend on dataset size (if not exhausted)

� For large-scale problems (large m) SGD is faster

� It is harder to tune stepsize schedule for SGD, but you can experiment
on a small representative subset of the dataset

� In practise mini-batches are used to leverage optmization/parallelization
on CPU/GPU

http://cmp.felk.cvut.cz
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SGD for Nonconvex Objectives

� Corresponding theorems can be proven for nonconvex objectives

� For assumptions similar to the theorem for the diminishing stepsizes
(and excluding the strong convexity) we get:

lim
k→∞

E
[
‖∇L(θk)‖22

]
= 0

http://cmp.felk.cvut.cz
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Momentum

� Simulate inertia to overcome plateaus in the error landscape:

vk+1← µvk − αk g(θk, sk)

θk+1← θk + vk+1

where µ ∈ [0, 1] is the momentum parameter

� Momentum damps oscillations in directions of high curvature

� It builds velocity in directions with consistent (possibly small) gradient

http://cmp.felk.cvut.cz
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Adagrad

� Adaptive Gradient method (Duchi, Hazan and Singer, 2011)

� Motivation: a magnitude of gradient differs a lot for different parameters

� Idea: reduce learning rates for parameters having high values of gradient

Gk+1,i← Gk,i + [g(θk, sk)]
2
i

θk+1,i← θk,i −
α√

Gk+1,i + ε
· [g(θk, sk)]i

� Gk,i accumulates squared partial derivative approximations w.r.t. to the
parameter θk,i

� ε is a small positive number to prevent division by zero

� Weakness: ever increasing Gi leads to slow convergence eventually

http://cmp.felk.cvut.cz
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RMSProp

� Similar to Adagrad but employs a moving average:

Gk+1,i = γGk,i + (1− γ) [g(θk, sk)]
2
i

� γ is a decay parameter (typical value γ = 0.9)

� Unlike for Adagrad updates do not get infinitesimally small

http://cmp.felk.cvut.cz
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